Skip to main content
Skip to main content

Mixed-Conifer Management

Displaying 81 - 90 of 104

Conifer regeneration following stand-replacing wildfires varies along an elevation gradient in a ponderosa pine forest, Oregon, USA

Year of Publication
2013
Publication Type

Climate change is expected to increase disturbances such as stand-replacing wildfire in many ecosystems, which have the potential to drive rapid turnover in ecological communities. Ecosystem recovery, and therefore maintenance of critical structures and functions (resilience), is likely to vary across environmental gradients such as moisture availability, but has received little study.

Bark Beetles and Fire: Two forces of nature transforming western forests

Year of Publication
2012
Publication Type

Bark beetles are chewing a wide swath through forests across North America. Over the past few years, infestations have become epidemic in lodgepole and spruce-fir forests of the Intermountain West. The resulting extensive acreages of dead trees are alarming the public and raising concern about risk of severe fire.

Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona

Year of Publication
2012
Publication Type

Using forests to sequester carbon in response to anthropogenically induced climate change is being considered across the globe. A recent U.S. executive order mandated that all federal agencies account for sequestration and emissions of greenhouse gases, highlighting the importance of understanding how forest carbon stocks are influenced by wildfire.

Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA

Year of Publication
2012
Publication Type

Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer stands.

Temporal dynamics and decay of coarse wood in early seral habitats of dry-mixed conifer forests in Oregon’s Eastern Cascades

Year of Publication
2012
Publication Type

Early seral forest habitats are increasingly valued for the unique structural resources they provide in many western US forests. Coarse woody detritus (CWD) are a significant feature of this developmental stage and are highly dynamic, suggesting these environments exhibit temporally diverse structural conditions prior to forest canopy closure.