Skip to main content

fire severity

Displaying 91 - 100 of 119

NWFSC Fire Facts: What is? Fire Severity

Year of Publication
2015
Product Type

Fire severity refers to the effects of a fire on the environment, typically focusing on the loss of vegetation both above ground and below ground but also including soil impacts. Fire Facts: What is? Fire Severity

Limitations and utilisation of Monitoring Trends in Burn Severity products for assessing wildfire severity in the USA

Year of Publication
2015
Publication Type

The Monitoring Trends in Burn Severity project is a comprehensive fire atlas for the United States that includes perimeters and severity data for all fires greater than a particular size (~400 ha in the western US, and ~200 ha in the eastern US). Although the database was derived for management purposes, the scientific community has expressed interest in its research capacity.

Are high-severity fires burning at much higher rates recently than historically in dry-forest landscapes of the Western USA.

Year of Publication
2015
Publication Type

Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire.

Recovery of small pile burn scars in conifer forests of the Colorado Front Range

Year of Publication
2015
Publication Type

The ecological consequences of slash pile burning are a concern for land managers charged with maintaining forest soil productivity and native plant diversity. Fuel reduction and forest health management projects have created nearly 150,000 slash piles scheduled for burning on US Forest Service land in northern Colorado. The vast majority of these are small piles (<5 m diameter).

Topography, fuels, and fire exclusion drive fire severity of the Rim Fire in an old-growth mixed-conifer forest, Yosemite National Park, USA

Year of Publication
2015
Publication Type

The number of large, high-severity fires has increased in the western United States over the past 30 years due to climate change and increasing tree density from fire suppression. Fuel quantity, topography, and weather during a burn control fire severity, and the relative contributions of these controls in mixed-severity fires in mountainous terrain are poorly understood.