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Spatiotemporal dynamics of fine dead surface fuel moisture content 
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ABSTRACT 

Background. Dead fine fuel moisture content (FMC) is critical for predicting fire behavior and 
effects. Spatiotemporal variation in FMC occurs due to to variability in atmospheric conditions at 
the fuel interface, which is influenced by interacting factors including local forest structure and 
topography. Previous research has primarily examined these patterns over coarse spatial scales 
and relied on few factors to explain variability. Aims. In this study, we monitored the spatio
temporal variability in FMC and characterized how controls of FMC vary over a fire season. FMC 
was sampled at 80 locations 21 times (approximately weekly) through the summer season in a 
17.6 ha southern Rocky Mountain mixed-conifer forest. Key results. Results indicate that FMC 
variability declines during drier periods and that the influence of forest structure and topography 
on FMC is constant through time under fluctuating precipitation patterns. FMC values are 
autocorrelated over spatial and temporal scales and are highly variable over fine spatial scales. 
Conclusions. Understanding the full magnitude of FMC variability is important for achieving 
management objectives under both prescribed and wildfire conditions. Implications. Further 
research into FMC variability and its controls could lead to more reliable models and tools 
allowing managers to better predict fire behavior and effects.  

Keywords: Colorado, forest structure, FMC, fuel moisture, heterogeneity, kriging, microclimate, 
mixed-conifer forest, moisture dynamics, prescribed fire, spatial variability, spatiotemporal variogram, 
wildfire, wildland fuels. 

Introduction 

The moisture content of wildland fuels is critical in the prediction of fire ignition proba
bility (Jurdao et al. 2012) and behavior (Rothermel 1972; Burrows 1999; Fernandes et al. 
2008). In addition to being a key factor in fire danger rating indices worldwide (McArthur 
1967; Bradshaw et al. 1984; Wagner 1987) and a critical input for many fire behavior 
models (Bradshaw and McCormick 2000; Linn et al. 2002), fuel moisture content is also 
essential for developing prescribed fire plans (Ryan et al. 2013; Nyman et al. 2015). 

Downed dead fuels are categorized into four size classes based on their ‘time lag’, or 
how quickly they adsorb and desorb moisture, which approximately correspond to their 
diameter (Fosberg et al. 1970). The 1-h fuels have diameters less than 0.6 cm and are the 
predominant fuel component contributing to ignition success, fire sustainability, rate of 
spread and intensity in ecosystems characterized by frequent, low-severity surface fires 
(Loudermilk et al. 2012). The loading, distribution and moisture content of dead, fine fuels 
are thought to drive spatial and temporal variability in fire behavior and effects (Turner 
and Romme 1994; Knapp and Keeley 2006). Previous research has shown there is consid
erable spatiotemporal variability in fine dead fuel moisture content (FMC) (Hiers et al. 
2019; Kane 2021), though its accurate characterization in heterogeneous forest structures 
and topographies over varying climatic conditions has remained elusive. For the purposes 
of this study, FMC refers to the moisture content of fine dead fuels. 

Spatial and temporal variability in FMC is controlled both directly and indirectly 
through interactions among a suite of biotic and abiotic factors (Tanskanen et al. 2006;  
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Holden and Jolly 2011; Cawson et al. 2024). The influence 
of these controls depends largely on the spatial scale of 
investigation, resulting in a hierarchical organization of 
environmental processes (Ellis et al. 2022; Little et al. 
2024). At a global scale, there is increasing evidence sup
porting an FMC drying trend driven by climate change (Liu 
2017). Ellis et al. (2022) report that over the past 41 years, 
35.9% of biomes globally have experienced an increase in 
fire season days with FMC levels below 10%, which the 
authors considered a critical threshold needed to support 
extreme fire behavior. In contrast, their study identified 
only 3.8% of biomes showing a trend toward increasing fuel 
moisture. At continental scales, latitude, elevation and climate 
oscillations (such as the El Niño–Southern Oscillation) influ
ence climate and fuel type, thereby shaping patterns of FMC at 
broad scales (Veblen et al. 2000). For example, studies have 
linked El Niño-induced drought during spring and summer in 
the Colorado Front Range to the widespread desiccation of 
dead fuels and subsequent increased fire occurrence 
(Schoennagel et al. 2005; Sherriff and Veblen 2008). 

At regional to local scales, environmental controls such as 
vegetation structure and topographic aspect exert substan
tial influence over FMC dynamics (Nyman et al. 2015; Kane 
2021; Little et al. 2024). Nyman et al. (2015) found large 
variation in FMC at relatively fine scales (10s–10,000s of 
metres) due to aspect-related differences in solar exposure.  
Kane (2021) observed that untreated, more densely vege
tated stands in northern California, USA, showed an increase 
in average FMC compared with treated, lower-density 
stands. Many studies that have examined the moderating 
effects of forest structure and aspect on FMC have found a 
pronounced effect from both understory and canopy vegeta
tion structure – where denser vegetation results in wetter 
dead fine surface fuels (Biddulph and Kellman 1998;  
Tanskanen et al. 2006; Kane 2021). These results are not 
surprising given decreased insolation and ventilation levels 
in denser stands (Moon et al. 2013; Cannon et al. 2019). 
However, other studies have found a limited effect of vege
tation structure on FMC (Faiella and Bailey 2007; Estes et al. 
2012; Pickering et al. 2021). For example, Faiella and Bailey 
(2007) found that mean FMC varied over intraseasonal 
temporal scales, across study sites, but not across treatment 
types (control, burn only, thin and burn) in an Arizona 
ponderosa pine (Pinus ponderosa Lawson and C. Lawson)- 
dominated forest. One potential explanation for this dis
agreement among previous studies is the climate in which 
they were conducted – where wetter or more humid climates 
may create a greater effect of vegetation structure on FMC. 
Although there are comparatively few studies quantifying the 
effect of aspect on dead fine FMC, one study in the Ozark 
Mountains of Missouri found that topographical aspect had 
the greatest effect on FMC during moderately wet conditions 
and little effect on FMC during very dry or very wet condi
tions, suggesting that solar exposure may play an important 
regulatory role apart from extremes (Stambaugh et al. 2007). 

This inconsistency among studies suggests an interaction 
between vegetation structure and aspect with climate wetness 
at the local to regional scale. 

Previous studies and methodologies have largely been 
developed to provide coarser-scale estimates of both FMC 
and its controls while overlooking potential variations at 
finer scales (Hood et al. 2017; Kane 2021). FMC processes 
as well as the environmental controls that mediate it operate 
at finer scales than they are typically measured or evaluated 
at (Kreye et al. 2018). For example, in these studies, the 
forest stand often serves as the experimental unit and 
several FMC observations within each stand are oftentimes 
collected from large areas in a haphazard manner, in effect 
averaging out finer, within-stand spatial variations of FMC 
(e.g. Faiella and Bailey 2007; Kane 2021). Mean data at the 
forest stand level are also commonly used to estimate the 
various controls of moisture content, often by averaging 
metrics like basal area or tree density by treatment unit or 
type (e.g. Faiella and Bailey 2007; Kane 2021). 

At the within-stand scale, FMC is thought to fluctuate in 
response to temperature, solar radiation and humidity condi
tions at the fuel interface (Viney 1991; Kreye et al. 2018;  
Little et al. 2024). Local variability in aspect and vegetation 
structure further buffer within-stand microclimates from local 
to regional-scale climate (Nyman et al. 2015; Kreye et al. 
2018; Pickering et al. 2021). Tree and understory canopies 
scatter and absorb solar radiation, altering irradiance into the 
forest floor. Heterogeneous forest structures consisting of 
individuals, clumps and openings, common in restored pon
derosa pine forests (Churchill et al. 2013), likely share similar 
processes, albeit down-scaled, to coarser, stand-scale FMC 
dynamics. Tree canopy openings with lower vegetation den
sity allow greater irradiance and wind ventilation, facilitating 
lower FMC and quicker moisture desorption (Moon et al. 
2013; Hardwick et al. 2015; Kane 2021). Likewise, clumps 
with greater vegetation density allow decreased irradiance 
and ventilation, facilitating greater FMC. Pickering et al. 
(2021) observed this effect in Australian wet eucalypt forests, 
where understory vegetation helped maintain cooler and wet
ter conditions below the canopy. Additionally, denser vegeta
tion reduces precipitation throughfall to surface fuels, 
compared with open forest structures (Crockford and 
Richardson 2000; Thomas 2016). As a result, in more open 
areas, we would expect greater FMC fluctuations because of 
greater precipitation throughfall during precipitation events 
and quicker moisture desorption during dry periods because 
of irradiance and wind ventilation. These observations indi
cate that the fine-scale heterogeneity within forest structure 
could mirror, in a down-scaled manner, the broader FMC 
dynamics observed at the stand scale, shaping variability in 
moisture adsorption and desorption within a single stand. 

As few studies have analyzed fine-scale patterns of fuel 
moisture, information on the influence of vegetation struc
ture and aspect across temporal scales through varying 
precipitation patterns remains a need in many regions to 
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predict fire behavior and fire effects outside of extreme 
conditions. The central Rocky Mountains are characterized 
by an annual pronounced bimodal precipitation distribution 
with peaks in spring and mid-summer (Kuo and Cox 1975), 
which are expected to play a pivotal role in shaping FMC 
dynamics. Early and late summer dry periods contrast with 
convective rainstorms during the mid-summer North 
American monsoon (Kuo and Cox 1975; PRISM Climate 
Group 2020). By monitoring how these precipitation pat
terns interact with the biotic and abiotic controls of FMC, 
our study aims to characterize FMC at within-stand scales, 
contributing to a more comprehensive understanding of 
wildfire risk in this region. 

The objective of this study was to characterize the spatial 
and temporal resolution of seasonal patterns of FMC spatial 
variability and the controls that influence that variability 
within a forest stand over one fire season. Specifically, we 
asked: (1) is within-stand FMC spatial variability consistent 
over temporal scales under varying precipitation condi
tions? (2) Are FMC values spatially autocorrelated at 
within-stand scales (2–450 m), and do they exhibit consist
ent semivariance across observation days and intraseasonal 
periods? (3) Are the environmental controls (understory 
cover, canopy cover, heat load index) of FMC consistent in 

their influence over temporal scales and under differing 
precipitation conditions? The results of this study provide 
clarification on the fine-scale spatial variability of FMC and 
the temporal dynamics of its controls. These findings will 
help refine modeling tools and assist managers in more 
accurately predicting fire behavior and effects, particularly 
during marginal prescribed fire conditions. 

Methods 

Study site 

We conducted this study on the 17.6 ha Pikes Peak Forest 
Dynamics Plot (400  × 440 m) in the Pike San Isabel 
National Forest, Colorado, USA (39.010°, −105.005°,  
Fig. 1). This site was established in 2016 through a collabo
ration between Colorado State University, the USDA Forest 
Service Rocky Mountain Research Station and Region 2 of 
the USDA Forest Service to monitor long-term forest dynam
ics following a restoration treatment. The site has a dry 
continental climate with most precipitation arriving through 
springtime (March–May) snow events and summertime 
(July–August) monsoonal storms. The 30-year average pre
cipitation of the site is 638 mm, with average yearly 
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Fig. 1. Map of the Pikes Peak Forest Dynamics Plot in the Pike San Isabel National Forest, approximately 8 km 
east of Woodland Park, Colorado. Imagery derived from uncrewed aerial system and US Geological Survey 
(USGS) 3D Elevation Program ( United States Geological Survey 2021) derived contour lines (2.5 m interval). Red 
squares indicate plot locations (n = 80). The top inset diagram shows a within-grid cell, four-plot cluster with 
plots arranged diagonally and the bottom shows the site location within the United States.   
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minimum, maximum and average temperatures of −2.5, 11.8, 
and 4.7°C, respectively (PRISM Climate Group 2020). During 
the observation period, May to October 2022, the site received 
346 mm of precipitation, with average minimum, maximum 
and average temperatures of 6.4, 20.3 and 13.2°C, respectively. 
Precipitation levels were 86% of the 30-year average (PRISM 
Climate Group 2020). Based on data from the Rampart Range 
Remote Automatic Weather Station (RAWS, NWS ID 053605), 
during the entire observation period, 70 of the total 150 
(46.6%) days received a measurable amount of precipitation. 
These rain events were concentrated in July and August, with 
drier periods in June and September. Just in the month of July, 
the site received a measurable amount of precipitation on 26 of 
the 31 (83.8%) days. 

The site consists of Sphinx gravelly and coarse sandy 
loam well-drained soils (granitic parent material) on steeper 
slopes, with more organic matter in valley bottoms and 
swales. The study site ranges in elevation from 2795 to 
2830 m, with plot slopes varying from 2° to 22°. The aspects 
are predominantly northeast or south-facing. The site is 
composed of two dominant forest communities dictated by 
slope and aspect. The more mesic, north-facing slopes are 
dominated by Engelman spruce (Picea engelmannii Parry ex 
Engelm.) and Douglas-fir (Pseudotsuga menziesii Mirb.) 
whereas the more xeric south-facing slopes are dominated 
by ponderosa pine with intermixed groves of quaking aspen 
(Populus tremuloides Michx.) in valley bottoms and drain
ages. The historical fire return interval is estimated to be 
between 61 and 70 years (LANDFIRE 2020). In 2019, the 
site underwent a variable retention restoration treatment 
consistent with regional forest management objectives 
related to fire hazard reduction and tree spatial arrange
ment. The mean residual basal area is 12.8 m2 ha−1, ranging 
from 2.6 to 23.9 m2 ha−1 depending on aspect and species 
dominance, with greater densities retained on northerly 
aspects but with local variation due to openings and tree 
clumps (see Appendix 1: site overstory and understory sum
mary statistics). Understory vegetation is dominated by 
sedges, low-stature forbs, common juniper and graminoids 
(Appendix 1). 

Data collection 

All trees greater than 1.37 m tall in the site were spatially 
mapped and diameter at breast height (DBH), species and 
crown base height were recorded before and after the treat
ment. The site was divided into 440 20  × 20 m grid cells 
using measuring tapes. Validation of tree locations using an 
Emlid Reach RS3 sub-meter GPS (Global Positioning 
System) unit showed a mean error less than 0.1 m. 

We utilized a clustered sampling design to achieve a 
range of spatial lag distances between sampling locations. 
Using a stratified selection approach, we chose 20 grid cells 
for subsampling. To capture the full range of forest and 

topographical conditions, we chose eight grid cells in pon
derosa pine, eight in Engelman spruce and Douglas-fir dom
inated forest and four in aspen-dominated forest. This 
stratification ensured that samples best captured the varia
tion in forest structure, aspect and hillslope location, covari
ates important for explaining sub-canopy solar radiation and 
precipitation interception. Additionally, grid cells within 
20 m of a road or site boundary, containing large machine 
slash piles, or showing significant mechanical soil distur
bance were excluded from the selection process. 

Within each of the 20 grid cells, a cluster of four 1.2  × 
1.2 m plots was established along a diagonal line from the 
southeast to the northwest corner at consistent distance inter
vals (0–1.7, 2.8–4.5, 10.6–12.3  and 12.3–14 m, Fig. 1), result
ing in lag distances between observation locations from 1.7 
to 460 m. The plots were monumented using stake whiskers 
placed in the ground at each distance interval. Each plot 
was further divided into 36 20  × 20 cm subplots. On 
each observation day, the same subplot within each plot 
(n = 80 plots) was randomly chosen for destructive sampling. 
We sampled 22 times, approximately weekly from mid-May to 
mid-October starting at 11:00 am and finishing at approxi
mately 12:30 pm. The second observation day (26 May 2022) 
was excluded from the analysis owing to residual snow on the 
ground from a late-season storm occurring between observa
tion days, and observations from one plot were omitted owing 
to its inexplicable, highly unusual wet condition. This resulted 
in a total sample size of 1659 observations owing to the 
omission of 101 observations. 

We collected the entire Oi horizon (woody debris less 
than 0.6 cm in diameter, tree and shrub canopy leaf litter, 
and detached herbaceous litter) from the randomly chosen 
subplot within each plot on each observation day (Fig. 2b). 
Conifer cones, animal waste, bark flakes and ground fuels 
were omitted from the samples. The samples were placed in 
labeled and pre-weighed polyethylene resealable bags 
(Fig. 2c) and transported to the Woodland Park Public 
Library for immediate weighing on an analytical balance 
with a precision of 0.01 g. After weighing, the fuels were 
transferred to paper bags and transported to the Colorado 
State University Wildland Fire and Fuels Lab in Fort Collins, 
Colorado, where they were oven-dried at 105°C until no 
further weight loss was observed, following methods intro
duced by Matthews (2010). We then calculated gravimetric 
fuel moisture content (Eqn 1, mass of water per oven-dried 
mass). The sample wet weight was determined by subtract
ing the polyethylene bag weight from the total sample mass, 
and the sample dry weight was calculated by subtracting 
20.716 g, the average weight of 50 oven-dried paper bags, 
from the oven-dried sample mass. 

Fuel moisture content =
(sample wet weight sample dry weight)

(sample dry weight)
× 100 (1) 
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Tree crown diameters were calculated for each tree using 
site and species-specific allometric equations developed 
from a stratified sample for each species across the range 
of tree sizes (see Appendix 2). Percentage canopy cover was 
calculated using the open-source Geographic Information 
System application QGIS and the sf package in R (Pebesma 
and Bivand 2005, 2023; R Core Team 2024). Buffers with 
radii of 2, 4, 6, 8 and 10 m around each plot were created in 
QGIS. The st_intersection function in the sf package was 
then used to calculate the area of overlap between the plot 
buffers and tree canopy cover. Although nadir-based esti
mates of tree canopy cover may not capture the full effect of 
tree shading on understory fuels, we used them because they 
could be calculated across the entire study area (necessary 
for regression kriging) and aligned with our research focus, 
investigating the effect of canopy cover over differing 
precipitation patterns. Percentage understory cover was 
ocularly estimated at each plot using the average of 
two observer estimates of herbaceous and live woody 
fuels. We calculated the McCune and Keon (2002) heat 
load index with aspect folded around the north–south line 
(folded aspect = 180 – |aspect – 180|) using a 1 m resolution 

elevation model from the USGS 3D Elevation Program 
(United States Geological Survey 2021). This unitless 
index includes folded aspect, slope and latitude as input 
variables. 

We calculated a site-level precipitation metric by summing 
antecedent rainfall over 5, 11, 35 h, and 3-, 6-, 9-, 12-, 15-, 
18- and 21-day time windows preceding each FMC sampling
period and evaluated the Pearson correlation coefficient for
each pairing of FMC and precipitation window, like the
approach of Crawford et al. (2025). Precipitation data were
obtained from the nearest RAWS, which, although not
co-located, represents the closest available data source
given the absence of on-site rainfall measurements. Though
rainfall conditions may differ slightly between the RAWS and
the study site owing to their 5 km separation, the RAWS is
located within the same forest type and at a similar eleva
tion, so any discrepancies are likely minor. Although both
precipitation event duration and amount have been found
to be relevant weather events impacting the moisture
content of dead fuels (Diószegi et al. 2023), we calculated
cumulative precipitation amount rather than duration
owing to the high-intensity, yet short-duration nature of

(a) (b)

(c)

Fig. 2. (a) Post-treatment forest structure and two people sampling fuels from the 0 to 1.7 m and 2.8 to 4.5 m plots within 
the clustered design. (b) A plot placed between two whiskers to mark the distance intervals and the strings stretched 
across the PVC sampling frame to denote the randomly generated 20  × 20 cm subplot for collecting the plot’s 
observation. Black markings on the PVC sampling frame are at 20 cm intervals to create the grid of 36 subplots. (c) 
Two people collecting a dead fine fuel sample into a pre-labeled and pre-weighed polyethylene resealable bag.   
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afternoon monsoonal rainstorms characteristic of the site 
and season of our observation period. 

Analysis 

FMC spatial variability 
We organized the data into three intraseasonal periods to 

assess spatial autocorrelation and variability over time. These 
three periods have distinct trends in precipitation amount 
and frequency both historically and during the period of 
study, with a dry early summer period, a wet monsoonal 
period occurring in mid-summer and a drier late summer 
period (PRISM Climate Group 2020). We calculated the 
mean, median and standard deviation of FMC observations 
of each period; then, we constructed boxplots for each obser
vation day to investigate FMC spatial variation over temporal 
scales. We constructed cumulative distribution function plots 
of each intraseasonal period to evaluate the likelihood of 
different FMC levels occurring and calculated the proportion 
of observations above and below a 30% moisture of extinc
tion threshold for forest floor fuels (Rothermel et al. 1986). 
Lastly, we constructed kernel density plots for each intrasea
sonal period and calculated skewness and kurtosis values to 
assess distribution shape of the three periods. 

To assess and model FMC variations over spatial and 
temporal scales, we used a spatiotemporal variogram and 
kriging approach. Using the gstat package in R, we com
puted an empirical spatiotemporal variogram using a spatial 
cutoff distance of 15 m and temporal lags ranging from 0 to 
5 days. (Pebesma 2004; Gräler et al. 2016; R Core Team 
2024). Model parameters were then extracted for evalua
tion, like the approach of Snepvangers et al. (2003). The 
best-performing variogram model was the sum-metric semi
variance model consisting of wave covariance functions for 
the spatial, temporal and spatiotemporal processes, follow
ing the approach of O’Rourke and Kelly (2015). In datasets 
where observations vary in both spatial and temporal 
dimensions, the variogram is a useful tool in identifying 
and characterizing space–time dependence by interpolating 
values at unvisited locations and times (Snepvangers et al. 
2003). Using the fitted sum-metric variogram model, we 
then performed universal spatiotemporal kriging for the 
15th day of each observation month (15 May 2022, 15 
June 2022, 15 July 2022, 15 August 2022, 15 September 
2022, 15 October 2022) using the krigeST function in the 
gstat package (Pebesma 2004; Gräler et al. 2016). We chose 
a universal kriging approach because it has been shown to 
outperform other spatial interpolation methods when 
modeling fuel attributes at this site (Hoffman et al. 2023). 
The kriging model included log-transformed FMC as the 
response variable with heat load index as the covariate. 
We selected heat load index and canopy cover as covariates 
because these metrics are available at both plot and site 
scales, improved model performance (see Appendix 3) and 
influence FMC (Nyman et al. 2015; Kane 2021). 

Environmental control effect on FMC 
We used a generalized additive model (GAM) in the mgcv 

package (Wood 2017) specified with a gamma distribution 
and natural log link function to assess the effect of vegeta
tion structure and heat load on FMC and if the effects of 
those controls depended on current precipitation (Hastie 
2017). GAMs are a useful semi-parametric model because 
they allow for non-linear relationships between continuous 
predictors and the response by utilizing flexible smoothing 
functions (Pedersen et al. 2019). To assess vegetation struc
ture effect on FMC and allow for simple non-linear relation
ships, we used smoothed understory cover and canopy cover 
terms, and we used a smoothed heat load index term to assess 
the effect of topography on FMC. We used tensor product 
smooths with the three interaction terms to assess the varying 
effect of canopy cover, understory cover and heat load index 
on FMC through differing precipitation levels. 

The choice of variables to measure and include in our 
analysis was motivated by firmly established and previously 
researched ecological interactions and mechanisms like the 
approach of Bradford et al. (2017). To assess multicollinear
ity among variables, we constructed a correlation plot with 
all variables and FMC. All buffer scales of canopy cover were 
collinear at the >0.65 level and the 2 m scale had the 
greatest correlation with FMC so the larger buffer scales 
(4, 6, 8, 10 m) were omitted. Similarly, we retained the 6- 
day cumulative precipitation window as it had the strongest 
Pearson correlation with FMC. Cumulative precipitation 
windows with weaker correlations (5 and 11 h; 35 h; and 
3, 9, 12, 15, 18 and 21 day) were omitted. 

Results 

FMC spatial variability 

There is a trend towards wetter and more spatially variable 
FMC values during observation days through the mid- 
summer period and drier and less variable values during 
the early and late-summer periods (Fig. 3a). The early, mid 
and late summer median FMC values were 9, 34 and 14%, 
respectively (Table 1). The early, mid and later summer 
standard deviation values were 22, 35 and 17% while the 
ranges of FMC spanned 193, 302 and 142% during these 
three intraseasonal periods (Table 1). During the early and 
late summer periods, 14 and 19% of observations were 
greater than the 30% moisture of extinction, a rule of 
thumb threshold above which flaming combustion cannot 
occur, whereas during the mid-summer period, 55% of 
observations were greater than 30% (Table 1; Fig. 3c). 
Over the 2022 fire season, the skewness values of the 
three periods decreased from 3.43 in the early summer to 
2.61 during the mid-summer period and 2.45 during the late 
summer period (Table 1). The positive values indicate right- 
tailed distributions through all periods. The first sampling 
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period also has the greatest kurtosis value of 15.6, indicating 
the ‘peakiest’ distribution compared with the kurtosis values 
during the mid-summer and late summer periods of 10.7 
and 9.83 (Table 1; Fig. 3b). 

Of the tested spatiotemporal model forms, a sum-metric 
model provided the best fit (Table 2). The model structure 
shows that approximately 85% of the semivariance in space 

occurs in the first 10 m and ~80% of the semivariance in 
time happens in the first 20 days from a sample point 
(Fig. 4). Additionally, the nugget values for the spatial, 
temporal and joint components were 0, 349.93 and 
224.16, respectively (Table 2), where the temporal nugget 
accounts for ~66% of variation across time but the joint 
nugget shrinks to account for <5% of variation in the 
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Table 1. Summary statistics of FMC.         

Period Mean (%) Median (%) s.d. (%) Skewness Kurtosis Observations over 30% (%)   

Early summer 17 9 22  3.43  15.64 14 

Mid summer 43 34 35  2.61  10.79 55 

Late summer 20 14 17  2.45  9.83 19 

Summary statistics with the observation period organized into thirds, early summer (Julian day 138–189), mid-summer (Julian day 192–236) and late summer (Julian 
day 243–287).  
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combined dynamics. The interpolated values in the ordinary 
kriging approach indicate a larger range in FMC values during 
the wetter, mid-summer days versus the drier early-summer 
days (Fig. 5). Similarly, the kriged maps show more spatially 
homogeneous FMC values during the early summer and more 
heterogeneous values during the mid-summer and late sum
mer periods (Fig. 5). Additionally, several areas exhibit per
sistent fuel moisture, maintaining relatively stable dry or wet 
conditions across multiple kriged days. 

Environmental control effect on FMC 

The GAM explained 35.4% of the deviance in FMC with an 
adjusted R2 of 0.33. The smoothed terms, understory cover, 
canopy cover at the 2 m radius, heat load index and 6-day 
cumulative precipitation all showed statistically significant 
associations with FMC (P < 0.001, P < 0.001, P < 0.006, 
P < 0.001, respectively; Table 3). The interactions between 
understory cover, canopy cover and heat load index with 
precipitation did not display significant associations with 
FMC (Table 3). 

The relationship between understory cover and FMC 
shows that as understory cover increases, FMC also rises. 

Specifically, expected FMC increases from ~10% at the low
est levels of understory cover to ~18% at the highest levels, 
following an exponential curve (Fig. 6a). Canopy cover has a 
weak positive correlation with FMC, with expected values 
increasing from approximately 11 to 16% (Fig. 6b). Heat 
load index and expected FMC have a negative relationship 
with FMC, decreasing from ~16 to 12% (Fig. 6c). 
Precipitation has a strong positive, though non-linear, asso
ciation with FMC ranging from ~15% FMC at lower precip
itation values to ~50% at the highest precipitation values. 
Expected FMC peaks at ~70% and 35 mm of precipitation in 
an area of substantial model uncertainty. 

Discussion 

Fine dead FMC shows exceptional fine-scale variability 
within forest stands, driven by sub-seasonal precipitation 
patterns. FMC was low in the early and late summer periods 
and high in the mid-summer period. In contrast to the early 
and late summer periods, frequent, intense precipitation 
events, driven by the North American monsoon, increased 
the mean and within-stand variability of FMC observations 
during the mid-summer period. For example, during the 
mid-summer period, 55% of FMC observations were greater 
than the 30% moisture of extinction threshold. In contrast, 
the lowest spatial variability in FMC occurred during the 
early summer intraseasonal period, when just 14% of obser
vations were greater than 30% (Table 1). Notably, 13% of 
the observations greater than 30% were recorded on just a 
single day (Julian day 182), the day after a particularly large 
rainfall event. This suggests that precipitation events not 
only increase mean FMC but introduce heterogeneity 
through local-scale variations in vegetation structure, topog
raphy and micrometeorological processes. Because fine dead 
fuels form a major component of available fuels for surface 
fire spread in frequent-fire systems (Anderson 1981;  
Mitchell et al. 2009), this within-stand variability indicates 
the potential for differential fire spread throughout a stand, 
perhaps most notable during relatively wet intraseasonal 
periods. 

Our findings indicate that fine-scale environmental con
trols, including vegetation structure and topography, mod
erate the larger-scale effect of sub-seasonal precipitation 
patterns. Canopy cover and understory cover are positively 
associated with FMC. This finding suggests that denser veg
etation structures limit solar insolation to the understory, 
creating cooler and damper conditions at the fuel interface, 
consistent with findings by Pickering et al. (2021) and Kreye 
et al. (2018). We also found a negative correlation between 
heat load index and FMC that aligns with previous research, 
indicating that pole-facing slopes support moister condi
tions, driven by differences in solar radiative heating 
(Stambaugh et al. 2007; Nyman et al. 2015; Slijepcevic 
et al. 2018). However, our findings differ from those of  

Table 2. Spatiotemporal variogram model parameters.      

Component Nugget Sill Range   

Space  0  1006.07  987.85 

Time  349.93  524.40  82.85 

Joint  224.16  5035.43  63.51   
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Fig. 4. Spatiotemporal fitted variogram model using a sum-metric 
approach. The wireframe plot represents the estimated semivariance 
on the vertical axis as a function of spatial distance (m) and temporal 
lag (days). The model accounts for spatial, temporal and joint spatio
temporal dependencies.  

G. C. Ohlson et al.                                                                                International Journal of Wildland Fire 34 (2025) WF25086 

8 

D
ow

nloaded from
 http://connectsci.au/w

f/article-pdf/doi/10.1071/W
F25086/1822808/w

f25086.pdf by guest on 29 N
ovem

ber 2025



Gibos (2010) who reported minimal aspect-related variation 
in FMC within dense canopy lodgepole pine (Pinus contorta) 
stands in Alberta, Canada. At our site, where post-treatment 
canopy cover is relatively low, pole-facing slopes retained 
higher fuel moisture values. Our findings, along with others 
(Nyman et al. 2015; Slijepcevic et al. 2018; Pickering et al. 
2021), indicate that differences in solar insolation driven by 

heterogeneity in cover and topography underlie the spatial 
variation of fine dead FMC. 

At the within-stand scale, canopy cover, understory cover 
and topography influenced FMC independently of cumula
tive precipitation over the 6 days preceding each FMC 
observation. In contrast, studies at coarser stand scales 
report the effect of vegetation structure on FMC appears to 
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Table 3. Generalized additive model summary.       

Family Link function Formula Adjusted 
R2 

Deviance 
explained 

(%)   

Gamma log FMC ~ s(u_cover) + s(c_cover) + s(hli) + s 
(precip) + ti(u_cover:precip) + ti 
(c_cover:precip) + ti(hli:precip)  

0.33  35.4        

Estimate Standard error T value Pr(>|z|)   

Intercept  3.12  0.021  144.7  <0.001        

Effective degrees of freedom (ed.f.) Reference degrees of freedom (Ref.d.f.) F statistic Pr(>|z|)   

u_cover  1.47  1.81  28.95  <0.001 

c_cover  8.14  1  16.36  <0.001 

hli  1.21  1.39  7  0.006 

precip  8.14  8.74  58.65  <0.001 

u_cover:precip  3.03  4.26  1.28  0.269 

c_cover:precip  1.56  1.87  0.48  0.662 

hli:precip  2.62  3.05  1.97  0.115 

Spatiotemporal variogram nugget, sill and range values of the fitted model are specified for the space, time and joint space time component models (extracted using the extractPar function in the gstat 
package). 
Generalized additive model summary with the smoothed main effects of understory cover (u_cover), canopy cover (c_cover), heat load index (hli), precipitation (precip) and the interaction terms of 
understory cover, canopy cover and heat load index with precipitation.  
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depend on the broader, regional moisture regime (e.g. coastal 
fog; Kane 2021), a relationship not observed at finer scales. If 
there is indeed an interaction between vegetation structure 
and larger-scale moisture regime in the semi-arid climate 
being evaluated, it is likely due to the specific metric used or 
the timing of the FMC observations relative to the measured 
precipitation events. Alternative variables such as evapotran
spiration or climatic moisture deficit may be better suited to 
detect it. Additionally, this potential interaction may be some
what short-lived. Although the 6-day cumulative precipitation 

shows the strongest Pearson correlation with FMC, the inter
active effect with forest structural variables may no longer be 
detectable over such a broad temporal window. The 
insignificant interactions in the GAM suggest that finer-scale 
interactions between vegetation structure and moisture 
regimes may be transient and context-dependent, requiring 
more precise temporal sampling or alternative environmental 
variables to fully capture their influence on FMC. 

FMC values exhibit patterns of spatiotemporal auto
correlation across the scales in which we sampled. 
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According to the joint space–time variogram (Fig. 4), ~80% 
of the observed semivariance occurs at spatial scales finer 
than 15 m. The nugget values in the temporal and joint 
spatiotemporal model components reflect variations in 
FMC at temporal lag distances finer than the sampling inter
val (approximately weekly), confirming that fine fuels 
respond to atmospheric conditions at finer scales. 
Although previous research has evaluated patterns of spatial 
autocorrelation in FMC (Zhang et al. 2021) and temporal 
trends in FMC over both seasonal (Faiella and Bailey 2007;  
Kane 2021) and diel scales (Banwell et al. 2013), to the best 
of our knowledge, there have been no studies to investigate 
autocorrelation over spatiotemporal scales. Consistent with  
Zhang et al. (2021), who observed anisotropic spatial auto
correlation patterns of FMC at scales of 3.5–5.5 m in a larch 
forest in China, our results demonstrate spatial variability at 
similarly fine scales. These fine-scale variations in FMC are 
likely driven by the aggregated tree spacing within the 
stand, microtopography and other fine-scale spatial varia
bility of vegetation or environmental parameters. For 
instance, shrub, dead woody and litter fuel loading (Vakili 
et al. 2016) and soil moisture (Comegna and Basile 1994;  
Anctil et al. 2002; Brocca et al. 2007) are shown to vary at 
similar fine scales (approximately 1–5 m). Additionally, this 
spatial variability is inconsistent over time, potentially 
driven by varying moisture adsorption through precipitation 
mediated by vegetation structure (Crockford and 
Richardson 2000; Thomas 2016; Kreye et al. 2018) and 
nocturnal moisture recovery (Holden and Jolly 2011). 

The distribution of FMC observations at within-stand 
scales included values both above and below 30% on 18 
of the 21 sampling days, indicating a mixture of burnable 
and non-burnable areas at fine spatial scales. This spatial 
discontinuity in fuels available for ignition could influence 
wildland fire spread, fire sustainability and spot-fire hazard 
(Koo et al. 2010; Wang et al. 2024). Additionally, because 
most prescribed fires are ignited under marginal conditions 
(Hiers et al. 2020), understanding the magnitude of fuel 
moisture variability during these relatively wet conditions 
may be crucial for informing and achieving management 
objectives (Bonner et al. 2024). The application of pre
scribed fire under marginal, more spatially variable condi
tions likely increases the heterogeneity of severities, which 
support ecological objectives (Parr and Brockett 1999;  
Robertson et al. 2019). In contrast, applying prescribed 
fire under more homogeneously dry conditions may be 
better suited for fuels reduction – though other variables 
related to topography and weather are critical for predicting 
fire behavior and severity (Rothermel 1972). 

Because fine dead fuels adsorb and desorb moisture fairly 
quickly (Fosberg et al. 1970), a limitation of the present 
study is the potential conflation of temporal and spatial 
variability. On each observation day, we sampled FMC 
from plots in a consistent order over a ~1.5-h period. 
Although this sampling method maximized efficiency, it is 

possible that over this ~1.5-h period, moisture contents 
fluctuated in response to changing atmospheric conditions. 
However, we consider this effect to be minor as prior 
research indicates that ponderosa pine needles – the domi
nant fuel in our study – have a moisture time lag of approxi
mately 4 h (Fosberg 1975; Anderson et al. 1978). This 
suggests that substantial shifts in FMC over a 1.5-h window 
are unlikely. Future work would benefit from more tightly 
constrained sampling windows and should aim to better 
characterize diel fluctuations in fine, in situ fuels. 

Given the complicated interaction of FMC across space 
and time, further research is needed to better understand 
how within-stand moisture variability responds to the full 
suite of environmental controls such as varying weather, soil 
and topographic conditions, and vegetation structure. 
Advancing this understanding can inform prescribed fire 
ignition planning and improve predictions of resulting fire 
behavior and spread. Laboratory and in situ wildland fire 
experiments as well as numerical simulations are well suited 
to investigate the potential impact of spatial variability in 
moisture content on fire behavior, especially as increased 
attention is given to sub-grid processes in fire behavior 
modeling (Marshall et al. 2023) and controlled experiments 
adopt precise instrumentation (Prichard et al. 2019). 
Considering the full spatial variability of FMC may enhance 
our ability to predict fire behavior more accurately, opti
mize prescribed fire applications and achieve both ecologi
cal and fuel management objectives more effectively. 
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Appendix 1. Overstory and understory summary statistics 

The below post-treatment summary statistics have been extracted from 0.04 ha (1/10th acre) polygons around each fuel 
moisture plot (n = 80).        

Mean s.d. Min. Max.   

Trees per hectare 358  272 25 1186 

Basal area (m2 ha−1) 12.8  4.9 2.6 23.9 

Mean height (m) 12.4  4.2 6.0 20.2 

Mean crown base height (m) 6.7  2.7 2.0 12.1   

The understory cover data below is from a pre-treatment monitoring effort within the Pikes Peak Forest Dynamics Plot. 
Note the understory data were collected from plots distinct from those in the present study (W. Tinkham, unpublished 
data, 2025). 

Below are the five most common species found: Carex spp. (sedges), Juniperus communis (common juniper), Fragaria 
virginiana (Virginia strawberry), Achillea millefolium (yarrow) and Allium cernuum (nodding onion).     

Species % of plots Mean cover (%)   

Sedge  65.1  5.0 

Common juniper  34.0  26.3 

Virginia strawberry  29.0  4.4 

Yarrow  24.0  4.0 

Nodding onion  24.0  3.7   

Appendix 2. Site-specific crown diameter allometric equations 

Crown diameter was predicted based on a sample of 467 tree observations collected in the site by randomly sampling 16 of 
the 20  × 20 m grid cells. Species-specific prediction models were built using a linear regression with tree DBH and height as 
predictors. Models were reduced to minimize the Akaike Information Criterion resulting in the below relationships. Sampled 
species include PIPO (Pinus ponderosa P. and C. Lawson), PIEN (Picea engelmannii Parry ex. Engelman), PIFL (Pinus flexilis 
James), PIPU (Picea pungens Engelm.), POTR (Populus tremuloides Michx.) and PSME (Pseudotsuga menziesii Mirb).         

Species n Adj R2 RSE Intercept DBH Height   

PIPO 120  0.700  0.703  1.2387  0.1439 – 

PIEN 120  0.716  0.540  1.5346  0.1414 −0.0919 

PIFL 29  0.868  0.622  0.1806  1.4446 – 

PIPU 24  0.385  0.769  1.3823  0.0754 – 

POTR 112  0.493  0.501  1.2797  0.1521 – 

PSME 62  0.595  1.237  1.8310  0.0945 –   

Appendix 3. Comparison of kriging models 

We calculated root mean square error (RMSE), mean absolute error (MAE), and R2 values for each kriging model: one 
including both canopy cover and heat load index (HLI), one with only canopy cover, one with only HLI, and one with no 
covariates. The model using both HLI and canopy cover had the highest R2 and the lowest MAE values. We extracted canopy 
cover for each 4  × 4 m grid cell in the spatiotemporal interpolation grid from the allometrically-derived crown diameters for 
each tree at the site using the st_intersection function in the sf package in R (Pebesma and Bivand 2005; Pebesma and 
Bivand 2023). 
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Covariate included R2 MAE RMSE   

cover + hli  0.38  12.12  22.86 

cover  0.36  12.28  23.09 

hli  0.38  12.18  22.85 

No covariate  0.37  12.30  22.92      
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