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Evaluating the potential of forest fuel treatments to reduce future 
wildfire emissions 
Kayla JohnstonA,B,* , David SchmidtB, Carrie LevineB, Thomas BuchholzB,C and David SaahA,B  

ABSTRACT 

Background. Effective forest fuel reduction treatments reduce hazardous fuel conditions, wild
fire behavior and severity. It has been suggested and partially quantitatively analyzed that these 
treatments may also reduce future wildfire emissions, but this potential is debated. We apply a 
previously published, encompassing modeling approach to assess the potential of forest fuel 
reduction treatments to reduce future wildfire emissions. Aims. Evaluate the effectiveness of 
four fuel treatment types at reducing future wildfire greenhouse gas (GHG) emissions across a 
range of forest types and initial fire hazard levels. Methods. Forest growth, fire behavior, fire 
spread and emissions models were used to simulate fuel treatments and their potential impacts. 
Key results. The ‘underburn only’ and ‘thin from below + pile burn’ treatments had a minimum 
annual fire probability (AFP) 5–35% lower than other treatment types to achieve reduced GHG 
emissions. When AFP was high, the ‘stand density index (SDI) thin + underburn’ treatment reduced 
GHG emissions 13–54% more than the next best treatment. Conclusions. AFP, forest type and 
initial hazard level should be primary considerations when selecting a fuel treatment type for 
reducing future GHG emissions. Implications. These results provide decision support when 
selecting a fuel treatment type for reducing future GHG emissions.  

Keywords: Douglas-fir, forest thinning, FVS modeling, fuel treatments, mixed conifer, Monte 
Carlo wildfire modeling, ponderosa pine, prescribed fire, white fir, wildfire emissions. 

Introduction 

Forests are an important component to the global carbon cycle as the largest terrestrial 
carbon sink for carbon dioxide (CO2) (Canadell and Raupach 2008). Forests can also 
become a carbon source for CO2 when they burn in wildfires (Hurteau 2021; Zhao et al. 
2021; Bartowitz et al. 2022). It has been suggested that forest fuel reduction treatments 
(hereafter referred to as ‘fuel treatments’), when applied strategically to the landscape, 
can mitigate carbon stock loss and greenhouse gas (GHG) emissions from future wildfires 
(Hurteau and North 2009; North and Hurteau 2011; Stephens et al. 2012; Restaino and 
Peterson 2013; Buchholz et al. 2022). Effective fuel treatments reduce future wildfire 
severity and improve wildfire suppression efficiency ultimately resulting in smaller 
wildfires (Moghaddas and Craggs 2007; Cochrane et al. 2012). Less severe wildfire effects 
generally correspond to reduced tree mortality and thus less carbon stock loss compared 
to a scenario with higher severity. Smaller wildfires generally correspond to relatively 
less carbon stock loss and fewer GHG emissions simply because less area, and thus less 
biomass, burns. Quantification of this concept, that fuel treatments reduce future wildfire 
GHG emissions, has been partially discussed and assessed in the literature (Hurteau and 
North 2009; North and Hurteau 2011; Stephens et al. 2012; Restaino and Peterson 2013). 
However, an analysis has not been done that accounts for all emission and carbon stock 
components, nor considers spatial or landscape impacts of fuel treatments. A modeling 
approach, the Avoided Wildfire Emissions (AWE) methodology, that accounts for all 
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emission and carbon stock components and considers land
scape scale impacts of fuel treatments, has been suggested 
for assessing the potential of fuel treatments at reducing 
future wildfire GHG emissions, but it has not yet been 
applied in any published analyses (Buchholz et al. 2022). 

Other analyses have estimated fuel treatment effects 
on GHG emissions from observed pre- and post-wildfire 
carbon stocks, or relied on the Fire and Fuels Extension to 
the Forest Vegetation Simulator (FFE-FVS) (Rebain et al. 
2022; Dixon 2024) or the First Order Fire Effects Model 
(FOFEM) (Keane and Lutes 2020). These studies unani
mously concluded that treated areas produced less wildfire 
emissions than untreated areas, but these reductions did not 
overcome the carbon stock losses caused by the treatment 
(Hurteau and North 2009; North and Hurteau 2011;  
Campbell et al. 2012; Stephens et al. 2012; Restaino and 
Peterson 2013). Several of these analyses also found that 
wildfire-induced tree mortality was much higher in 
untreated areas compared to treated areas (Hurteau and 
North 2009; North and Hurteau 2011; Restaino and 
Peterson 2013). Greater tree mortality can cause untreated 
forest stands to become carbon sources for a period of time 
post-wildfire when the amount of emissions from decaying 
wood is greater than the carbon sequestration potential of 
the surviving trees – this dynamic was discussed in some 
papers but not fully evaluated (Hurteau and North 2009;  
Campbell et al. 2012). One paper also suggests that lower 
intensity fuel treatment prescriptions that minimally reduce 
live tree carbon and emphasize surface fuel reduction may be 
optimal for net reducing GHG emissions; this idea is sup
ported by a case study analysis that found over 70% of wild
fire emissions to come from the combustion of surface fuels 
(Campbell et al. 2007; Stephens et al. 2012). These studies 
lay the foundational understanding that fuel treatments 
reduce initial forest carbon stocks and reduce subsequent 
wildfire emissions and wildfire-induced tree mortality. 

However, these previous studies do not fully analyze 
the carbon sequestration potential of untreated vs treated 
forests, consider wildfire probability, or account for the 
secondary landscape effects a fuel treatment may have on 
fire behavior or effects. Thinned forest stands are known to 
experience increased incremental diameter growth (and 
therefore increased carbon sequestration) over comparable 
forest stands that have not been thinned (Tappeiner et al. 
2022). The optimal fuel treatment type and placement to 
minimize reductions in carbon stocks and maximize wildfire 
hazard reduction is known to vary with wildfire probability 
(Salis et al. 2016; Krofcheck et al. 2018). Effective fuel 
treatments are known to have landscape-scale impacts on 
wildfire occurrence and size (McKinney et al. 2022; Ott et al. 
2023). Thus, it is imperative that an analysis seeking to 
complete an encompassing evaluation of the potential 
impacts a fuel treatment may have on carbon stocks and 
future wildfire emissions incorporate evaluation of the 
carbon sequestration potential with and without treatment, 

the influence of wildfire probability and the potential 
impacts on landscape-scale wildfire behavior and effects. 
The AWE methodology proposed in Buchholz et al. (2022) 
builds on previous studies and is an improvement in that 
these three components are evaluated. 

In this study, we employ the AWE methodology (Buchholz 
et al. 2022) to evaluate the potential for four different fuel 
treatments to produce net reduced future wildfire GHG emis
sions in four forest types and three initial wildfire hazard 
conditions. The AWE methodology is a modeling framework 
for quantification of net GHG emissions from potential future 
wildfires in a landscape with and without fuel treatments; the 
details of this framework and specific model parameteriza
tions for this study are discussed in the methods section of 
this paper. Our findings will be useful to land managers when 
deciding what type of fuel treatment may be most effective 
for their project area when the objective is net reduced GHG 
emissions from future wildfires. 

Materials and methods 

We applied the AWE methodology to evaluate effects of four 
fuel treatment prescriptions on future wildfire GHG emis
sions in 12 synthetic landscapes. The AWE methodology 
consists of three modeling and three accounting (i.e. data 
summarization) components. Potential GHG emissions are 
modeled and quantified over a project duration of 40 years 
and account for carbon in standing live trees, shrubs and 
herbaceous understory; standing dead trees; dead surface 
fuels (woody debris, litter and duff); harvested wood prod
ucts; biomass combustion emissions from fires (prescribed 
and wildfire); mobile combustion emissions; biogenic emis
sions from decomposition of forest products; and delayed 
reforestation. In computing the net GHG emissions with 
the AWE methodology the following carbon and GHG 
exchanges are considered: carbon stocks lost due to the 
fuel treatment, mobile combustion emissions from the 
equipment used to implement the fuel treatment, GHG emis
sions from underburn or pile burn (if part of the fuel treat
ment), potential changes in tree growth (carbon acquisition) 
due to changes in stand structure post-fuel treatment, GHG 
emissions from future wildfires (discounted based on annual 
fire probability (AFP) and conditional burn probability), 
GHG emissions from decaying wood (both woody debris 
and forest products) and foregone carbon acquisition due 
to tree mortality and delayed reforestation post-high sever
ity wildfire. The four unique fuel treatment prescriptions 
are consistent with commonly implemented fuel treat
ments across western US forests. The synthetic landscapes 
consist of flattened topography and forest inventory data 
from the northern Sierra Nevada region of California, 
but are not meant to represent any specific location in 
the region. Detailed explanation of each component of 
the methodology, our specific parameterizations, the four 
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fuel treatment prescriptions and the creation of the syn
thetic landscapes follow. 

Synthetic landscapes 

Twelve synthetic landscapes were created to control the 
influence of variability in topography, forest type and initial 
fire hazard in estimated emissions. Zero slope, elevation and 
aspect were used for all synthetic landscapes. Forest inven
tory data for the synthetic landscapes were derived from the 
TreeMap v2016 dataset (Riley et al. 2022). 

The synthetic landscapes created for this study do not 
represent a given area in real space but had to be tied 
somewhat to a real geographic area due to the geographic 
dependence of the forest growth and yield equations imple
mented in the Forest Vegetation Simulator (FVS) (Dixon 
2024). The northern Sierra Nevada subregion of California 
was selected for this purpose due to its fire history and need 
for fuel treatments. The northern Sierra Nevada sub-region 
is the area represented by the Western Sierra FVS variant 
and that fell within the extent of the northern half of the 
United States Geological Survey (USGS) level-3 ecoregion 
‘Sierra Nevada’. The northern Sierra Nevada is a fire-prone 
subregion; historical fire return interval has been estimated 
as 5–15 years in mixed conifer and ponderosa pine forest 
types, 10–25 years in Douglas-fir forest types and less than 
50 years in white fir forest types (Skinner et al. 1996; Moody 
et al. 2006; Beaty and Taylor 2008). Fuel treatments are 
common across the northern Sierra Nevada (California 
Wildfire & Forest Resilience Task Force 2024), and much 
of the northern Sierra Nevada landscape has been identified 
as a priority in the western US for increasing the pace and 
scale of forest fuel treatments over the next decade (USDA 
Forest Service 2022). 

The forest inventory stands assigned to each unique syn
thetic landscape pertained to a unique combination of one of 
the four most dominant forest types and initial fire hazard 
present in the northern Sierra Nevada sub-region. The four 
dominant forest types were California mixed conifer, 
Douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus 
ponderosa) and white fir. The California mixed conifer forest 
type in the Sierra Nevada is typified by a mix of Douglas-fir, 
ponderosa pine, white fir, sugar pine (Pinus lambertiana), 
incense-cedar (Calocedrus decurrens) and California black 
oak (Quercus kelloggii) (Tappeiner 1980). 

To establish initial fire hazard, each TreeMap v2016 stand 
within the dominant forest types was input to the FFE-FVS, 
grown to 2024, and then potential fire behavior was modeled 
under 97th percentile weather conditions (Rebain et al. 2022;  
Dixon 2024). The 97th percentile weather conditions repre
sent extreme wildfire conditions and were computed from 
historical weather data for the region and represent extreme 
potential wildfire conditions (Table 1). Each stand was 
assigned a wildfire hazard category based on the FFE-FVS 
estimated flame length and percent basal area mortality 

(Fig. 1). A synthetic landscape was created for each forest 
type-hazard level combination (e.g. white fir-high hazard) by 
randomly distributing corresponding TreeMap2016 stands 
across a 24,500-ha landscape. 

Each fuel treatment prescription was modeled as if 
implemented on 22% of the synthetic landscape with 110 
individual units (~49 ha each) arranged in an overlapping 
louvered pattern (Fig. 2). This pattern is more effective 
at disrupting simulated wildfire spread compared to other 
landscape fuel treatment patterns and was chosen to mini
mize pattern bias in assessing fuel treatment effectiveness at 
reducing GHG emissions (Finney 2001; Schmidt et al. 2008). 

Fuel treatment prescriptions 

Four fuel treatment prescriptions that are commonly imple
mented in forests across the western US were simulated and 
compared in this study (Table 2). The ‘stand density index 
(SDI) thin + underburn’ (STU) prescription consisted of 
cutting trees up to 76 cm diameter at breast height (DBH) 

Table 1. Fire weather parameters used to simulate wildfire and 
determine wildfire hazard category under 97th percentile fire weather 
conditions in the Fire and Fuels Extension to the Forest Vegetation 
Simulator and GridFire.    

Parameter Value   

Temperature 32°C 

6-m wind speed 32 km/h 

1-h fuel moisture content 3% 

10-h fuel moisture content 4% 

100-h fuel moisture content 5% 

1000-h fuel moisture content 10% 

Duff fuel moisture content 15% 

Live woody fuel moisture content 70% 

Live herbaceous fuel moisture content 70% 

Season Fall   

Flame
length (m)

<1.2

Percent
mortality

Percent
mortality

Percent
mortality

≥1.2 & <2.4 ≥2.4

<10 ≥10 &
<50

≥50 ≥50 Any

Low
hazard Moderate

hazard

High
hazard

Moderate
hazard

High
hazard

High
hazard

<50

Fig. 1. Flowchart showing how each TreeMap2016 forest stand was 
assigned a hazard level based on simulated fire behavior and effects 
outputs from the Fire and Fuels Extension to the Forest Vegetation 
Simulator.  
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to achieve a SDI equal to 35% of maximum SDI, removing 
bole wood off-site, followed by a prescribed fire across the 
entire treatment unit. The ‘thin from below + pile burn’ 
(TBP) treatment consisted of cutting 90% of trees <25 cm 
DBH, leaving all cut material on-site, and pile burning 70% 
of the woody debris. The ‘mastication’ (MA) treatment con
sisted of masticating 90% of trees <25 cm DBH, 70% of the 
woody debris and 75% of the height of live shrubs. The 
‘underburn only’ (UB) treatment consisted of a prescribed 
fire across the entire treatment unit. 

Modeling workflow 1: forest growth and yield 

For the project (with fuel treatment) scenarios, forest inven
tory data for each unique stand in a given synthetic land
scape were grown from 2016 to 2024 in FVS, the fuel 
treatment was simulated in 2024, and then the stands con
tinued to be grown in FVS until 2064. For the baseline 
(without fuel treatment) scenarios, forest inventory data 
for each unique stand in a given synthetic landscape were 
grown from 2016 to 2064 in FVS. The analysis period for 
the AWE methodology was applied for years 2024–2064 (a 
40-year period). Nine iterations of each the project and 
baseline scenario simulations occurred, each with a wildfire 
being simulated via FFE-FVS at a different 5-year time step 
(e.g. simulation 1 had a wildfire simulated in year 2024, 

Legend

Synthetic landscape
extent

Unique stand ID number
77405

Treatment units

km

N

43210.50

3874

Fig. 2. Simulated treatment pattern on a synthetic landscape com
prised of stands from TreeMap2016. Each treatment unit is ~49 ha and 
the total treated area is about 22% of the total area.  
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simulation 2 had a wildfire simulated in year 2029, and so 
on). The simulated wildfires were parameterized with the 
same 97th percentile weather and fuel moisture conditions 
mentioned previously and were not varied over the duration 
of the simulation (i.e. potential impacts of climate change on 
97th percentile weather were not considered) (Table 1). 

Within an FVS simulation, modeled dynamics and met
rics include tree growth, mortality, harvested wood volume 
and dead wood decay (Dixon 2024). FVS uses a collection of 
distance-independent, individual tree growth models to esti
mate growth through time. Growth models are dependent 
upon species, tree DBH, height, stand site index and stand 
basal area (BA). FVS uses a collection of mortality models to 
estimate individual tree mortality in a given time frame. 
Mortality models are dependent upon species, DBH, stand 
BA and site index. Wildfire-induced mortality is also mod
eled in FFE-FVS when a wildfire is simulated and varies with 
tree species (Rebain et al. 2022; Abrahamson 2024). FVS 
estimates harvested wood volume by computing the volume 
of merchantable wood cut when it is simulated as being 
removed from the stand. In the Western Sierra variant of 
FVS, merchantable cubic foot volume is computed for trees 
with a minimum DBH of 17.8 cm as saw-logs with a mini
mum small-end diameter of 11.4 cm and a length of 4.9 m. 
Dead wood decay is estimated within the FFE-FVS and is 
dependent on species and diameter. 

Modeling workflow 2: Monte Carlo wildfire spread 
simulation 

Monte Carlo wildfire spread simulations were completed 
for each iteration and each 5-year time step of the baseline 
and project scenarios in the GridFire wildfire spread model 
(pyregence/gridfire 2024). The 97th percentile weather and 
fuel moisture values discussed previously (Table 1) were 
held constant across time steps for the Monte Carlo simula
tions. Fire behavior fuel models assigned by FFE-FVS, as 
well as canopy base height, canopy bulk density, canopy 
cover and canopy height estimated by FVS were rasterized 
and used for the surface and canopy fuel inputs to GridFire. 
Each Monte Carlo simulation consisted of 10,000 iterations, 
and each iteration was initialized with a randomly placed 
ignition point and allowed to ‘burn’ for 8 simulation hours. 
Conditional burn probability was computed from each 
Monte Carlo simulation for each time step and scenario. 

Modeling workflow 3: fire emissions 

Potential wildfire GHG emissions for each forest stand, iter
ation, time step of each project and baseline scenarios were 
modeled using the FOFEM (Keane and Lutes 2020). Potential 
wildfire GHG emissions were estimated under the same 97th 
percentile weather conditions previously discussed (Table 1). 
Project scenario potential wildfire GHG emissions were dis
counted by multiplying each stand’s potential wildfire GHG 

emissions by the ratio of project conditional burn probability 
to baseline conditional burn probability. Potential wildfire 
GHG emissions were summed across each landscape for 
each project and baseline scenario. Prescribed fire GHG emis
sions were also modeled in FOFEM when the project fuel 
treatment included prescribed fire, and those emissions 
were added to the corresponding project scenario’s summed 
GHG emissions. 

Accounting workflow 1: carbon 

Forest carbon stocks for each iteration-scenario were calcu
lated for the 40-year time period from FVS estimations of 
carbon in each stand (Dixon 2024). These carbon stock 
estimations accounted for carbon in standing live trees, 
shrubs and herbaceous understory; standing dead trees; 
dead surface fuels (woody debris, litter and duff); harvested 
wood products; and biogenic emissions from decomposition 
of forest products. 

Accounting workflow 2: delayed reforestation 

Delayed reforestation refers to when a forest stand experi
ences stand-replacing wildfire severity and subsequently 
undergoes a risk of, at least, temporarily forgone carbon 
sequestration potential from tree growth (Davis et al. 
2019; Coop et al. 2020; Steel et al. 2023). The modeled 
fire behavior from the FFE-FVS simulated wildfires was 
used to identify forest stands that could potentially experi
ence delayed reforestation. Delayed reforestation was 
assumed if FFE-FVS estimated flame length >1.22 m. If 
delayed reforestation was assumed for a given forest stand 
then a literature-based, forest type-specific scaling factor was 
used to estimate the percentage of the stand that would 
experience mortality and therefore delayed reforestation 
(Roccaforte et al. 2012; Van Wagtendonk et al. 2012;  
Collins and Roller 2013; Coppoletta et al. 2016; Rother and 
Veblen 2016; Welch et al. 2016; Tubbesing et al. 2019). The 
proportional carbon stock loss from delayed reforestation due 
to high-severity wildfire was accounted for as GHG emissions 
for the corresponding scenario. 

Accounting workflow 3: net GHG emissions 

Total cumulative emissions (scaled by the AFP) and total 
cumulative carbon stocks were each calculated for the base
line and project scenarios. We computed total cumulative 
emissions scaled by a range of AFP values, 0 up to 0.055, in 
steps of 0.005. This AFP range was selected to capture the 
minimum AFP at which each treatment type net reduced 
GHG emissions. Net GHG emissions for a scenario were 
computed by calculating net GHG emissions for each base
line and project time-step iteration (total emissions minus 
total carbon), subtracting project net GHG emissions from 
baseline net GHG emissions, and then summing across time- 
step iterations. 
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This selected AFP range was relatively consistent with the 
AFP range (0–0.059) estimated for the Northern Sierra 
Nevada subregion (Kearns et al. 2022). In context, Kearns 
et al. (2022) provides comparatively low AFP estimates 
compared to other regional datasets (e.g. CalAdapt decadal 
fire probability (https://v2.cal-adapt.org/tools/wildfire/) 
(Dale et al. 2018; Westerling 2018), and CalFire’s annual 
fire probability for carbon accounting (https://egis.fire.ca. 
gov/FireProbability/) (Mann et al. 2016)). AFP estimations 
can vary widely based on key attributes and assumptions 
such as length of historic wildfire history, future climate 
scenarios, or future housing density and data reporting 
such as static vs dynamic wildfire probabilities over the 
applicable (future) timeframe. 

Comparative analysis 

Quantification of net GHG emissions was completed for AFP 
values 0.0–0.055, in steps of 0.005, for each forest type- 
hazard level-fuel treatment combination to identify mini
mum AFP required to net reduced GHG emissions and trends 
as AFP increased. Intermediate outputs pertaining to forest 
carbon stocks and emissions were explored to understand 
drivers of differences between fuel treatments within and 
between forest types and fire hazard levels. 

Results 

Three elements stood out: (1) low intensity prescriptions 
were more effective compared to other prescriptions at 
producing net reduced GHG emissions when AFP was 
lower (Table 3), (2) higher intensity prescriptions were 
more effective compared to other prescriptions when AFP 
was higher (Figs 3–6), and (3) underburn frequently per
formed well independent of AFP (Figs 3–6). Net reduced 
GHG emissions results are realized when potential GHG 
emissions were reduced beyond any loss in carbon stocks, 
but carbon stock losses from any treatment type were rela
tively small compared to potential GHG emission reductions 
(Figs 7–10). 

Reducing GHG emissions when AFP is low 

The lowest minimum AFP at which a treatment net reduced 
GHG emissions was associated with the UB treatment in 
58% of scenarios, the TBP treatment in 50% of scenarios 
and the STU treatment in 8% of scenarios (Table 3). The 
second lowest AFP at which a treatment net reduced GHG 
emissions was associated with the STU treatment in 50% of 
scenarios, the UB treatment in 33% of scenarios and the TBP 
treatment in 16% of scenarios. The second lowest minimum 
AFP was 5–35% higher than that of the treatment with the 
lowest minimum AFP in the same forest type-hazard level 
scenario (Table 3). Within each forest type-hazard level 

scenario, the minimum AFP to net reduced GHG emissions 
tended to be relatively close between TBP, UB and STU 
treatments. The MA fuel treatment minimum AFP was 
53–147% higher than the lowest minimum AFP in the 
same forest type-hazard level and consistently had the high
est minimum AFP of all the treatments within the same 
forest type-hazard level scenario (Table 3). 

Reducing GHG emissions when AFP is high 

As AFP increased in a given scenario, the STU treatment was 
able to net reduce the most GHG emissions followed by the 
UB treatment in second and the TBP treatment in third in 
every forest type-hazard level scenario (Figs 3–6). The UB 
treatment reduced 13–54% fewer GHG emissions at the 
maximum AFP tested for each scenario than the STU treat
ment, except in the white fir-high hazard scenario in which 
it was only 1% lower (Figs 3–6). The TBP treatment reduced 
36–101% fewer GHG emissions at the maximum AFP tested 

Table 3. Minimum annual fire probability (as percent) that yielded 
net reduced greenhouse gas emissions for each of the selected fuel 
treatments in each forest type-hazard level combination.       

Forest 
type 

Fuel treatment Low 
hazard 

Moderate 
hazard 

High 
hazard   

California 
mixed 
conifer 

Stand density 
index (SDI) 
thin + underburn  

0.0112  0.0088  0.0079 

Thin from 
below + pile burn  

0.0086*  0.0069*  0.0083 

Mastication  0.0150  0.0134  0.0181 

Underburn only  0.0086*  0.0076  0.0075* 

Douglas-fir SDI thin +  
underburn  

0.0088  0.0081  0.0114 

Thin from 
below + pile burn  

0.0100  0.0041*  0.0099* 

Mastication  0.0167  0.0275  0.0238 

Underburn only  0.0077*  0.0053  0.0108 

Ponderosa 
pine 

SDI thin +  
underburn  

0.0149  0.0105  0.0111 

Thin from 
below + pile burn  

0.0223  0.0089  0.0140 

Mastication  0.0398  0.0147  0.0518 

Underburn only  0.0120*  0.0067*  0.0103* 

White fir SDI thin +  
underburn  

0.0170*  0.0109  0.0132 

Thin from 
below + pile burn  

0.0181  0.0061*  0.0107* 

Mastication  0.0315  0.0111  0.0266 

Underburn only  0.0170*  0.0088  0.0133 

An asterisk (*) indicates the treatment with the lowest annual fire probability 
for the forest type-hazard level combination.  
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for each scenario than the STU treatment, except in the 
white fir-high hazard scenario in which it was only 13% 
lower (Figs 3–6). The TBP treatment reduced 5–56% fewer 
GHG emissions at the maximum AFP tested for each sce
nario than the UB treatment (Figs 3–6). The MA treatment 
reduced 118–195% fewer GHG emissions at the maximum 
AFP tested for each scenario than the STU treatment 
(Figs 3–6). 

Reducing GHG emissions in each forest type 

In the California mixed conifer landscape, in high- and 
moderate-hazard landscapes when AFP is less than or 
equal to 0.015 and in low-hazard landscapes when AFP is 
less than or equal to 0.02, the relative difference between 
fuel treatment performance is relatively small except for the 
MA fuel treatment that had minimal to no net reduced GHG 
emissions at those AFP levels (Fig. 3). The net reduced GHG 
emissions per hectare remained similar between the TBP 
and UB fuel treatments at higher AFP in the high- and 
low-hazard landscapes (Fig. 3). 

In the Douglas-fir landscape, when AFP is less than or 
equal to 0.02 in high-hazard landscapes, 0.025 in moderate- 
hazard landscapes and 0.015 in low-hazard landscapes, the 

relative difference between fuel treatment performance is 
relatively small except for the MA fuel treatment that had 
minimal to no net reduced GHG emissions at those AFP 
(Fig. 4). The net reduced GHG emissions per hectare 
remained similar between the TBP and UB fuel treatments 
at higher AFP in the high- and low-hazard landscapes (Fig. 4). 

In the ponderosa pine landscape, when AFP is less than or 
equal to 0.03 in any hazard landscape, the relative differ
ence between fuel treatment performance is relatively small 
except for the MA fuel treatment that had minimal to no net 
reduced GHG emissions at those AFP (Fig. 5). The general 
trend of STU being the ‘best’ fuel treatment at higher AFP 
followed by UB, TBP and MA respectively holds true in the 
high- and moderate-hazard landscapes (Fig. 5). In the low- 
hazard landscape the trend changes above AFP = 0.055 
when the UB and TBP fuel treatments converge and the 
TBP fuel treatment net reduces more GHG emissions per 
hectare at higher AFP (Fig. 5). 

In the white fir landscape, the net reduced GHG emis
sions per hectare was relatively similar for STU, TBP and UB 
fuel treatments at all AFP modeled in the high- and low- 
hazard landscapes (Fig. 6). Fuel treatments in the moderate- 
hazard landscape showed trends similar to other forest type- 
hazard level combinations with the differences between fuel 
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Fig. 3. Estimated net reduced greenhouse gas emissions per hectare 
as annual fire probability increases for the California mixed conifer 
forest type for low-, moderate-, and high-initial wildfire hazard levels. 
STU, stand density index (SDI) thin + underburn; TBP, thin from 
below + pile burn; MA, mastication; UB, underburn only.  
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Fig. 4. Estimated net reduced greenhouse gas emissions per hectare 
as annual fire probability increases for the Douglas-fir forest type for 
low-, moderate- and high-initial wildfire hazard levels. STU, stand density 
index (SDI) thin + underburn; TBP, thin from below + pile burn; MA, 
mastication; UB, underburn only.  
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treatments being relatively small below an AFP threshold 
(~0.025), while above that threshold the STU fuel treatment 
proved to be the ‘best’ fuel treatment (Fig. 6). 

Reducing GHG emissions in each hazard level 

When the initial fire hazard level was low, the UB treatment 
had the lowest minimum AFP at which it net reduced GHG 
emissions in all four forest types, the TBP treatment had an 
equally low minimum AFP in the California mixed-conifer 
forest type and the STU treatment had an equally low mini
mum AFP in the white fir forest type (Table 3). When the 
initial fire hazard level was moderate, the TBP treatment 
had the lowest minimum AFP at which it net reduced GHG 
emissions in three out of the four forest types, and the UB 
treatment had the lowest minimum AFP at which it net 
reduced GHG emissions in the ponderosa pine forest type 
(Table 3). When the initial fire hazard level was high, the 
TBP treatment had the lowest minimum AFP at which it net 
reduced GHG emissions in the Douglas-fir and white fir 
forest types, and the UB treatment had the lowest minimum 
AFP at which it net reduced GHG emissions in the California 
mixed-conifer and ponderosa pine forest types (Table 3). 

Comparing emission reductions to carbon stock 
losses 

Carbon stock losses from any treatment type were relatively 
small compared to potential GHG emission reductions. As 
expected, the largest reduction in carbon stocks was associ
ated with the STU fuel treatment as it was inherently 
designed to remove the largest, and potentially greatest 
number of trees compared to the other modeled fuel treat
ments (Figs 7–10). However, the reduction in carbon stocks 
for any fuel treatment across forest type-hazard level com
binations was minuscule compared to the potential reduc
tions in GHG emissions (Figs 7–10). The STU and UB fuel 
treatments generally had much higher unadjusted potential 
reductions in GHG emissions across forest type-hazard level 
combinations compared to the TBP or MA fuel treatments 
(Figs 7–10). 

Discussion 

This modeling analysis considered two metrics for evaluat
ing fuel treatments. The first was the minimum AFP value at 
which a treatment net reduced GHG emissions under the 
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Fig. 6. Estimated net reduced greenhouse gas emissions per hectare 
as annual fire probability increases for the white fir forest type for 
low-, moderate-, and high-initial wildfire hazard levels. STU, stand 
denisty index (SDI) thin + underburn; TBP, thin from below + pile burn; 
MA, mastication; UB, underburn only.  
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Fig. 5. Estimated net reduced greenhouse gas emissions per hectare 
as annual fire probability increases for the ponderosa pine forest type 
for low-, moderate-, and high-initial wildfire hazard levels. STU, stand 
density index (SDI) thin + underburn; TBP, thin from below + pile burn; 
MA, mastication; UB, underburn only.  
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AWE methodology. By this criterion, the treatments that 
involved understory thinning followed by pile burning surface 
fuels (TBP), or just UB, yielded GHG benefits starting at lower 
AFPs; i.e. they were superior from a climate perspective. This 

indicates that when AFP is lower, a less intensive treatment 
that emphasizes the reduction of ladder fuels (via thinning or 
underburning) and surface fuels (via pile burning or under
burning) may be the most effective at net reducing GHG 
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Fig. 7. Cumulative, differenced (Project – Baseline) carbon stocks 
and emissions for the California mixed conifer forest type. These 
values are not adjusted for annual fire probability. Carbon stocks are 
reduced with treatment but emission reductions tend to be far 
greater. STU, stand density index (SDI) thin + underburn; TBP, thin 
from below + pile burn; MA, mastication; UB, underburn only.  
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Fig. 8. Cumulative, differenced (Project – Baseline) carbon stocks 
and emissions for the Douglas-fir forest type. These values are not 
adjusted for annual fire probability. Carbon stocks are reduced with 
treatment but emission reductions tend to be far greater. STU, stand 
density index (SDI) thin + underburn; TBP, thin from below + pile burn; 
MA, mastication; UB, underburn only.  
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emissions from potential future wildfires. This finding is in 
agreement with a previous analysis that suggested lower 
intensity prescriptions, especially those that emphasize sur
face fuel reduction (like via pile burning or underburning), 

may be optimal for net GHG emission reductions (Stephens 
et al. 2012). 

The other criterion was the net reduced GHG emissions as 
AFP increased. By this criterion, the more intensive treatment 
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Fig. 10. Cumulative, differenced (Project – Baseline) carbon stocks 
and emissions for the white fir forest type. These values are not 
adjusted for annual fire probability. Carbon stocks are reduced with 
treatment but emission reductions tend to be far greater. STU, stand 
denisty index (SDI) thin + underburn; TBP, thin from below + pile burn; 
MA, mastication; UB, underburn only.  
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Fig. 9. Cumulative, differenced (Project – Baseline) carbon stocks 
and emissions for the ponderosa pine forest type. These values are 
not adjusted for annual fire probability. Carbon stocks are reduced 
with treatment but emission reductions tend to be far greater. STU, 
stand density index (SDI) thin + underburn; TBP, thin from below + pile 
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(STU) was superior. This indicates that when AFP is higher, a 
more intensive fuel treatment that emphasizes reducing 
overstory canopy fuels as well as surface fuel load may be 
the most beneficial at reducing net GHG emissions from 
potential future wildfires. We expect that this result is 
because reducing canopy and crown fire probability by 
reducing canopy continuity and canopy bulk density becomes 
more important to reducing GHG emissions as the AFP of 
extreme wildfire increases. 

The MA treatment fared poorly by both criteria, with 
relatively high minimum AFP values and reducing relatively 
little GHG emissions even at the highest modeled AFP val
ues. MA treatments reduce ladder fuels but translate all the 
biomass to the surface fuel load. Thus, we were unsurprised 
by the poor performance of the MA fuel treatment since 
research suggests that the increased surface fuel loading 
caused by mastication treatments increases subsequent 
wildfire severity (Stephens and Moghaddas 2005; Safford 
et al. 2009). This further highlights the importance of imple
menting fuel treatments that emphasize surface fuel load 
reduction to mitigate GHG emissions from potential future 
wildfires. 

Many studies of fuel treatment effectiveness in Sierra 
Nevada forest types have shown that some form of mechan
ical thinning followed by prescribed fire reduces subsequent 
wildfire intensity and wildfire severity, often better than 
mechanical thinning alone (Knapp et al. 2004; Stephens 
and Moghaddas 2005; Moghaddas and Craggs 2007;  
Moghaddas et al. 2010; North et al. 2012; Stevens et al. 
2016; York et al. 2021; Stephens et al. 2024). Under the 
assumption that lower wildfire intensity and severity corre
late to lower GHG emissions, these findings are consistent 
with the results of this simulation study, indicating the AWE 
methodology yields results that are reflective of reality. 
Thus, fuel treatment types that are understood to be the 
most effective at reducing subsequent wildfire behavior and 
severity are also those that have the most potential to reduce 
future wildfire GHG emissions. 

In conclusion, lower intensity fuel treatments are poten
tially more effective at reducing GHG emissions from future 
wildfires when the AFP is lower and higher intensity fuel 
treatments are potentially more effective when the AFP 
is higher. Underburning without any additional thinning 
treatments can be an effective treatment for reducing GHG 
emissions from future wildfires, regardless of forest type and 
initial fire hazard level. This study was applied on synthetic 
landscapes to assess the effects of fuel treatments indepen
dent of other variables; due to this design, the results are not 
directly applicable to any real location in space. However, 
these findings (within the examined Sierra Nevada forest 
types) and our approach can be useful in decision support 
when planning forest fuel treatments with the objective 
of reducing potential future wildfire emissions. Further 
research into this topic may include identifying where 
on real landscapes each fuel treatment type may be most 

effective at reducing GHG emissions, what percentage of a 
landscape needs to be treated for each fuel treatment type to 
be effective, improving the models upon which this meth
odology is based and evaluating economic trade-offs of fuel 
treatment types. 
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