Research Database
Displaying 1 - 7 of 7
Drivers and Impacts of the Record-Breaking2023 Wildfire Season in Canada
Year: 2024
The 2023 wildfire season in Canada was unprecedented in its scale andintensity, spanning from mid-April to late October and across much of theforested regions of Canada. Here, we summarize the main causes and impactsof this exceptional season. The record-breaking total area burned (~15 Mha)can be attributed to several environmental factors that converged early in theseason: early snowmelt, multiannual drought conditions in western Canada,and the rapid transition to drought in eastern Canada. Anthropogenic climatechange enabled sustained extreme fire weather conditions, as the meanMay–October…
Publication Type: Journal Article
Biogeographic patterns of daily wildfire spread and extremes across North America
Year: 2024
Introduction: Climate change is predicted to increase the frequency of extreme single-day fire spread events, with major ecological and social implications. In contrast with well-documented spatio-temporal patterns of wildfire ignitions and perimeters, daily progression remains poorly understood across continental spatial scales, particularly for extreme single-day events (“blow ups”). Here, we characterize daily wildfire spread across North America, including occurrence of extreme single-day events, duration and seasonality of fire and extremes, and ecoregional climatic…
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
A comparison of the US National Fire Danger Rating System (NFDRS) with recorded fire occurrence and final fire size
Year: 2018
Most previous research has assessed the ability of the National Fire Danger Rating System (NFDRS) to portray fire activity at either single sites or on small spatial scales, despite it being a nation-wide system. This study seeks to examine the relationships between a set of NFDRS fire danger indices (Fire Danger Ratings, Staffing Level and the Ignition Component) and measures of fire activity (fire occurrence and final fire size) across the entire conterminous US over an 8-year period. We reveal that different regions of the US display different levels of correspondence between each of the…
Publication Type: Journal Article
Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin
Year: 2017
Wildland firefighters must assess potential fire behaviour in order to develop appropriate strategies and tactics that will safely meet objectives. Fire danger indices integrate surface weather conditions to quantify potential variations in fire spread rates and intensities and therefore should closely relate to observed fire behaviour. These indices could better inform fire management decisions if they were linked directly to observed fire behaviour. Here, we present a simple framework for relating fire danger indices to observed categorical wildland fire behaviour. Ordinal logistic…
Publication Type: Journal Article
Correlations between components of the water balance and burned area reveal insights for predicting forest fire area in the southwest United States
Year: 2014
We related measurements of annual burned area in the southwest United States during 1984–2013 to records of climate variability. Within forests, annual burned area correlated at least as strongly with spring–summer vapour pressure deficit (VPD) as with 14 other drought-related metrics, including more complex metrics that explicitly represent fuel moisture. Particularly strong correlations with VPD arise partly because this term dictates the atmospheric moisture demand. Additionally, VPD responds to moisture supply, which is difficult to measure and model regionally due to complex…
Publication Type: Journal Article
Relationships between climate and macroscale area burned in the western United States
Year: 2013
Increased wildfire activity (e.g. number of starts, area burned, fire behaviour) across the western United States in recent decades has heightened interest in resolving climate–fire relationships. Macroscale climate–fire relationships were examined in forested and non-forested lands for eight Geographic Area Coordination Centers in the western United States, using area burned derived from the Monitoring Trends in Burn Severity dataset (1984–2010). Fire-specific biophysical variables including fire danger and water balance metrics were considered in addition to standard climate variables of…
Publication Type: Journal Article