Research Database
Displaying 1 - 6 of 6
Accelerated forest restoration may benefit spotted owls through landscape complementation
Year: 2024
Animals often rely on the presence of multiple, spatially segregated cover types to satisfy their ecological needs; the juxtaposition of these cover types is called landscape complementation. In ecosystems that have been homogenized because of human land use, such as fire-suppressed forests, management activities have the potential to increase the heterogeneity of cover types and, therefore, landscape complementation. We modeled changes to California spotted owl (Strix occidentalis occidentalis) nesting/roosting habitat, foraging habitat and habitat co-occurrence (i.e. landscape…
Publication Type: Journal Article
Forest structural complexity and ignition pattern influence simulated prescribed fire effects
Year: 2024
Forest structural characteristics, the burning environment, and the choice of ignition pattern each influence prescribed fire behaviors and resulting fire effects; however, few studies examine the influences and interactions of these factors. Understanding how interactions among these drivers can influence prescribed fire behavior and effects is crucial for executing prescribed fires that can safely and effectively meet management objectives. To analyze the interactions between the fuels complex and ignition patterns, we used FIRETEC, a three-dimensional computational fluid dynamics fire…
Publication Type: Journal Article
Unlocking the potential of Airborne LiDAR for direct assessment of fuel bulk density and load distributions for wildfire hazard mapping
Year: 2024
Large-scale mapping of fuel load and fuel vertical distribution is essential for assessing fire danger, setting strategic goals and actions, and determining long-term resource needs. The Airborne LiDAR system can fulfil such goal by accurately capturing the three-dimensional arrangement of vegetation at regional and national scales. We developed a novel method to estimate multiple metrics of fuel load and vertical bulk density distribution for any type of vegetation. The approach uses Beer-Lambert law for inverting the ALS point cloud into vertical plant area density profiles, which are…
Publication Type: Journal Article
Repeated fuel treatments fall short of fire-adapted regeneration objectives in a Sierra Nevada mixed conifer forest, USA
Year: 2024
Fire exclusion over the last two centuries has driven a significant fire deficit in the forests of western North America, leading to widespread changes in the composition and structure of these historically fire-adapted ecosystems. Fuel treatments have been increasingly applied over the last few decades to mitigate fire hazard, yet it is unclear whether these fuel-focused treatments restore the fire-adapted conditions and species that will allow forests to persist into the future. A vital prerequisite of restoring fire-adaptedness is ongoing establishment of fire-tolerant tree species, and…
Publication Type: Journal Article
Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions
Year: 2024
Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-hierarchical modeling framework, we found a positive concave-down relationship between GEDI-derived fuel structure and wildfire severity, marked by increasing severity with greater fuel loads until a…
Publication Type: Journal Article
Decision Support for Landscapes with High Fire Hazard and Competing Values at Risk: The Upper Wenatchee Pilot Project
Year: 2024
Background: Climate change is a strong contributing factor in the lengthening and intensification of wildfire seasons, with warmer and often drier conditions associated with increasingly severe impacts. Land managers are faced with challenging decisions about how to manage forests, minimize risk of extreme wildfire, and balance competing values at risk, including communities, habitat, air quality, surface drinking water, recreation, and infrastructure. Aims: We propose that land managers use decision analytic frameworks to complement existing decision support systems such as the Interagency…
Climate Change and Fire, Restoration and Hazardous Fuel Reduction, Risk Assessment and Analysis, Social and Community Impacts of Fire
Publication Type: Journal Article