Skip to main content

Climate Change and Fire

Displaying 181 - 190 of 245

Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years

Year of Publication
2015
Publication Type

Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales.

A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models

Year of Publication
2015
Publication Type

Accurate biomass measurements and analyses are critical components in quantifying carbon stocks and sequestration rates, assessing potential impacts due to climate change, locating bio-energy processing plants, and mapping and planning fuel treatments. To this end, biomass equations will remain a key component of future carbon measurements and estimation.

Correlations between components of the water balance and burned area reveal insights for predicting forest fire area in the southwest United States

Year of Publication
2014
Publication Type

We related measurements of annual burned area in the southwest United States during 1984–2013 to records of climate variability. Within forests, annual burned area correlated at least as strongly with spring–summer vapour pressure deficit (VPD) as with 14 other drought-related metrics, including more complex metrics that explicitly represent fuel moisture.

Climate change vulnerability and adaptation in the North Cascades region, Washington

Year of Publication
2014
Publication Type

The North Cascadia Adaptation Partnership (NCAP) is a science-management partnership consisting of the U.S. Department of Agriculture Forest Service Mount Baker-Snoqualmie and Okanogan-Wenatchee National Forests and Pacific Northwest Research Station; North Cascades National Park Complex; Mount Rainier National Park; and University of Washington Climate Impacts Group.

Briefing: Climate and Wildfire in Western U.S. Forests

Year of Publication
2014
Publication Type

Wildfire in western U.S. federally managed forests has increased substantially in recent decades, with large (>1000 acre) fires in the decade through 2012 over five times as frequent (450 percent increase) and burned area over ten times as great (930 percent increase) as the 1970s and early 1980s.

Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA

Year of Publication
2014
Publication Type

Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas.

Playing with Fire: How climate change and development patterns are constributing to the soaring costs of western wildfires

Year of Publication
2014
Publication Type

Strong scientific evidence shows that climate change is producing hotter, drier conditions that contribute to larger fires and longer fire seasons in the American West today. The annual number of large wildfires on federally managed lands in the 11 western states has increased by more than 75 percent: from approximately 140 during the period 1980–1989 to 250 in the 2000–2009 period.