Research Database
Displaying 1 - 2 of 2
Combining ecophysiology and combustion traits to predict conifer live fuel moisture content: a pyro-ecophysiological approach
Year: 2025
Background Fuel moisture content is a key driver of fuel flammability and subsequent fire activity and behavior worldwide. Dead fuels passively exchange moisture with the atmosphere while live fuel moisture is confounded by a mixture of seasonal carbon and water cycle dynamics. Despite the significance of live fuel moisture content (LFMC) on wildland fire potential, attempts to model its variations seasonally and between species are often inconclusive or unsuccessful.ResultsHere we present a mechanistic LFMC model that uses easily measured live fuel…
Publication Type: Journal Article
Combining ecophysiology and combustion traits: a pyro-ecophysiological approach to live fuel moisture prediction in common shrubs
Year: 2025
BackgroundQuantifying fuel moisture content accurately is critical for understanding global vegetation flammability. While models representing changes in dead fuel moisture are relatively advanced, the mechanisms driving fluctuations in live fuel moisture content (LFMC) have been difficult to capture. Living plants make up a large proportion of the fuel complex for wildfires, yet linking plant and combustion science to advance our understanding of wildfire risk has, to date, been limiting. Developing mechanistic approaches to link these two disciplines will confer greater understanding and…
Publication Type: Journal Article