Research Database
Displaying 1 - 8 of 8
Toward a more ecologically informed view of severe forest fires
Year: 2016
We use the historical presence of high-severity fire patches in mixed-conifer forests of the western United States to make several points that we hope will encourage development of a more ecologically informed view of severe wildland fire effects. First, many plant and animal species use, and have sometimes evolved to depend on, severely burned forest conditions for their persistence. Second, evidence from fire history studies also suggests that a complex mosaic of severely burned conifer patches was common historically in the West. Third, to maintain ecological integrity in forests born of…
Publication Type: Journal Article
Does increased forest protection correspond to higher fire severity in frequent-fire forests of the western United States?
Year: 2016
There is a widespread view among land managers and others that the protected status of many forestlands in the western United States corresponds with higher fire severity levels due to historical restrictions on logging that contribute to greater amounts of biomass and fuel loading in less intensively managed areas, particularly after decades of fire suppression. This view has led to recent proposals—both administrative and legislative—to reduce or eliminate forest protections and increase some forms of logging based on the belief that restrictions on active management have increased fire…
Publication Type: Journal Article
Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.
Year: 2016
In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA…
Publication Type: Journal Article
Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems
Year: 2016
Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass–fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species,…
Publication Type: Journal Article
Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE
Year: 2016
Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climatechange, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the NativeAmerican to the current period drove shifts in fire activity and modulated fire–climate relationships in the Sierra Nevada. We developed a 415-y record (1600–2015 CE) of fire…
Publication Type: Journal Article
Post-fire logging produces minimal persistent impacts on understory vegetation in northeastern Oregon, USA
Year: 2016
Post-fire forest management commonly requires accepting some negative ecological impacts from management activities in order to achieve management objectives. Managers need to know, however,whether ecological impacts from post-fire management activities are transient or cause long-term ecosystem degradation. We studied the long-term response of understory vegetation to two post-fire loggingtreatments – commercial salvage logging with and without additional fuel reduction logging – on a long-term post-fire logging experiment in northeastern Oregon, USA. We sampled understory plant coverand…
Publication Type: Journal Article
Positive effects of fire on birds may appear only under narrow combinations of fire severity and time-since-fire
Year: 2016
We conducted bird surveys in 10 of the first 11 years following a mixed-severity fire in a dry, low-elevation mixed-conifer forest in western Montana, United States. By defining fire in terms of fire severity and time-since-fire, and then comparing detection rates for species inside 15 combinations of fire severity and time-since-fire, with their rates of detection in unburned (but otherwise similar) forest outside the burn perimeter, we were able to assess more nuanced effects of fire on 50 bird species. A majority of species (60%) was detected significantly more frequently inside than…
Publication Type: Journal Article
Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America
Year: 2016
Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa…
Publication Type: Journal Article