Skip to main content

Fire Effects and Fire Ecology

Displaying 271 - 280 of 293

Current status and future needs of the BehavePlus fire modeling system

Year of Publication
2013
Publication Type

The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research.

Examination of the wind speed limit function in the Rothermel surface fire spread model

Year of Publication
2013
Publication Type

The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive.

Fourmile Canyon Fire Findings

Year of Publication
2012
Publication Type

The Fourmile Canyon Fire burned in the fall of 2010 in the Rocky Mountain Front Range adjacent to Boulder, Colorado. The fire occurred in steep, rugged terrain, primarily on privately owned mixed ponderosa pine and Douglas-fir forests.

Integrating Theoretical Climate and Fire Effects on Savanna and Forest Systems

Year of Publication
2012
Publication Type

The role of fire and climate in determining savanna and forest distributions requires comprehensive theoretical reevaluation. Empirical studies show that climate constrains maximum tree cover and that fire feedbacks can reduce tree cover substantially, but neither the stability nor the dynamics of these systems are well understood.

Surface Fire Intensity Influences Simulated Crown Fire Behavior in Lodgepole Pine Forests with Recent Mountain Pine Beetle-Caused Tree Mortality

Year of Publication
2012
Publication Type

Recent bark beetle outbreaks have had a significant impact on forests throughout western North America and have generated concerns about interactions and feedbacks between beetle attacks and fire. However, research has been hindered by a lack of experimental studies and the use of fire behavior models incapable of accounting for the heterogeneous fuel complexes.

Atmospheric Interactions with Wildland Fire Behaviour I. Basic Surface Interactions, Vertical Profiles and Synoptic Structures

Year of Publication
2012
Publication Type

This paper is the first of two reviewing scientific literature from 100 years of research addressing interactions between the atmosphere and fire behaviour. These papers consider research on the interactions between the fuels burning at any instant and the atmosphere, and the interactions between the atmosphere and those fuels that will eventually burn in a given fire.