Research Database
Displaying 1 - 5 of 5
Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems
Year: 2011
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires,…
Publication Type: Journal Article
Evaluating Soil Risks Associated With Severe Wildfire and Ground-Based Logging
Year: 2011
Rehabilitation and timber-salvage activities after wildfire require rapid planning and rational decisions. Identifying areas with high risk for erosion and soil productivity losses is important. Moreover, allocation of corrective and mitigative efforts must be rational and prioritized. Our logic-based analysis of forested soil polygons on the Okanogan-Wenatchee National Forest was designed and implemented with the Ecosystem Management Decision Support (EMDS) system to evaluate risks to soil properties and productivity associated with moderate to severe wildfire and unmitigated use of ground-…
Publication Type: Report
Simulating fuel treatment effects in dry forests of the western United States: testing the principles of a fire-safe forest
Year: 2011
We used the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) to simulate fuel treatment effects on 45 1 62 stands in low- to midelevation dry forests (e.g., ponderosa pine (Pinus ponderosa Doug!. ex. P. & C. Laws.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) of the western United States. We evaluated treatment effects on predicted post-treatment fire behavior (fire type) and fire hazard (torching index). FFE-FVS predicts that thinning and surface fuel treatments reduced crown fire behavior relative to no treatment; a large proportion of stands were…
Publication Type: Journal Article
Assessing Fuel Treatment Effectiveness After the Tripod Complex Fires
Year: 2011
Over the past 50 years, wildfire frequency and area burned have increased in the dry forests of western North America. To help reduce high surface fuel loads and potential wildfire severity, a variety of fuel treatments are applied. In spite of the common use of these management practices, there have been relatively few opportunities to quantitatively measure their efficacy in wildfires. That changed with the 2006 Tripod Complex fires in the Okanogan-Wenatchee National Forest in Washington—one of the largest fire events in Washington state over the past five decades. A serendipitous…
Publication Type: Report
Ponderosa Pine Biomass Relationships Vary with Site Treatment and Site Productivity
Year: 2011
Allometric equations, which express biomass as a function of tree size, are often used to estimate the amount of fuel in a site’s canopy. Most managers assume that one allometric equation per species is sufficient, or that any error introduced by extrapolation is irrelevant. This work showed, however, that the allometric biomass relationship for ponderosa pine likely changes over space and time. The researchers concluded that for maximum accuracy, allometric equations for ponderosa pine should account for stand management history and site productivity. Thinned trees replaced their foliage…
Publication Type: Report