NWFSC Logo

Subscribe to our newsletter
YouTube logo
Facebook logo
Twitter logo
YouTube logo

The Northwest Fire Science Consortium works to accelerate the awareness, understanding, and adoption of wildland fire science. We connect managers, practitioners, scientists, and local communities and collaboratives working on fire issues on forest and range lands in Washington and Oregon.

Learn more about NWFSC...


JFSP Regions

JFSP Logo

NWFSC is one of
fifteen regional exchanges
sponsored by the Joint Fire Science Program.

Hot Topics


Expanding Our Understanding of Forest Structural Restoration Needs in the Pacific Northwest

Authored by T. DeMeo; Published 2018

Ecological departure, or how much landscapes have changed from a natural range of variation (NRV), has become a key metric in forest planning and restoration efforts. In this study we define forest restoration need as the specific change in structural stage abundance necessary to move landscapes into the NRV. While most restoration projects in the forested ecosystems of the Pacific Northwest, USA (Oregon and Washington) have embraced this paradigm, our understanding of what treatments to apply where, when, and at what magnitude is evolving and continues to be refined. We build on a body of existing LANDFIRE/Fire Regime Condition Class (FRCC) work on ecological departure to assess the ecological departure of all forested landscapes in the region. Moreover, we assess departure in moister forests west of the Cascade crest, and compare them with fire-dependent forests east of the crest and in southwest Oregon. These “moister Westside” forests have received relatively less attention in a fire ecology context, and we hypothesize restoration needs there are quite different. We show a substantial need for disturbance-related treatments in the drier fire-dependent portion of this region (east of the Cascade crest plus southwest Oregon), with over half of this treatment type falling on Federally-administered land. On the Westside the need for succession is more pronounced. The lack of pronounced disturbance need west of the Cascade crest suggests restoration there may require strategies more nuanced than in the fire-dependent zone.


An outlook for the 2018 fire season in Oregon and Washington

Webinar from Northwest Fire Science Consortium

Josh Clark, meteorologist for the Washington DNR, presented on "An outlook for the 2018 fire season in Oregon and Washington." Watch the video on our YouTube channel.


Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape

Authored by H.S.J. Zald; Published 2018

Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi‐owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre‐fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre‐fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre‐fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing fire resilience for multiple objectives in multi‐owner landscapes.


Rapid growth of the US wildland-urban interface raises wildfire risk

Authored by V.C. Radeloff; Published 2018

The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of recent wildfires (1990–2015), there were 286,000 houses in 2010, compared with 177,000 in 1990. Furthermore, WUI growth often results in more wildfire ignitions, putting more lives and houses at risk. Wildfire problems will not abate if recent housing growth trends continue.


Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon

Authored by B.T.N. Hart; Published 2018

Managers use restorative fire and thinning for ecological benefits and to convert fuel-heavy forests to fuel-lean landscapes that lessen the threat of stand-replacing wildfire. In this study, we evaluated the long-term impact of thinning and prescribed fire on soil biochemistry and the mycorrhizal fungi associated with ponderosa pine (Pinus ponderosa). Study sites were located in the Blue Mountains of northeastern Oregon where prescribed fire treatments implemented in 1998 and thinning treatments in 2000 included prescribed fire, mechanical thinning of forested areas, a combination of thinning followed by fire, and an untreated control. Soil sampling for this study occurred in 2014 and included four replications of each treatment for a total of 16 experimental units. Differences among treatments in Bray-P, total C and N, and pH were likely driven by the thinning treatments and the resultant deposition of residual slash following harvesting or the consumption of slash by prescribed fire. Similar litter depths across treatments suggest that litter depth stabilizes over time in these forests. After more than a decade of recovery, mycorrhizal fungi in dry inland forests dominated by ponderosa pine that were subjected to fire returned to levels similar to the untreated controls. The results of this study demonstrate the resiliency of these forests to disturbances associated with restoration treatments, providing managers increased flexibility if maintaining abundant and persistent fungal communities for healthy soils is an objective.


Scaling up Collaborative Restoration: What can be learned from participatory landscape simulation modeling?

Webinar from Northwest Fire Science Consortium

Tom Spies, Senior Scientist and Research Forester with the Pacific Northwest Research Station and Emily Jane Davis, Assistant Professor and Extension Specialist with the College of Forestry, Oregon State University presented "Scaling up Collaborative Restoration:  What can be learned from participatory landscape simulation modeling?" Watch the video on our YouTube channel.