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ABSTRACT

Background. Dead fine fuel moisture content (FMC) is critical for predicting fire behavior and
effects. Spatiotemporal variation in FMC occurs due to to variability in atmospheric conditions at
the fuel interface, which is influenced by interacting factors including local forest structure and
topography. Previous research has primarily examined these patterns over coarse spatial scales
and relied on few factors to explain variability. Aims. In this study, we monitored the spatio-
temporal variability in FMC and characterized how controls of FMC vary over a fire season. FMC
was sampled at 80 locations 21 times (approximately weekly) through the summer season in a
17.6 ha southern Rocky Mountain mixed-conifer forest. Key results. Results indicate that FMC
variability declines during drier periods and that the influence of forest structure and topography
on FMC is constant through time under fluctuating precipitation patterns. FMC values are
autocorrelated over spatial and temporal scales and are highly variable over fine spatial scales.
Conclusions. Understanding the full magnitude of FMC variability is important for achieving
management objectives under both prescribed and wildfire conditions. Implications. Further
research into FMC variability and its controls could lead to more reliable models and tools
allowing managers to better predict fire behavior and effects.

Keywords: Colorado, forest structure, FMC, fuel moisture, heterogeneity, kriging, microclimate,
mixed-conifer forest, moisture dynamics, prescribed fire, spatial variability, spatiotemporal variogram,

wildfire, wildland fuels.

Introduction

The moisture content of wildland fuels is critical in the prediction of fire ignition proba-
bility (Jurdao et al. 2012) and behavior (Rothermel 1972; Burrows 1999; Fernandes et al.
2008). In addition to being a key factor in fire danger rating indices worldwide (McArthur
1967; Bradshaw et al. 1984; Wagner 1987) and a critical input for many fire behavior
models (Bradshaw and McCormick 2000; Linn et al. 2002), fuel moisture content is also
essential for developing prescribed fire plans (Ryan et al. 2013; Nyman et al. 2015).

Downed dead fuels are categorized into four size classes based on their ‘time lag’, or
how quickly they adsorb and desorb moisture, which approximately correspond to their
diameter (Fosberg et al. 1970). The 1-h fuels have diameters less than 0.6 cm and are the
predominant fuel component contributing to ignition success, fire sustainability, rate of
spread and intensity in ecosystems characterized by frequent, low-severity surface fires
(Loudermilk et al. 2012). The loading, distribution and moisture content of dead, fine fuels
are thought to drive spatial and temporal variability in fire behavior and effects (Turner
and Romme 1994; Knapp and Keeley 2006). Previous research has shown there is consid-
erable spatiotemporal variability in fine dead fuel moisture content (FMC) (Hiers et al.
2019; Kane 2021), though its accurate characterization in heterogeneous forest structures
and topographies over varying climatic conditions has remained elusive. For the purposes
of this study, FMC refers to the moisture content of fine dead fuels.

Spatial and temporal variability in FMC is controlled both directly and indirectly
through interactions among a suite of biotic and abiotic factors (Tanskanen et al. 2006;
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Holden and Jolly 2011; Cawson et al. 2024). The influence
of these controls depends largely on the spatial scale of
investigation, resulting in a hierarchical organization of
environmental processes (Ellis et al. 2022; Little et al
2024). At a global scale, there is increasing evidence sup-
porting an FMC drying trend driven by climate change (Liu
2017). Ellis et al. (2022) report that over the past 41 years,
35.9% of biomes globally have experienced an increase in
fire season days with FMC levels below 10%, which the
authors considered a critical threshold needed to support
extreme fire behavior. In contrast, their study identified
only 3.8% of biomes showing a trend toward increasing fuel
moisture. At continental scales, latitude, elevation and climate
oscillations (such as the El Nifio-Southern Oscillation) influ-
ence climate and fuel type, thereby shaping patterns of FMC at
broad scales (Veblen et al. 2000). For example, studies have
linked El Nifio-induced drought during spring and summer in
the Colorado Front Range to the widespread desiccation of
dead fuels and subsequent increased fire occurrence
(Schoennagel et al. 2005; Sherriff and Veblen 2008).

At regional to local scales, environmental controls such as
vegetation structure and topographic aspect exert substan-
tial influence over FMC dynamics (Nyman et al. 2015; Kane
2021; Little et al. 2024). Nyman et al. (2015) found large
variation in FMC at relatively fine scales (10s-10,000s of
metres) due to aspect-related differences in solar exposure.
Kane (2021) observed that untreated, more densely vege-
tated stands in northern California, USA, showed an increase
in average FMC compared with treated, lower-density
stands. Many studies that have examined the moderating
effects of forest structure and aspect on FMC have found a
pronounced effect from both understory and canopy vegeta-
tion structure — where denser vegetation results in wetter
dead fine surface fuels (Biddulph and Kellman 1998;
Tanskanen et al. 2006; Kane 2021). These results are not
surprising given decreased insolation and ventilation levels
in denser stands (Moon et al. 2013; Cannon et al. 2019).
However, other studies have found a limited effect of vege-
tation structure on FMC (Faiella and Bailey 2007; Estes et al.
2012; Pickering et al. 2021). For example, Faiella and Bailey
(2007) found that mean FMC varied over intraseasonal
temporal scales, across study sites, but not across treatment
types (control, burn only, thin and burn) in an Arizona
ponderosa pine (Pinus ponderosa Lawson and C. Lawson)-
dominated forest. One potential explanation for this dis-
agreement among previous studies is the climate in which
they were conducted — where wetter or more humid climates
may create a greater effect of vegetation structure on FMC.
Although there are comparatively few studies quantifying the
effect of aspect on dead fine FMC, one study in the Ozark
Mountains of Missouri found that topographical aspect had
the greatest effect on FMC during moderately wet conditions
and little effect on FMC during very dry or very wet condi-
tions, suggesting that solar exposure may play an important
regulatory role apart from extremes (Stambaugh et al. 2007).

This inconsistency among studies suggests an interaction
between vegetation structure and aspect with climate wetness
at the local to regional scale.

Previous studies and methodologies have largely been
developed to provide coarser-scale estimates of both FMC
and its controls while overlooking potential variations at
finer scales (Hood et al. 2017; Kane 2021). FMC processes
as well as the environmental controls that mediate it operate
at finer scales than they are typically measured or evaluated
at (Kreye et al. 2018). For example, in these studies, the
forest stand often serves as the experimental unit and
several FMC observations within each stand are oftentimes
collected from large areas in a haphazard manner, in effect
averaging out finer, within-stand spatial variations of FMC
(e.g. Faiella and Bailey 2007; Kane 2021). Mean data at the
forest stand level are also commonly used to estimate the
various controls of moisture content, often by averaging
metrics like basal area or tree density by treatment unit or
type (e.g. Faiella and Bailey 2007; Kane 2021).

At the within-stand scale, FMC is thought to fluctuate in
response to temperature, solar radiation and humidity condi-
tions at the fuel interface (Viney 1991; Kreye et al. 2018;
Little et al. 2024). Local variability in aspect and vegetation
structure further buffer within-stand microclimates from local
to regional-scale climate (Nyman et al. 2015; Kreye et al.
2018; Pickering et al. 2021). Tree and understory canopies
scatter and absorb solar radiation, altering irradiance into the
forest floor. Heterogeneous forest structures consisting of
individuals, clumps and openings, common in restored pon-
derosa pine forests (Churchill et al. 2013), likely share similar
processes, albeit down-scaled, to coarser, stand-scale FMC
dynamics. Tree canopy openings with lower vegetation den-
sity allow greater irradiance and wind ventilation, facilitating
lower FMC and quicker moisture desorption (Moon et al.
2013; Hardwick et al. 2015; Kane 2021). Likewise, clumps
with greater vegetation density allow decreased irradiance
and ventilation, facilitating greater FMC. Pickering et al
(2021) observed this effect in Australian wet eucalypt forests,
where understory vegetation helped maintain cooler and wet-
ter conditions below the canopy. Additionally, denser vegeta-
tion reduces precipitation throughfall to surface fuels,
compared with open forest structures (Crockford and
Richardson 2000; Thomas 2016). As a result, in more open
areas, we would expect greater FMC fluctuations because of
greater precipitation throughfall during precipitation events
and quicker moisture desorption during dry periods because
of irradiance and wind ventilation. These observations indi-
cate that the fine-scale heterogeneity within forest structure
could mirror, in a down-scaled manner, the broader FMC
dynamics observed at the stand scale, shaping variability in
moisture adsorption and desorption within a single stand.

As few studies have analyzed fine-scale patterns of fuel
moisture, information on the influence of vegetation struc-
ture and aspect across temporal scales through varying
precipitation patterns remains a need in many regions to
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predict fire behavior and fire effects outside of extreme
conditions. The central Rocky Mountains are characterized
by an annual pronounced bimodal precipitation distribution
with peaks in spring and mid-summer (Kuo and Cox 1975),
which are expected to play a pivotal role in shaping FMC
dynamics. Early and late summer dry periods contrast with
convective rainstorms during the mid-summer North
American monsoon (Kuo and Cox 1975; PRISM Climate
Group 2020). By monitoring how these precipitation pat-
terns interact with the biotic and abiotic controls of FMC,
our study aims to characterize FMC at within-stand scales,
contributing to a more comprehensive understanding of
wildfire risk in this region.

The objective of this study was to characterize the spatial
and temporal resolution of seasonal patterns of FMC spatial
variability and the controls that influence that variability
within a forest stand over one fire season. Specifically, we
asked: (1) is within-stand FMC spatial variability consistent
over temporal scales under varying precipitation condi-
tions? (2) Are FMC values spatially autocorrelated at
within-stand scales (2-450 m), and do they exhibit consist-
ent semivariance across observation days and intraseasonal
periods? (3) Are the environmental controls (understory
cover, canopy cover, heat load index) of FMC consistent in

their influence over temporal scales and under differing
precipitation conditions? The results of this study provide
clarification on the fine-scale spatial variability of FMC and
the temporal dynamics of its controls. These findings will
help refine modeling tools and assist managers in more
accurately predicting fire behavior and effects, particularly
during marginal prescribed fire conditions.

Methods

Study site

We conducted this study on the 17.6 ha Pikes Peak Forest
Dynamics Plot (400 X 440 m) in the Pike San Isabel
National Forest, Colorado, USA (39.010°, —105.005°,
Fig. 1). This site was established in 2016 through a collabo-
ration between Colorado State University, the USDA Forest
Service Rocky Mountain Research Station and Region 2 of
the USDA Forest Service to monitor long-term forest dynam-
ics following a restoration treatment. The site has a dry
continental climate with most precipitation arriving through
springtime (March-May) snow events and summertime
(July-August) monsoonal storms. The 30-year average pre-
cipitation of the site is 638 mm, with average yearly

Fig.1.

Map of the Pikes Peak Forest Dynamics Plot in the Pike San Isabel National Forest, approximately 8 km
east of Woodland Park, Colorado. Imagery derived from uncrewed aerial system and US Geological Survey
(USGS) 3D Elevation Program (United States Geological Survey 2021) derived contour lines (2.5 m interval). Red
squares indicate plot locations (n = 80). The top inset diagram shows a within-grid cell, four-plot cluster with
plots arranged diagonally and the bottom shows the site location within the United States.
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minimum, maximum and average temperatures of —2.5, 11.8,
and 4.7°C, respectively (PRISM Climate Group 2020). During
the observation period, May to October 2022, the site received
346 mm of precipitation, with average minimum, maximum
and average temperatures of 6.4, 20.3 and 13.2°C, respectively.
Precipitation levels were 86% of the 30-year average (PRISM
Climate Group 2020). Based on data from the Rampart Range
Remote Automatic Weather Station (RAWS, NWS ID 053605),
during the entire observation period, 70 of the total 150
(46.6%) days received a measurable amount of precipitation.
These rain events were concentrated in July and August, with
drier periods in June and September. Just in the month of July,
the site received a measurable amount of precipitation on 26 of
the 31 (83.8%) days.

The site consists of Sphinx gravelly and coarse sandy
loam well-drained soils (granitic parent material) on steeper
slopes, with more organic matter in valley bottoms and
swales. The study site ranges in elevation from 2795 to
2830 m, with plot slopes varying from 2° to 22°. The aspects
are predominantly northeast or south-facing. The site is
composed of two dominant forest communities dictated by
slope and aspect. The more mesic, north-facing slopes are
dominated by Engelman spruce (Picea engelmannii Parry ex
Engelm.) and Douglas-fir (Pseudotsuga menziesii Mirb.)
whereas the more xeric south-facing slopes are dominated
by ponderosa pine with intermixed groves of quaking aspen
(Populus tremuloides Michx.) in valley bottoms and drain-
ages. The historical fire return interval is estimated to be
between 61 and 70 years (LANDFIRE 2020). In 2019, the
site underwent a variable retention restoration treatment
consistent with regional forest management objectives
related to fire hazard reduction and tree spatial arrange-
ment. The mean residual basal area is 12.8 m* ha™*, ranging
from 2.6 to 23.9 m? ha~' depending on aspect and species
dominance, with greater densities retained on northerly
aspects but with local variation due to openings and tree
clumps (see Appendix 1: site overstory and understory sum-
mary statistics). Understory vegetation is dominated by
sedges, low-stature forbs, common juniper and graminoids
(Appendix 1).

Data collection

All trees greater than 1.37 m tall in the site were spatially
mapped and diameter at breast height (DBH), species and
crown base height were recorded before and after the treat-
ment. The site was divided into 440 20 X 20 m grid cells
using measuring tapes. Validation of tree locations using an
Emlid Reach RS3 sub-meter GPS (Global Positioning
System) unit showed a mean error less than 0.1 m.

We utilized a clustered sampling design to achieve a
range of spatial lag distances between sampling locations.
Using a stratified selection approach, we chose 20 grid cells
for subsampling. To capture the full range of forest and

topographical conditions, we chose eight grid cells in pon-
derosa pine, eight in Engelman spruce and Douglas-fir dom-
inated forest and four in aspen-dominated forest. This
stratification ensured that samples best captured the varia-
tion in forest structure, aspect and hillslope location, covari-
ates important for explaining sub-canopy solar radiation and
precipitation interception. Additionally, grid cells within
20 m of a road or site boundary, containing large machine
slash piles, or showing significant mechanical soil distur-
bance were excluded from the selection process.

Within each of the 20 grid cells, a cluster of four 1.2 X
1.2 m plots was established along a diagonal line from the
southeast to the northwest corner at consistent distance inter-
vals (0-1.7, 2.8-4.5, 10.6-12.3 and 12.3-14 m, Fig. 1), result-
ing in lag distances between observation locations from 1.7
to 460 m. The plots were monumented using stake whiskers
placed in the ground at each distance interval. Each plot
was further divided into 36 20 X 20 cm subplots. On
each observation day, the same subplot within each plot
(n = 80 plots) was randomly chosen for destructive sampling.
We sampled 22 times, approximately weekly from mid-May to
mid-October starting at 11:00 am and finishing at approxi-
mately 12:30 pm. The second observation day (26 May 2022)
was excluded from the analysis owing to residual snow on the
ground from a late-season storm occurring between observa-
tion days, and observations from one plot were omitted owing
to its inexplicable, highly unusual wet condition. This resulted
in a total sample size of 1659 observations owing to the
omission of 101 observations.

We collected the entire Oi horizon (woody debris less
than 0.6 cm in diameter, tree and shrub canopy leaf litter,
and detached herbaceous litter) from the randomly chosen
subplot within each plot on each observation day (Fig. 2b).
Conifer cones, animal waste, bark flakes and ground fuels
were omitted from the samples. The samples were placed in
labeled and pre-weighed polyethylene resealable bags
(Fig. 2c¢) and transported to the Woodland Park Public
Library for immediate weighing on an analytical balance
with a precision of 0.01 g. After weighing, the fuels were
transferred to paper bags and transported to the Colorado
State University Wildland Fire and Fuels Lab in Fort Collins,
Colorado, where they were oven-dried at 105°C until no
further weight loss was observed, following methods intro-
duced by Matthews (2010). We then calculated gravimetric
fuel moisture content (Eqn 1, mass of water per oven-dried
mass). The sample wet weight was determined by subtract-
ing the polyethylene bag weight from the total sample mass,
and the sample dry weight was calculated by subtracting
20.716 g, the average weight of 50 oven-dried paper bags,
from the oven-dried sample mass.

Fuel moisture content =
(sample wet weight — sample dry weight)

- x 100 (1)
(sample dry weight)
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Fig. 2.

(a) Post-treatment forest structure and two people sampling fuels from the 0 to 1.7 m and 2.8 to 4.5 m plots within

the clustered design. (b) A plot placed between two whiskers to mark the distance intervals and the strings stretched

across the PVC sampling frame to denote the randomly generated 20

x 20 cm subplot for collecting the plot’s

observation. Black markings on the PVC sampling frame are at 20 cm intervals to create the grid of 36 subplots. (c)
Two people collecting a dead fine fuel sample into a pre-labeled and pre-weighed polyethylene resealable bag.

Tree crown diameters were calculated for each tree using
site and species-specific allometric equations developed
from a stratified sample for each species across the range
of tree sizes (see Appendix 2). Percentage canopy cover was
calculated using the open-source Geographic Information
System application QGIS and the sf package in R (Pebesma
and Bivand 2005, 2023; R Core Team 2024). Buffers with
radii of 2, 4, 6, 8 and 10 m around each plot were created in
QGIS. The st_intersection function in the sf package was
then used to calculate the area of overlap between the plot
buffers and tree canopy cover. Although nadir-based esti-
mates of tree canopy cover may not capture the full effect of
tree shading on understory fuels, we used them because they
could be calculated across the entire study area (necessary
for regression kriging) and aligned with our research focus,
investigating the effect of canopy cover over differing
precipitation patterns. Percentage understory cover was
ocularly estimated at each plot using the average of
two observer estimates of herbaceous and live woody
fuels. We calculated the McCune and Keon (2002) heat
load index with aspect folded around the north-south line
(folded aspect = 180 — |aspect — 180]) using a 1 m resolution

elevation model from the USGS 3D Elevation Program
(United States Geological Survey 2021). This unitless
index includes folded aspect, slope and latitude as input
variables.

We calculated a site-level precipitation metric by summing
antecedent rainfall over 5, 11, 35 h, and 3-, 6-, 9-, 12-, 15-,
18- and 21-day time windows preceding each FMC sampling
period and evaluated the Pearson correlation coefficient for
each pairing of FMC and precipitation window, like the
approach of Crawford et al. (2025). Precipitation data were
obtained from the nearest RAWS, which, although not
co-located, represents the closest available data source
given the absence of on-site rainfall measurements. Though
rainfall conditions may differ slightly between the RAWS and
the study site owing to their 5 km separation, the RAWS is
located within the same forest type and at a similar eleva-
tion, so any discrepancies are likely minor. Although both
precipitation event duration and amount have been found
to be relevant weather events impacting the moisture
content of dead fuels (Didszegi et al. 2023), we calculated
cumulative precipitation amount rather than duration
owing to the high-intensity, yet short-duration nature of
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afternoon monsoonal rainstorms characteristic of the site
and season of our observation period.

Analysis

FMC spatial variability

We organized the data into three intraseasonal periods to
assess spatial autocorrelation and variability over time. These
three periods have distinct trends in precipitation amount
and frequency both historically and during the period of
study, with a dry early summer period, a wet monsoonal
period occurring in mid-summer and a drier late summer
period (PRISM Climate Group 2020). We calculated the
mean, median and standard deviation of FMC observations
of each period; then, we constructed boxplots for each obser-
vation day to investigate FMC spatial variation over temporal
scales. We constructed cumulative distribution function plots
of each intraseasonal period to evaluate the likelihood of
different FMC levels occurring and calculated the proportion
of observations above and below a 30% moisture of extinc-
tion threshold for forest floor fuels (Rothermel et al. 1986).
Lastly, we constructed kernel density plots for each intrasea-
sonal period and calculated skewness and kurtosis values to
assess distribution shape of the three periods.

To assess and model FMC variations over spatial and
temporal scales, we used a spatiotemporal variogram and
kriging approach. Using the gstat package in R, we com-
puted an empirical spatiotemporal variogram using a spatial
cutoff distance of 15 m and temporal lags ranging from O to
5 days. (Pebesma 2004; Griler et al. 2016; R Core Team
2024). Model parameters were then extracted for evalua-
tion, like the approach of Snepvangers et al. (2003). The
best-performing variogram model was the sum-metric semi-
variance model consisting of wave covariance functions for
the spatial, temporal and spatiotemporal processes, follow-
ing the approach of O’Rourke and Kelly (2015). In datasets
where observations vary in both spatial and temporal
dimensions, the variogram is a useful tool in identifying
and characterizing space-time dependence by interpolating
values at unvisited locations and times (Snepvangers et al.
2003). Using the fitted sum-metric variogram model, we
then performed universal spatiotemporal kriging for the
15th day of each observation month (15 May 2022, 15
June 2022, 15 July 2022, 15 August 2022, 15 September
2022, 15 October 2022) using the krigeST function in the
gstat package (Pebesma 2004; Griler et al. 2016). We chose
a universal kriging approach because it has been shown to
outperform other spatial interpolation methods when
modeling fuel attributes at this site (Hoffman et al. 2023).
The kriging model included log-transformed FMC as the
response variable with heat load index as the covariate.
We selected heat load index and canopy cover as covariates
because these metrics are available at both plot and site
scales, improved model performance (see Appendix 3) and
influence FMC (Nyman et al. 2015; Kane 2021).

Environmental control effect on FMC

We used a generalized additive model (GAM) in the mgev
package (Wood 2017) specified with a gamma distribution
and natural log link function to assess the effect of vegeta-
tion structure and heat load on FMC and if the effects of
those controls depended on current precipitation (Hastie
2017). GAMs are a useful semi-parametric model because
they allow for non-linear relationships between continuous
predictors and the response by utilizing flexible smoothing
functions (Pedersen et al. 2019). To assess vegetation struc-
ture effect on FMC and allow for simple non-linear relation-
ships, we used smoothed understory cover and canopy cover
terms, and we used a smoothed heat load index term to assess
the effect of topography on FMC. We used tensor product
smooths with the three interaction terms to assess the varying
effect of canopy cover, understory cover and heat load index
on FMC through differing precipitation levels.

The choice of variables to measure and include in our
analysis was motivated by firmly established and previously
researched ecological interactions and mechanisms like the
approach of Bradford et al. (2017). To assess multicollinear-
ity among variables, we constructed a correlation plot with
all variables and FMC. All buffer scales of canopy cover were
collinear at the >0.65 level and the 2 m scale had the
greatest correlation with FMC so the larger buffer scales
(4, 6, 8, 10 m) were omitted. Similarly, we retained the 6-
day cumulative precipitation window as it had the strongest
Pearson correlation with FMC. Cumulative precipitation
windows with weaker correlations (5 and 11 h; 35 h; and
3,9, 12, 15, 18 and 21 day) were omitted.

Results

FMC spatial variability

There is a trend towards wetter and more spatially variable
FMC values during observation days through the mid-
summer period and drier and less variable values during
the early and late-summer periods (Fig. 3a). The early, mid
and late summer median FMC values were 9, 34 and 14%,
respectively (Table 1). The early, mid and later summer
standard deviation values were 22, 35 and 17% while the
ranges of FMC spanned 193, 302 and 142% during these
three intraseasonal periods (Table 1). During the early and
late summer periods, 14 and 19% of observations were
greater than the 30% moisture of extinction, a rule of
thumb threshold above which flaming combustion cannot
occur, whereas during the mid-summer period, 55% of
observations were greater than 30% (Table 1; Fig. 3c).
Over the 2022 fire season, the skewness values of the
three periods decreased from 3.43 in the early summer to
2.61 during the mid-summer period and 2.45 during the late
summer period (Table 1). The positive values indicate right-
tailed distributions through all periods. The first sampling
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Fig. 3. The observation period was organized into three phases: early summer (Julian day 138-189), mid-summer (Julian day

192-236) and late summer (Julian day 243-287) for the following plots. The dashed lines on the axes depicting FMC indicate
the commonly used 30% moisture of extinction threshold for dead understory forest fuels (Rothermel et al. 1986). (a)
Empirical cumulative density functions of the three distributions (early summer, mid-summer, late summer) of observed
fuel moisture content. (b) Kernel density plots of the three intraseasonal period distributions. (c) Boxplots colored by
intraseasonal period depicting the distribution of FMC on each observation day. The box indicates the inter-quartile range
(25th to 75th percentiles). The mid-band indicates the median, and the whiskers indicate points within 1.5 times the inter-
quartile range. Points outside the whiskers are outliers. Note: to visualize the data more effectively, the axes depicting
FMC (%) were visually constrained to 150%, preserving all values while focusing on a more relevant range.

Table 1. Summary statistics of FMC.
Period Mean (%) Median (%) s.d. (%) Skewness Kurtosis Observations over 30% (%)
Early summer 17 9 22 343 15.64 14
Mid summer 43 34 35 2.61 10.79 55
Late summer 20 14 17 245 9.83 19

Summary statistics with the observation period organized into thirds, early summer (Julian day 138-189), mid-summer (Julian day 192-236) and late summer (Julian

day 243-287).

period also has the greatest kurtosis value of 15.6, indicating
the ‘peakiest’ distribution compared with the kurtosis values
during the mid-summer and late summer periods of 10.7
and 9.83 (Table 1; Fig. 3b).

Of the tested spatiotemporal model forms, a sum-metric
model provided the best fit (Table 2). The model structure
shows that approximately 85% of the semivariance in space

occurs in the first 10 m and ~80% of the semivariance in
time happens in the first 20 days from a sample point
(Fig. 4). Additionally, the nugget values for the spatial,
temporal and joint components were 0, 349.93 and
224.16, respectively (Table 2), where the temporal nugget
accounts for ~66% of variation across time but the joint
nugget shrinks to account for <5% of variation in the
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Table 2. Spatiotemporal variogram model parameters.
Component Nugget sill Range
Space 0 1006.07 987.85
Time 349.93 524.40 82.85
Joint 224.16 5035.43 63.51

1400
1200
1000
800
600
400
200

Fig. 4. Spatiotemporal fitted variogram model using a sum-metric
approach. The wireframe plot represents the estimated semivariance
on the vertical axis as a function of spatial distance (m) and temporal
lag (days). The model accounts for spatial, temporal and joint spatio-
temporal dependencies.

combined dynamics. The interpolated values in the ordinary
kriging approach indicate a larger range in FMC values during
the wetter, mid-summer days versus the drier early-summer
days (Fig. 5). Similarly, the kriged maps show more spatially
homogeneous FMC values during the early summer and more
heterogeneous values during the mid-summer and late sum-
mer periods (Fig. 5). Additionally, several areas exhibit per-
sistent fuel moisture, maintaining relatively stable dry or wet
conditions across multiple kriged days.

Environmental control effect on FMC

The GAM explained 35.4% of the deviance in FMC with an
adjusted R? of 0.33. The smoothed terms, understory cover,
canopy cover at the 2 m radius, heat load index and 6-day
cumulative precipitation all showed statistically significant
associations with FMC (P < 0.001, P < 0.001, P < 0.006,
P < 0.001, respectively; Table 3). The interactions between
understory cover, canopy cover and heat load index with
precipitation did not display significant associations with
FMC (Table 3).

The relationship between understory cover and FMC
shows that as understory cover increases, FMC also rises.

Specifically, expected FMC increases from ~10% at the low-
est levels of understory cover to ~18% at the highest levels,
following an exponential curve (Fig. 6a). Canopy cover has a
weak positive correlation with FMC, with expected values
increasing from approximately 11 to 16% (Fig. 6b). Heat
load index and expected FMC have a negative relationship
with FMC, decreasing from ~16 to 12% (Fig. 6c).
Precipitation has a strong positive, though non-linear, asso-
ciation with FMC ranging from ~15% FMC at lower precip-
itation values to ~50% at the highest precipitation values.
Expected FMC peaks at ~70% and 35 mm of precipitation in
an area of substantial model uncertainty.

Discussion

Fine dead FMC shows exceptional fine-scale variability
within forest stands, driven by sub-seasonal precipitation
patterns. FMC was low in the early and late summer periods
and high in the mid-summer period. In contrast to the early
and late summer periods, frequent, intense precipitation
events, driven by the North American monsoon, increased
the mean and within-stand variability of FMC observations
during the mid-summer period. For example, during the
mid-summer period, 55% of FMC observations were greater
than the 30% moisture of extinction threshold. In contrast,
the lowest spatial variability in FMC occurred during the
early summer intraseasonal period, when just 14% of obser-
vations were greater than 30% (Table 1). Notably, 13% of
the observations greater than 30% were recorded on just a
single day (Julian day 182), the day after a particularly large
rainfall event. This suggests that precipitation events not
only increase mean FMC but introduce heterogeneity
through local-scale variations in vegetation structure, topog-
raphy and micrometeorological processes. Because fine dead
fuels form a major component of available fuels for surface
fire spread in frequent-fire systems (Anderson 1981;
Mitchell et al. 2009), this within-stand variability indicates
the potential for differential fire spread throughout a stand,
perhaps most notable during relatively wet intraseasonal
periods.

Our findings indicate that fine-scale environmental con-
trols, including vegetation structure and topography, mod-
erate the larger-scale effect of sub-seasonal precipitation
patterns. Canopy cover and understory cover are positively
associated with FMC. This finding suggests that denser veg-
etation structures limit solar insolation to the understory,
creating cooler and damper conditions at the fuel interface,
consistent with findings by Pickering et al. (2021) and Kreye
et al. (2018). We also found a negative correlation between
heat load index and FMC that aligns with previous research,
indicating that pole-facing slopes support moister condi-
tions, driven by differences in solar radiative heating
(Stambaugh et al. 2007; Nyman et al. 2015; Slijepcevic
et al. 2018). However, our findings differ from those of
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Fig. 5. Kriged fuel moisture content predictions on the 15th day of each observation month. A square-root transfor-
mation was applied to the predicted FMC values prior to color mapping to improve contrast in the lower, fire behavior-
relevant FMC range. Values shown on the color scale were back-transformed to percentage FMC for interpretability.

Sampling locations are depicted with diagonal crosses.

Gibos (2010) who reported minimal aspect-related variation
in FMC within dense canopy lodgepole pine (Pinus contorta)
stands in Alberta, Canada. At our site, where post-treatment
canopy cover is relatively low, pole-facing slopes retained
higher fuel moisture values. Our findings, along with others
(Nyman et al. 2015; Slijepcevic et al. 2018; Pickering et al.
2021), indicate that differences in solar insolation driven by

heterogeneity in cover and topography underlie the spatial
variation of fine dead FMC.

At the within-stand scale, canopy cover, understory cover
and topography influenced FMC independently of cumula-
tive precipitation over the 6 days preceding each FMC
observation. In contrast, studies at coarser stand scales
report the effect of vegetation structure on FMC appears to
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Table 3. Generalized additive model summary.

Family Link function Formula Adjusted Deviance
R? explained

(%)

Gamma log FMC -~ s(u_cover) + s(c_cover) + s(hli) + s 0.33 354

(precip) + ti(u_cover:precip) + ti
(c_cover:precip) + ti(hli:precip)

Estimate Standard error T value Pr(>|z])
Intercept 312 0.021 1447 <0.001

Effective degrees of freedom (ed.f.) Reference degrees of freedom (Ref.d.f.) F statistic Pr(>|z])
u_cover 147 1.81 28.95 <0.001
c_cover 8.14 1 16.36 <0.001
hli 121 139 7 0.006
precip 8.14 8.74 58.65 <0.001
u_cover:precip 3.03 4.26 128 0.269
c_cover:precip 1.56 1.87 0.48 0.662
hlizprecip 2.62 3.05 197 0.15

Spatiotemporal variogram nugget, sill and range values of the fitted model are specified for the space, time and joint space time component models (extracted using the extractPar function in the gstat
package).

Generalized additive model summary with the smoothed main effects of understory cover (u_cover), canopy cover (c_cover), heat load index (hli), precipitation (precip) and the interaction terms of
understory cover, canopy cover and heat load index with precipitation.
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Fig. 6. The smoothed, marginal effects of understory cover, canopy cover, heat load index and precipitation on FMC
transformed to show the fitted GAM function on the response scale. The x axis shows values of the covariate, the rug
indicates the distribution of covariate observations, and the y axis shows expected FMC values. The gray bands
correspond to the 95% confidence interval and represent model uncertainty in the transformed (response scale)
estimate. Though negative values are not possible in FMC or under a Gamma distribution, the confidence interval

below 0 in the precipitation plot is an artifact of transformation and reflects wide uncertainty.

depend on the broader, regional moisture regime (e.g. coastal
fog; Kane 2021), a relationship not observed at finer scales. If
there is indeed an interaction between vegetation structure
and larger-scale moisture regime in the semi-arid climate
being evaluated, it is likely due to the specific metric used or
the timing of the FMC observations relative to the measured
precipitation events. Alternative variables such as evapotran-
spiration or climatic moisture deficit may be better suited to
detect it. Additionally, this potential interaction may be some-
what short-lived. Although the 6-day cumulative precipitation

shows the strongest Pearson correlation with FMC, the inter-
active effect with forest structural variables may no longer be
detectable over such a broad temporal window. The
insignificant interactions in the GAM suggest that finer-scale
interactions between vegetation structure and moisture
regimes may be transient and context-dependent, requiring
more precise temporal sampling or alternative environmental
variables to fully capture their influence on FMC.

FMC values exhibit patterns of spatiotemporal auto-
correlation across the scales in which we sampled.

G20z JoquianoN 62 uo 3sanb Aq ypd-980524M/8082281/980524M/L L0 0 L/10p/4pd-Bjo1lie/;M/NE"10S]08UU0D//:dRY WOl papeojumoq


https://www.publish.csiro.au/wf

G. C. Ohlson et al.

International Journal of Wildland Fire 34 (2025) WF25086

According to the joint space-time variogram (Fig. 4), ~80%
of the observed semivariance occurs at spatial scales finer
than 15 m. The nugget values in the temporal and joint
spatiotemporal model components reflect variations in
FMC at temporal lag distances finer than the sampling inter-
val (approximately weekly), confirming that fine fuels
respond to atmospheric conditions at finer scales.
Although previous research has evaluated patterns of spatial
autocorrelation in FMC (Zhang et al. 2021) and temporal
trends in FMC over both seasonal (Faiella and Bailey 2007;
Kane 2021) and diel scales (Banwell et al. 2013), to the best
of our knowledge, there have been no studies to investigate
autocorrelation over spatiotemporal scales. Consistent with
Zhang et al. (2021), who observed anisotropic spatial auto-
correlation patterns of FMC at scales of 3.5-5.5 m in a larch
forest in China, our results demonstrate spatial variability at
similarly fine scales. These fine-scale variations in FMC are
likely driven by the aggregated tree spacing within the
stand, microtopography and other fine-scale spatial varia-
bility of vegetation or environmental parameters. For
instance, shrub, dead woody and litter fuel loading (Vakili
et al. 2016) and soil moisture (Comegna and Basile 1994;
Anctil et al. 2002; Brocca et al. 2007) are shown to vary at
similar fine scales (approximately 1-5 m). Additionally, this
spatial variability is inconsistent over time, potentially
driven by varying moisture adsorption through precipitation
mediated by vegetation structure (Crockford and
Richardson 2000; Thomas 2016; Kreye et al. 2018) and
nocturnal moisture recovery (Holden and Jolly 2011).

The distribution of FMC observations at within-stand
scales included values both above and below 30% on 18
of the 21 sampling days, indicating a mixture of burnable
and non-burnable areas at fine spatial scales. This spatial
discontinuity in fuels available for ignition could influence
wildland fire spread, fire sustainability and spot-fire hazard
(Koo et al. 2010; Wang et al. 2024). Additionally, because
most prescribed fires are ignited under marginal conditions
(Hiers et al. 2020), understanding the magnitude of fuel
moisture variability during these relatively wet conditions
may be crucial for informing and achieving management
objectives (Bonner et al. 2024). The application of pre-
scribed fire under marginal, more spatially variable condi-
tions likely increases the heterogeneity of severities, which
support ecological objectives (Parr and Brockett 1999;
Robertson et al. 2019). In contrast, applying prescribed
fire under more homogeneously dry conditions may be
better suited for fuels reduction - though other variables
related to topography and weather are critical for predicting
fire behavior and severity (Rothermel 1972).

Because fine dead fuels adsorb and desorb moisture fairly
quickly (Fosberg et al. 1970), a limitation of the present
study is the potential conflation of temporal and spatial
variability. On each observation day, we sampled FMC
from plots in a consistent order over a ~1.5-h period.
Although this sampling method maximized efficiency, it is

possible that over this ~1.5-h period, moisture contents
fluctuated in response to changing atmospheric conditions.
However, we consider this effect to be minor as prior
research indicates that ponderosa pine needles — the domi-
nant fuel in our study — have a moisture time lag of approxi-
mately 4 h (Fosberg 1975; Anderson et al. 1978). This
suggests that substantial shifts in FMC over a 1.5-h window
are unlikely. Future work would benefit from more tightly
constrained sampling windows and should aim to better
characterize diel fluctuations in fine, in situ fuels.

Given the complicated interaction of FMC across space
and time, further research is needed to better understand
how within-stand moisture variability responds to the full
suite of environmental controls such as varying weather, soil
and topographic conditions, and vegetation structure.
Advancing this understanding can inform prescribed fire
ignition planning and improve predictions of resulting fire
behavior and spread. Laboratory and in situ wildland fire
experiments as well as numerical simulations are well suited
to investigate the potential impact of spatial variability in
moisture content on fire behavior, especially as increased
attention is given to sub-grid processes in fire behavior
modeling (Marshall et al. 2023) and controlled experiments
adopt precise instrumentation (Prichard et al. 2019).
Considering the full spatial variability of FMC may enhance
our ability to predict fire behavior more accurately, opti-
mize prescribed fire applications and achieve both ecologi-
cal and fuel management objectives more effectively.
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Appendix 1. Overstory and understory summary statistics

The below post-treatment summary statistics have been extracted from 0.04 ha (1/10th acre) polygons around each fuel
moisture plot (n = 80).

Mean s.d. Min. Max.
Trees per hectare 358 272 25 1186
Basal area (m? ha™) 2.8 49 26 239
Mean height (m) 124 42 6.0 20.2
Mean crown base height (m) 6.7 27 2.0 121

The understory cover data below is from a pre-treatment monitoring effort within the Pikes Peak Forest Dynamics Plot.
Note the understory data were collected from plots distinct from those in the present study (W. Tinkham, unpublished
data, 2025).

Below are the five most common species found: Carex spp. (sedges), Juniperus communis (common juniper), Fragaria
virginiana (Virginia strawberry), Achillea millefolium (yarrow) and Allium cernuum (nodding onion).

Species % of plots Mean cover (%)
Sedge 65.1 5.0
Common juniper 34.0 26.3
Virginia strawberry 29.0 44
Yarrow 24.0 4.0
Nodding onion 24.0 3.7

Appendix 2. Site-specific crown diameter allometric equations

Crown diameter was predicted based on a sample of 467 tree observations collected in the site by randomly sampling 16 of
the 20 X 20 m grid cells. Species-specific prediction models were built using a linear regression with tree DBH and height as
predictors. Models were reduced to minimize the Akaike Information Criterion resulting in the below relationships. Sampled
species include PIPO (Pinus ponderosa P. and C. Lawson), PIEN (Picea engelmannii Parry ex. Engelman), PIFL (Pinus flexilis
James), PIPU (Picea pungens Engelm.), POTR (Populus tremuloides Michx.) and PSME (Pseudotsuga menziesii Mirb).

Species n Adj R? RSE Intercept DBH Height
PIPO 120 0.700 0.703 12387 0.1439 =
PIEN 120 0.716 0.540 15346 0.1414 -0.0919
PIFL 29 0.868 0.622 0.1806 14446 =
PIPU 24 0.385 0769 13823 0.0754 -
POTR m 0.493 0.501 12797 01521 =
PSME 62 0.595 1237 1.8310 0.0945 -

Appendix 3. Comparison of kriging models

We calculated root mean square error (RMSE), mean absolute error (MAE), and R? values for each kriging model: one
including both canopy cover and heat load index (HLI), one with only canopy cover, one with only HLI, and one with no
covariates. The model using both HLI and canopy cover had the highest R? and the lowest MAE values. We extracted canopy
cover for each 4 x 4 m grid cell in the spatiotemporal interpolation grid from the allometrically-derived crown diameters for
each tree at the site using the st_intersection function in the sf package in R (Pebesma and Bivand 2005; Pebesma and
Bivand 2023).
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Covariate included R? MAE RMSE
cover + hli 0.38 1212 22.86
cover 0.36 12.28 23.09
hli 0.38 1218 22.85
No covariate 0.37 1230 2292
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