In the mountainous regions of the Western United States, increasing wildfire activity and climate change are putting forests at risk of regeneration failure and conversion to non-forests. During periods with unfavorable climatic conditions, locations that are suitable for post-fire tree…
Topic: Mixed-Conifer Management
Displaying 11 - 20 of 91
Background
Recognizing the complexity and varied nature of forest fuelbeds is crucial in understanding fire behavior and effects on the landscape. While current modeling efforts often consider fine and coarse woody debris surface fuel loads, those options do not always provide the most…
- In southwestern US forests, the combined impact of climate change and increased fuel loads due to more than a century of human-caused fire exclusion is leading to larger and more severe wildfires. Restoring frequent fire to dry conifer forests can mitigate high-severity fire risk, but the…
To understand the impacts of changing climate and wildfire activity on conifer forests, we studied how wildfire and post-fire seasonal climate conditions influence western larch (Larix occidentalis) regeneration across its range in the northwestern US. We destructively sampled 1651…
The number of large, high-severity wildfires has been increasing across the western United States over the last several decades. It is not fully understood how changes in the frequency of large, severe wildfires may impact the resilience of conifer forests, due to alterations in regeneration…
Accurate estimates of available live crown fuel loads are critical for understanding potential wildland fire behavior. Existing crown fire behavior models assume that available crown fuels are limited to all tree foliage and half of the fine branches less than 6 mm in diameter (1 h fuel). They…
Fire exclusion and past management have altered the composition, structure, and function of frequent-fire forests throughout western North America. In mixed-conifer forests of the California Sierra Nevada, fire exclusion has exacerbated the effects of drought and endemic bark beetles, resulting…
Tree regeneration is a critical mechanism of forest resilience to stand-replacing wildfire (i.e., where fire results in >90 % tree mortality), and post-fire regeneration is a concern worldwide as the climate becomes warmer. Although post-fire tree regeneration has been relatively well-…
Climate change and disturbance are altering forests and the rates and locations of tree regeneration. In semi-arid forests of the southwestern USA, limitations imposed by hot and dry conditions are likely to influence seedling survival. We examined how the survival of 1-year seedlings of five…
Historical logging practices and fire exclusion have reduced the proportion of pine in mixed-conifer forests of the western United States. To better understand pine’s decline, we investigate the impact of historical logging on the tree regeneration layer and subsequent stand development over…
Pagination
- Previous page
- Page 2
- Next page