Skip to main content

Soils and Woody Debris

Displaying 71 - 80 of 97

Changes in Soil Chemical and Biological Properties After Thinning and Prescribed Fire for Ecosystem Restoration in a Rocky Mountain Douglas Fir Forest

Year of Publication
2012
Publication Type

Practices such as thinning followed by prescribed burning, often termed ‘ecosystem restoration practices’, are being used in Rocky Mountain forests to prevent uncontrolled wildfire and restore forests to pre-settlement conditions. Prior to burning, surface fuels may be left or collected into piles, which may affect fire temperatures and attendant effects on the underlying soil.

Temporal dynamics and decay of coarse wood in early seral habitats of dry-mixed conifer forests in Oregon’s Eastern Cascades

Year of Publication
2012
Publication Type

Early seral forest habitats are increasingly valued for the unique structural resources they provide in many western US forests. Coarse woody detritus (CWD) are a significant feature of this developmental stage and are highly dynamic, suggesting these environments exhibit temporally diverse structural conditions prior to forest canopy closure.

Shrub Seed Banks in Mixed Conifer Forests of Northern California and the Role of Fire in Regulating Abundance

Year of Publication
2012
Publication Type

Understory shrubs play important ecological roles in forests of the western US, but they can also impede early tree growth and lead to fire hazard concerns when very dense. Some of the more common genera (Ceanothus, Arctostaphylos, and Prunus) persist for long periods in the seed bank, even in areas where plants have been shaded out.

Long and Short-Term Effects of Fire on Soil Charcoal of a Conifer Forest in Southwest Oregon

Year of Publication
2012
Publication Type

In 2002, the Biscuit Wildfire burned a portion of the previously established, replicated conifer unthinned and thinned experimental units of the Siskiyou Long-Term Ecosystem Productivity (LTEP) experiment, southwest Oregon. Charcoal C in pre and post-fire O horizon and mineral soil was quantified by physical separation and a peroxide-acid digestion method.