Mixed-severity fires are increasingly recognized as common in Pseudotsuga forests of the Pacific Northwest and may be an important mechanism for developing or maintaining their structural diversity and complexity. Questions remain about how tree mortality varies and forest structure is altered…
Topic: Fire Effects and Fire Ecology
Displaying 191 - 200 of 276
Increases in wildfire occurrence and severity under an altered climate can substantially impact terrestrial ecosystems through enhancing runoff erosion. Improved prediction tools that provide high resolution spatial information are necessary for location-specific soil conservation and watershed…
Determining how the frequency, severity, and extent of forest fires are changing in response to changes in management and climate is a key concern in many regions where fire is an important natural disturbance. In the USA the only national-scale fire severity classification uses satellite image…
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the…
Wildfire is an ever present, natural process shaping landscapes. Having the ability to accurately measure and predict wildfire occurrence and impacts to ecosystem goods and services, both retrospectively and prospectively, is critical for adaptive management of landscapes. Landscape…
Fire severity maps are an important tool for understanding fire effects on a landscape. The relative differenced normalized burn ratio (RdNBR) is a commonly used severity index in California forests, and is typically divided into four categories: unchanged, low, moderate, and high. RdNBR is…
There is considerable interest in evaluating whether recent wildfires in dry conifer forests of western North America are burning with uncharacteristic severity—that is, with a severity outside the historical range of variability. In 2002, the Hayman Fire burned an unlogged 3400 ha dry conifer…
Ecological memory is central to how ecosystems respond to disturbance and is maintained by two types of legacies – information and material. Species life-history traits represent an adaptive response to disturbance and are an information legacy; in contrast, the abiotic and biotic structures (…
Current U.S. forest fire policy emphasizes short-term outcomes versus long-term goals. This perspective drives managers to focus on the protection of high-valued resources, whether ecosystem-based or developed infrastructure, at the expense of forest resilience. Given these current and future…
Wildfire risk in temperate forests has become a nearly intractable problem that can be characterized as a socioecological “pathology”: that is, a set of complex and problematic interactions among social and ecological systems across multiple spatial and temporal scales. Assessments of wildfire…
Pagination
- Previous page
- Page 20
- Next page