Skip to main content

Journal Article

Displaying 851 - 860 of 1072

A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models

Year of Publication
2015
Publication Type

Accurate biomass measurements and analyses are critical components in quantifying carbon stocks and sequestration rates, assessing potential impacts due to climate change, locating bio-energy processing plants, and mapping and planning fuel treatments. To this end, biomass equations will remain a key component of future carbon measurements and estimation.

Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years

Year of Publication
2015
Publication Type

Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales.

Topography, fuels, and fire exclusion drive fire severity of the Rim Fire in an old-growth mixed-conifer forest, Yosemite National Park, USA

Year of Publication
2015
Publication Type

The number of large, high-severity fires has increased in the western United States over the past 30 years due to climate change and increasing tree density from fire suppression. Fuel quantity, topography, and weather during a burn control fire severity, and the relative contributions of these controls in mixed-severity fires in mountainous terrain are poorly understood.

Simulated western spruce budworm defoliation reduces torching and crowning potential: a sensitivity analysis using a physics-based fire model

Year of Publication
2014
Publication Type

The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood.