Land managers typically make post hoc assessments of the effectiveness of fuel reduction burning (FRB), but often lack a rigorous sampling framework. A general, but untested, assumption is that variability in soil and fuel properties increases from small (∼1 m) to large spatial scales (∼10–100…
Topic: Soils and Woody Debris
Displaying 31 - 40 of 78
Fire may remove or create dead wood aboveground, but it is less clear how high severity burning of soils affects belowground microbial communities and soil processes, and for how long. In this study, we investigated soil fungal and bacterial communities and biogeochemical responses of severely…
Parasitic plants are capable of causing substantial alterations to plant communities through impacts on individual host plants. Lodgepole pine dwarf mistletoe is an important parasite in forests of the western USA that causes reductions to productivity and is thought to alter wildland fuel…
Prescribed burning is a primary tool for habitat restoration and management in fire-adapted grasslands. Concerns about detrimental effects of burning on butterfly populations, however, can inhibit implementation of treatments. Burning in cool and humid conditions is likely to result in lowered…
The area burned annually by wildfires is expected to increase worldwide due to climate change. Burned areas increase soil erosion rates within watersheds, which can increase sedimentation in downstream rivers and reservoirs. However, which watersheds will be impacted by future wildfires is…
Fire can dramatically influence rangeland hydrology and erosion by altering ecohydrologic relationships. This synthesis presents an ecohydrologic perspective on the effects of fire on rangeland runoff and erosion through a review of scientific literature spanning many decades. The objectives are…
The environmental effect of extreme soil heating, such as occurs with the complete combustion of large downed wood during wildfires, is a post-fire management concern to forest managers. To address this knowledge gap, we stacked logs to create ‘mega-log’ burning conditions and compared the…
Mastication of shrubs and small trees to reduce fire hazard has become a widespread management practice, yet many aspects of the fire behaviour of these unique woody fuelbeds remain poorly understood. To examine the effects of fuelbed aging on fire behaviour, we conducted laboratory burns with…
Fuel accumulation and climate shifts are predicted to increase the frequency of high-severity fires in ponderosa pine (Pinus ponderosa) forests of central Oregon. The combustion of fuels containing large downed wood can result in intense soil heating, alteration of soil properties, and mortality…
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the…
Pagination
- Previous page
- Page 4
- Next page