Skip to main content
Skip to main content

Climate Change and Fire

Displaying 141 - 150 of 275

Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U.S.A.

Year of Publication
2017
Publication Type

Forest disturbance regimes are beginning to show evidence of climate-mediated changes, such as increasing severity of droughts and insect outbreaks. We review the major insects and pathogens affecting the disturbance regime for coastal Douglas-fir forests in western Oregon and Washington State, USA, and ask how future climate changes may influence their role in disturbance ecology.

The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals

Year of Publication
2017
Publication Type

We modeled the normal fire environment for occurrence of large forest wildfires (>40 ha) for the Pacific Northwest Region of the United States. Large forest wildfire occurrence data from the recent climate normal period (1971–2000) was used as the response variable and fire season precipitation, maximum temperature, slope, and elevation were used as predictor variables.

Effects of climate change on snowpack and fire potential in the western USA

Year of Publication
2017
Publication Type

We evaluate the implications of ten twenty-first century climate scenarios for snow, soil moisture, and fuel moisture across the conterminous western USA using the Variable Infiltration Capacity (VIC) hydrology model. A decline in mountain snowpack, an advance in the timing of spring melt, and a reduction in snow season are projected for five mountain ranges in the region.

Climate changes and wildfire alter vegetation of Yellowstone National Park, but forest cover persists

Year of Publication
2017
Publication Type

We present landscape simulation results contrasting effects of changing climates on forest vegetation and fire regimes in Yellowstone National Park, USA, by mid-21st century. We simulated potential changes to fire dynamics and forest characteristics under three future climate projections representing a range of potential future conditions using the FireBGCv2 model.