Post-fire management affects species composition but not Douglas-fir regeneration in the Klamath Mountains
Ensuring adequate conifer regeneration after high severity wildfires is a common objective for ecologists and forest managers.
Ensuring adequate conifer regeneration after high severity wildfires is a common objective for ecologists and forest managers.
In the last three decades, over 4.1 million hectares have burned in Arizona and New Mexico and the largest fires in documented history have occurred in the past two decades. Changes in burn severity over time, however, have not been well documented in forest and woodland ecosystems in the southwestern US.
US public land management agencies are faced with multiple, often conflicting objectives to meet management targets and produce a wide range of ecosystem services expected from public lands. One example is managing the growing wildfire risk to human and ecological values while meeting programmatic harvest targets for economic outputs mandated in agency budgets.
In ponderosa pine forests of western North America, wildfires are becoming more frequent and affecting larger areas, while prescribed fire is increasingly used to reduce fuels and mitigate potential wildfire severity. Both fire types leave trees that initially survive their burn injuries, but will eventually die.
Researchers and managers increasingly recognize enterprise risk management as critical to addressing contemporary fire management challenges. Quantitative wildfire risk assessments contribute by parsing and mapping potentially contradictory positive and negative fire effects.
The increasing frequency and severity of fire and drought events have negatively impacted the capacity and success of reforestation efforts in many dry, western U.S. forests.
Wildland firefighters are exposed to wood smoke, which contains hazardous air pollutants, by suppressing thousands of wildfires across the U. S. each year.
Context Lack of quantitative observations of extent, frequency, and severity of large historical fires constrains awareness of departure of contemporary conditions from those that demonstrated resistance and resilience to frequent fire and recurring drought. Objectives Compare historical and contemporary fire and forest conditions for a dry forest landscape with few barriers to fire spread.
The commercial use of low-value forest-origin biomass has long been considered for its potential to offset the cost of reducing wildfire hazard. The production of biochar simultaneously consumes low-value forest biomass and produces stable charcoal that, when applied to dryland agricultural soils, can increase water holding capacity and crop yield.
A novel approach is presented to analyze smoke exposure and provide a metric to quantify health-related impacts. Our results support the current understanding that managing low-intensity fire for ecological benefit reduces exposure when compared to a high-intensity full suppression fire in the Sierra Nevada of California.