Research Database
Displaying 41 - 47 of 47
Climate-Induced Changes in Lake Ecosystem Structure Inferred from Coupled Neo- and Paleoecological Approaches
Year: 2012
Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests…
Publication Type: Journal Article
Integrating Theoretical Climate and Fire Effects on Savanna and Forest Systems
Year: 2012
The role of fire and climate in determining savanna and forest distributions requires comprehensive theoretical reevaluation. Empirical studies show that climate constrains maximum tree cover and that fire feedbacks can reduce tree cover substantially, but neither the stability nor the dynamics of these systems are well understood. A theoretical integration of rainfall effects with fire processes in particular is lacking. We use simple, well-supported assumptions about the percolation dynamics of fire spread and the demographic effects of climate and fire on trees to build a dynamic model…
Publication Type: Journal Article
Pole Creek Fire
Year: 2012
In September 9, 2012 a lightning strike hit the Pole Creek trailhead in the Deschutes National Forest, approximately 8 miles southwest of Sisters, Oregon. The wildfire was contained on October 17th after spreading over 26,000 acres of timber and brush. In response to this event, the Northwest Fire Science Consortium partnered with Oregon State University (OSU) College of Forestry, OSU Forestry & Natural Resources Extension, USFS Region 6, and the Central Oregon Fire Management Service to offer an opportunity for in-the-field learning in the immediate post-fire environment. Targeted…
Publication Type: Report
Changes in Soil Chemical and Biological Properties After Thinning and Prescribed Fire for Ecosystem Restoration in a Rocky Mountain Douglas Fir Forest
Year: 2012
Practices such as thinning followed by prescribed burning, often termed ‘ecosystem restoration practices’, are being used in Rocky Mountain forests to prevent uncontrolled wildfire and restore forests to pre-settlement conditions. Prior to burning, surface fuels may be left or collected into piles, which may affect fire temperatures and attendant effects on the underlying soil. The objective of this study is to determine which pre-fire fuel management treatments best reduce fuel loadings without causing fire temperatures high enough to impair soil chemical and biological properties. Five fuel…
Publication Type: Journal Article
Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming
Year: 2012
Anthropogenic-induced changes in nutrient ratios have increased the susceptibility of large temperate lakes to several effects of rising air temperatures and the resulting heating of water bodies. First, warming leads to stronger thermal stratification, thus impeding natural complete water turnover (holomixis), which compensates for oxygen deficits in the deep zones. Second, increased water temperatures and nutrient concentrations can directly favour the growth of harmful algae. Thus, lake-restoration programmes have focused on reducing nutrients to limit toxic algal blooms. Here we present…
Publication Type: Journal Article
USGS Fire Science - Fire danger monitoring and forecasting
Year: 2012
The United States Geological Survey (USGS) uses moderate resolution satellite data to assess live fuel condition for estimating fire danger. Using 23 years of vegetation condition measurements, we are able to determine the relative greenness of current live fuels. High relative greenness values indicate the vegetation is healthy and vigorous; low greenness values indicate the vegetation is under stress, dry (possibly from drought), behind in annual development, or dead. Forest, shrub, and grassland vegetation with low relative greenness are susceptible to fire ignition during the fire season…
Publication Type: Report
Moisture desorption in mechanically masticated fuels: effects of particle fracturing and fuelbed compaction
Year: 2012
Mechanical mastication is increasingly used as a wildland fuel treatment, reducing standing trees and shrubs to compacted fuelbeds of fractured woody fuels. One major shortcoming in our understanding of these fuelbeds is how particle fracturing influences moisture gain or loss, a primary determinant of fire behaviour. To better understand fuel moisture dynamics, we measured particle and fuelbed drying rates of masticated Arctostaphylos manzanita and Ceanothus velutinus shrubs, common targets of mastication in fire-prone western USA ecosystems. Drying rates of intact and fractured particles…
Publication Type: Journal Article