Skip to main content

Risk Assessment and Analysis

Displaying 101 - 110 of 160

Estimating post-fire debris-flow hazards prior to wildfire using a statistical analysis of historical distributions of fire severity from remote sensing data

Year of Publication
2018
Publication Type

Following wildfire, mountainous areas of the western United States are susceptible to debris flow during intense rainfall. Convective storms that can generate debris flows in recently burned areas may occur during or immediately after the wildfire, leaving insufficient time for development and implementation of risk mitigation strategies.

NFPA’s Wildland/Urban Interface: Fire Department Wildfire Preparedness and Readiness Capabilities – Final Report

Year of Publication
2017
Publication Type

The increasing frequency and intensity of wildland and wildland-urban interface (WUI) fires have become a significant concern in many parts of the United States and around the world. To address and manage this WUI fire risk, local fire departments around the country have begun to acquire the appropriate equipment and offer more training in wildfire response and suppression.

Policy Scenarios for fire-adapted communities: Understanding stakeholder risk-perceptions, using Fuzzy Cognitive Maps

Year of Publication
2017
Publication Type

Collaborative groups are most effective when the varied stakeholder groups within them understand the risks of wildfire and take proactive steps to manage these risks. Implementing policies for fire risk mitigation and adaptation, however, remains difficult because risks and policy alternatives are not understood or supported uniformly across diverse stakeholders.

Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin

Year of Publication
2017
Publication Type

Wildland firefighters must assess potential fire behaviour in order to develop appropriate strategies and tactics that will safely meet objectives. Fire danger indices integrate surface weather conditions to quantify potential variations in fire spread rates and intensities and therefore should closely relate to observed fire behaviour.

A LiDAR-based analysis of the effects of slope, vegetation density, and ground surface roughness on travel rates for wildland firefighter escape route mapping

Year of Publication
2017
Publication Type

Escape routes are essential components of wildland firefighter safety, providing pre-defined pathways to a safety zone. Among the many factors that affect travel rates along an escape route, landscape conditions such as slope, low-lying vegetation density, and ground surface roughness are particularly influential, and can be measured using airborne light detection and ranging (LiDAR) data.

Characterising resource use and potential inefficiencies during large-fire suppression in the western US

Year of Publication
2017
Publication Type

Currently, limited research on large-fire suppression effectiveness suggests fire managers may over-allocate resources relative to values to be protected. Coupled with observations that weather may be more important than resource abundance to achieve control objectives, resource use may be driven more by risk aversion than efficiency.