Skip to main content

Avoiding ecosystem collapse in managed forest ecosystems

Year of Publication
2016
Publication Type

Many forest ecosystems are thought to be at risk of ecological collapse, which is broadly defined as an abrupt, long-lasting, and widespread change in ecosystem state and dynamics that has major negative impacts on biodiversity and key ecosystem services. However, there is currently a limited ability to accurately predict the risk of collapse for a given forest ecosystem.

Changing disturbance regimes, ecological memory, and forest resilience

Year of Publication
2016
Publication Type

Ecological memory is central to how ecosystems respond to disturbance and is maintained by two types of legacies – information and material. Species life-history traits represent an adaptive response to disturbance and are an information legacy; in contrast, the abiotic and biotic structures (such as seeds or nutrients) produced by single disturbance events are material legacies.

U.S. federal fire and forest policy: emphasizing resilience in dry forests

Year of Publication
2016
Publication Type

Current U.S. forest fire policy emphasizes short-term outcomes versus long-term goals. This perspective drives managers to focus on the protection of high-valued resources, whether ecosystem-based or developed infrastructure, at the expense of forest resilience. Given these current and future challenges posed by wildland fire and because the U.S.

Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance

Year of Publication
2015
Publication Type

Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains.Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at the ecoregion scale in western Oregon.