Skip to main content

Journal Article

Displaying 101 - 110 of 1280

Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future

Year of Publication
2024
Publication Type

In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon.

Managed burning of forests: Balancing economic incentives, risks, and liability

Year of Publication
2024
Publication Type

Managed burning of forests can provide benefits to society including mitigated wildfire risk, improved habitat, and more. However, adverse outcomes of escaped fire or smoke pose risks. I reviewed the evolution of the law regulating forest management burns, explored the current legal architecture, and analyzed the economic incentives for involved actors, in order to identify policy options.

Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions

Year of Publication
2024
Publication Type

Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021.

An optimization model to prioritize fuel treatments within a landscape fuel break network

Year of Publication
2024
Publication Type

We present a mixed integer programming model for prioritizing fuel treatments within a landscape fuel break network to maximize protection against wildfires, measured by the total fire size reduction or the sum of Wildland Urban Interface areas avoided from burning. This model uses a large dataset of simulated wildfires in a large landscape to inform fuel break treatment decisions.

Unlocking the potential of Airborne LiDAR for direct assessment of fuel bulk density and load distributions for wildfire hazard mapping

Year of Publication
2024
Publication Type

Large-scale mapping of fuel load and fuel vertical distribution is essential for assessing fire danger, setting strategic goals and actions, and determining long-term resource needs. The Airborne LiDAR system can fulfil such goal by accurately capturing the three-dimensional arrangement of vegetation at regional and national scales.