Skip to main content

Journal Article

Displaying 1071 - 1080 of 1280

Beyond reducing fire hazard: fuel treatment impacts on overstory tree survival

Year of Publication
2014
Publication Type

Fuel treatment implementation in dry forest types throughout the western UnitedStates is likely to increase in pace and scale in response to increasing incidence of large wildfires.While it is clear that properly implemented fuel treatments are effective at reducing hazardousfire potential, there are ancillary ecological effects that can impact forest resilience eitherpositively or negatively d

An accuracy assessment of the MTBS burned area product for shrub-steppe fires in the northern Great Basin, United States

Year of Publication
2014
Publication Type

Although fire is a common disturbance in shrub–steppe, few studies have specifically tested burned area mapping accuracy in these semiarid to arid environments. We conducted a preliminary assessment of the accuracy of the Monitoring Trends in Burn Severity (MTBS) burned area product on four shrub–steppe fires that exhibited varying degrees of within-fire patch heterogeneity.

Correlations between components of the water balance and burned area reveal insights for predicting forest fire area in the southwest United States

Year of Publication
2014
Publication Type

We related measurements of annual burned area in the southwest United States during 1984–2013 to records of climate variability. Within forests, annual burned area correlated at least as strongly with spring–summer vapour pressure deficit (VPD) as with 14 other drought-related metrics, including more complex metrics that explicitly represent fuel moisture.

Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA

Year of Publication
2014
Publication Type

Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas.

Mixed-severity fire in lodgepole-dominated forests: Are historical regimes sustainable on Oregon's Pumice Plateau, USA?

Year of Publication
2014
Publication Type

In parts of central Oregon, coarse-textured pumice substrates limit forest composition to low-density lodgepole pine (Pinus contorta Douglas ex Loudon var. latifolia Engelm. ex S. Watson) with scattered ponderosa pine (Pinus ponderosa Lawson & C. Lawson) and a shrub understory dominated by antelope bitterbrush (Purshia tridentata (Pursh) DC.).