More than 70 years of fire suppression by federal land management agencies has interrupted fire regimes in much of the western United States. The result of missed fire cycles is a buildup of both surface and canopy fuels in many forest ecosystems, increasing the risk of severe fire. The…
Topic: Fire Effects and Fire Ecology
Displaying 131 - 140 of 279
Ensuring adequate conifer regeneration after high severity wildfires is a common objective for ecologists and forest managers. In the Klamath region of Oregon and California, a global hotspot of botanical biodiversity, concerns over regeneration have led to post-fire management on many sites,…
In the last three decades, over 4.1 million hectares have burned in Arizona and New Mexico and the largest fires in documented history have occurred in the past two decades. Changes in burn severity over time, however, have not been well documented in forest and woodland ecosystems in the…
Wildfires are often perceived as destructive disturbances, but we propose that when integrating evolutionary and socioecological factors, fires in most ecosystems can be understood as natural processes that provide a variety of benefits to humankind. Wildfires generate open habitats that enable…
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the…
Wildfires underpin the dynamics and diversity of many ecosystems worldwide, and plants show a plethora of adaptive traits for persisting recurrent fires. Many fire-prone ecosystems also harbor a rich fauna; however, knowledge about adaptive traits to fire in animals remains poorly explored. We…
High-severity fire: Evaluating its key drivers and mapping its probability across western US forests
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in…
Executive Summary: For millennia, wildfires have markedly influenced forests and non-forested landscapes of the western United States (US), and they are increasingly seen as having substantial impacts on society and nature. There is growing concern over what kinds and amounts of fire will…
Ecological departure, or how much landscapes have changed from a natural range of variation (NRV), has become a key metric in forest planning and restoration efforts. In this study we define forest restoration need as the specific change in structural stage abundance necessary to move landscapes…
Wildland fire behavior research has largely focused on the steady-state interactions between fuels and heat fluxes. Contemporary research is revealing new questions outside the bounds of this simplified approach. Here, we explore the complex interactions taking place beyond steady-state…
Pagination
- Previous page
- Page 14
- Next page