Skip to main content

Restoration and Hazardous Fuel Reduction

Displaying 1 - 10 of 126

Broadcast burning has persistent, but subtle, effects on understory composition and structure: Results of a long-term study in western Cascade forests

Year of Publication
2024
Publication Type

Approaches to forest management have changed markedly in the Pacific Northwest in recent decades, yet legacies of past management persist on the landscape. Following clearcut logging, woody residues were typically burned to reduce future fire hazard, create planting spots, facilitate natural recruitment, and retard growth of competing vegetation.

Long-term efficacy of fuel reduction and restoration treatments in Northern Rockies dry forests

Year of Publication
2024
Publication Type

Fuel and restoration treatments seeking to mitigate the likelihood of uncharacteristic high-severity wildfires in forests with historically frequent, low-severity fire regimes are increasingly common, but long-term treatment effects on fuels, aboveground carbon, plant community structure, ecosystem resilience, and other ecosystem attributes are understudied.

Exceptional variability in historical fire regimes across a western Cascades landscape, Oregon, USA

Year of Publication
2023
Publication Type
Detailed information about the historical range of variability in wildfire activity informs adaptation to future climate and disturbance regimes. Here, we describe one of the first annually resolved reconstructions of historical (1500–1900 ce) fire occurrence in coast Douglas-fir dominated forests of the west slope of the Cascade Range in western Oregon.

Mechanical thinning restores ecological functions in a seasonally dry ponderosa pine forest in the inland Pacific Northwest, USA

Year of Publication
2023
Publication Type
An increasingly important goal of federal land managers in seasonally dry forests of the western US is restoring forest resilience. In this study, we quantified the degree to which a thinning treatment in a dry forest of eastern Oregon restored aspects of forest resilience by focusing on key functional attributes of our study system.