Research Database
Displaying 1 - 9 of 9
Toward a more ecologically informed view of severe forest fires
Year: 2016
We use the historical presence of high-severity fire patches in mixed-conifer forests of the western United States to make several points that we hope will encourage development of a more ecologically informed view of severe wildland fire effects. First, many plant and animal species use, and have sometimes evolved to depend on, severely burned forest conditions for their persistence. Second, evidence from fire history studies also suggests that a complex mosaic of severely burned conifer patches was common historically in the West. Third, to maintain ecological integrity in forests born of…
Publication Type: Journal Article
Does increased forest protection correspond to higher fire severity in frequent-fire forests of the western United States?
Year: 2016
There is a widespread view among land managers and others that the protected status of many forestlands in the western United States corresponds with higher fire severity levels due to historical restrictions on logging that contribute to greater amounts of biomass and fuel loading in less intensively managed areas, particularly after decades of fire suppression. This view has led to recent proposals—both administrative and legislative—to reduce or eliminate forest protections and increase some forms of logging based on the belief that restrictions on active management have increased fire…
Publication Type: Journal Article
Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.
Year: 2016
In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA…
Publication Type: Journal Article
Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE
Year: 2016
Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climatechange, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the NativeAmerican to the current period drove shifts in fire activity and modulated fire–climate relationships in the Sierra Nevada. We developed a 415-y record (1600–2015 CE) of fire…
Publication Type: Journal Article
Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America
Year: 2016
Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa…
Publication Type: Journal Article
Polishing the Prism: Improving Wildfire Mitigation Planning by Coupling Landscape and Social Dimensions
Year: 2016
Effectively addressing wildfire risk to communities on large multi-owner landscapes requires an understanding of the biophysical factors that influence risk, such as fuel loads, topography, and weather, and social factors such as the capacity and willingness for communities to engage in fire-mitigation activities. Biophysical and social processes often are disconnected in wildfire mitigation planning frameworks because of mismatches in scale. The different spatial and temporal scales of these processes usually are not recognized in the planning process. Forest Service scientists Alan Ager,…
Publication Type: Report
Secretarial Order 3336 Science Priorities: The Role of Science Past, Present, and Future
Year: 2016
Within sagebrush (Artemisia spp.) ecosystems, which are home to more than 350 species of plants and animals, potentially more frequent and severe fires are causing an increased threat to human safety, property, rural economies, and wildlife habitat. In particular, the habitat of the greater sage-grouse (Centrocercus urophasianus), an iconic sagebrush-dependent species, is at risk. In response to this reality, on January 15, 2015, Secretary Sally Jewell signed Secretarial Order 3336 (S.O. 3336), titled “Rangeland Fire Prevention, Management, and Restoration.” The main purpose of the order is…
Publication Type: Report
Scanning the Future of Wildfire: Resilience Ahead...Whether We Like It or Not?
Year: 2016
The field of so-called “futures research” provides researchers and stakeholders in a given subject area or system a way to map out and plan for alternate possible scenarios of the future. A recent research project supported by the Joint Fire Science Program brought together futures researchers and wildfire specialists to envision what the future holds for wildfire impacts and how the wildfire community may respond to the complex suite of emerging challenges. The consensus of the project’s foresight panel suggests that an era of resilience is ahead: but that this resilience may come either…
Publication Type: Report
Drivers of Wildfire Suppression Costs: A Review
Year: 2016
As federal spending on wildland fire suppression has increased dramatically in recent decades, significant policymaking has been designed, at least in part, to address and temper rising costs. Effective strategies for controlling public spending and leveraging limited wildfire management resources depend on a comprehensive understanding of the drivers of suppression costs. Problematically, frequently noted drivers often do not explain variability between similar wildfires or comparable wildfire seasons. As speculation and scrutiny around rising costs have increased, so too have scholarly…
Publication Type: Report