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ABSTRACT 

Accurate fire weather forecasting is essential for effective wildfire management, 

particularly in regions increasingly affected by extreme fire activity such as British Columbia 

and Alberta, Canada. This study evaluates the predictive performance of three ensemble 

forecasting systemsthe Ensemble Prediction System (ENS), the Global Ensemble Forecast 

System (GEFS), and the Canadian Global Ensemble Prediction System (GEPS)and one 

deterministic model (High Resolution Forecast, HRES) in forecasting components of the 

Canadian Fire Weather Index (FWI) System with 1-15 days lead time during the 2021-2023 

wildfire seasons. Using ERA5 reanalysis as reference datasets, forecast skill was assessed 

using Mean Absolute Error (MAE), Continuous Ranked Probability Score (CRPS), and 

Precision-Recall Area Under the Curve (PR-AUC) metrics. Results show that ENS 

consistently demonstrates superior performance across all FWI components and weather 

inputs, with lower MAE and CRPS values across all the forecast lead times. A Super 

Ensemble combining all ensemble members from ENS, GEFS, and GEPS further improves 

long-range forecast reliability. Although deterministic forecasts outperform individual 

ensemble members, they are generally surpassed by ensemble-mean and ensemble-median 

forecasts at lead times greater than five days. The skill of deterministic forecasts also declines 

more rapidly with lead time and fails to quantify forecast uncertainty, despite their higher 

spatial resolution. These findings highlight the operational benefits of incorporating ensemble 

forecasts into fire management decision-making. This study also emphasizes the importance 

of overwintering adjustments and ensemble size in forecast skill and provides insights for 

improving fire weather prediction systems. 

SIGNIFICANCE STATEMENT 

Accurate fire danger forecasts support timely wildfire response and planning. This study 

evaluates the performance of three leading ensemble weather forecasting systems in 

predicting fire weather conditions across western Canada. It also compares the ensemble 

forecasts with the deterministic forecasts; the latter being more commonly used in operational 

fire management. The results show that ensemble-based fire weather forecasts can provide 

more reliable predictions, especially under high-risk conditions. By highlighting the strengths 

of ensemble systems, this work supports improvements in fire weather forecasting practices 

and helps inform operational decision-making in wildfire management. 
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1. Introduction

The impact of wildfires in western North America has intensified in recent years, as area

burned, number of large fires, and burn severity increase, posing significant threats to both 

the environment and society (Marlon et al. 2009; Barbero et al. 2015; Schoennagel et al. 

2017; Hanes et al. 2019; Holsinger et al. 2022; Wang et al. 2025). In Canada, 2023 marked a 

record-breaking year, with almost 15 million hectares burned, surpassing the historical annual 

mean by over 7 times (Jain et al. 2024). Wildfires are influenced by numerous factors, 

including land use, vegetation, weather, topography, and human activities (Mermoz et al. 

2005; Thompson and Spies 2009; Gralewicz et al. 2012; Pausas and Keeley 2021). Among 

these, daily weather conditions, such as high temperature, low humidity, strong winds and 

reduced precipitation, are critical factors that significantly influence the occurrence, spread, 

and impact of wildfires (Flannigan and Harrington 1988; Carvalho et al. 2008; Holden et al. 

2018). Climate change has been a significant contributor to the increasing extent of wildfires 

(Flannigan and Van Wagner 1991; McKenzie et al. 2004; Barbero et al. 2015; Schoennagel et 

al. 2017), with higher temperatures being linked to increased wildfire occurrence and larger 

burned areas (Gillett et al. 2004; Flannigan et al. 2005; Balshi et al. 2009; Kirchmeier-Young 

et al. 2024).  

Recognizing the critical role of weather conditions in wildfire behavior and the increasing 

impact of climate-driven extremes, fire weather forecasts are essential for predicting wildfire 

risks and developing effective management strategies. The Canadian Forest Fire Weather 

Index (FWI) System (Van Wagner, 1987) is one of the most widely used systems for 

assessing fire danger based on weather conditions. It evaluates fire potential by incorporating 

six components, comprising three fuel moisture codes: Fine Fuel Moisture Code (FFMC), 

Duff Moisture Code (DMC), and Drought Code (DC), that describe the moisture content of 

different fuel layers; and three fire behavior indices: Initial Spread Index (ISI), Build-Up 

Index (BUI), and Fire Weather Index (FWI), that estimate the potential for fire ignition, 

spread, and intensity. Among these components, the FWI is an effective indicator of overall 

fire activity and is widely used for public fire danger alerts, while the moistures codes and 

fire behavior indices provide critical information in operational fire behavior predictions 

(Stocks et al. 1989). These components are calculated using daily noon weather inputs: 

temperature, relative humidity, wind speed, and 24-hour accumulated precipitation. While 
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originally developed for Canadian forests, the simplicity and effectiveness of the FWI System 

have made it a global standard for assessing fire danger (Di Giuseppe et al. 2020). 

Although the FWI System provides a comprehensive framework for assessing fire danger, 

its effectiveness depends on the accuracy of the meteorological inputs. Advancements in 

numerical weather prediction (NWP) models have significantly enhanced fire weather 

forecasting, allowing longer-term fire weather forecasts (Mölders 2010). However, NWP 

models remain subject to two primary sources of error: initial condition errors and model 

errors. Initial condition errors stem from uncertainties and the limited availability of 

observational data, leading to inaccuracies in the state of the atmosphere. Model errors stem 

from the approximations used in representing complex atmospheric processes such as surface 

and boundary layer process, radiation and moisture processes (Buizza 2006). These 

uncertainties accumulate over time, leading to growing forecast errors, particularly at longer 

lead times, reducing the reliability of weather predictions. 

NWP models are generally categorized into deterministic and ensemble models. 

Deterministic models provide a single forecast based on a specific set of initial conditions, 

offering the best-guess scenario for future weather at short lead times (Parker 2010). 

However, these models do not account for inherent atmospheric uncertainty and their 

accuracy declines rapidly as the forecast lead time increases. Beyond approximately 5 days, 

small errors in initial conditions can amplify due to the chaotic nature of the atmosphere, 

resulting in significant forecast uncertainty and reduced reliability (Buizza et al. 2005; 

Leutbecher and Palmer 2008). To address these limitations, ensemble models generate 

multiple forecasts by perturbing initial conditions and/or varying model parameterizations to 

capture a range of possible atmospheric trajectories (Gneiting and Raftery 2005). This 

probabilistic approach enhances representation of forecast uncertainty, particularly at 

extended lead times (Leutbecher & Palmer, 2008).  

In the context of wildfire management, such probabilistic forecasting is especially 

important for end-users who need to assess the likelihood for extreme weather events and 

range of potential scenarios. Multi-day (e.g., 2-14 days) forecasts have been shown to 

enhance operational preparedness and planning. Ensemble forecasts offer more 

comprehensive framework for situational awareness, enabling more informed decision-

making across short-, medium-, and long-range timescales (Boychuk et al. 2020). 

Furthermore, ensemble predictions at longer lead times extend forecasting capabilities 

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-25-0069.1.
Unauthenticated | Downloaded 09/30/25 08:02 PM UTC



5 

File generated with AMS Word template 2.0 

beyond deterministic limits, improving multi-day preparedness and long-range risk 

assessment. 

Previous studies have demonstrated the potential of ensemble NWP models in fire 

weather forecasting. Di Giuseppe et al. (2020) evaluated the performance of European 

Ensemble Prediction System (ENS) forecasts for FWI using both deterministic and 

probabilistic verification metrics, showing skill up to 10 days ahead. Similarly, Durão et al. 

(2022) found that ENS ensemble forecasts effectively captured extreme fire danger 

conditions in Portugal up to 72 hours prior to ignition events. In Canada, Boychuk et al. 

(2020) used the North American Ensemble Forecast System (NAEFS) to extend FWI 

forecasts up to 15 days in Ontario. Despite progress, comparative analyses of ensemble 

forecasts for fire weather, including evaluations of multiple models within the Canadian FWI 

System, are lacking. While there are several studies assessing ensemble model performance 

(Lin et al. 2016; Zhou et al. 2017; Richardson et al. 2020), comparisons specific to fire 

weather forecasts are crucial as the FWI System involves complex interactions among 

weather inputs and relies on previous moisture codes, which can accumulate forecast errors 

over time. 

In this study, we evaluate and compare the predictive performance of three global 

ensemble NWP models in forecasting FWI components over British Columbia (BC) and 

Alberta (AB). These two Canadian provinces have recently experienced severe wildfire 

seasons driven by extreme weather conditions. For instance, BC’s 2023 wildfire season saw 

over 2.84 million hectares burned, far exceeding the previous record of around 1.35 million 

hectares set in 2018 (Daniels et al. 2025). Similarly, Alberta’s 2023 fire season surpassed 

historical records, with 2.2 million hectares burned, exceeding the previous record of around 

1.4 million hectares set in 1981 (Hanes et al. 2019; Beverly and Schroeder 2025). These 

regions provide a good example for evaluating fire weather forecasting models due to their 

diverse landscapes, vulnerability to extreme fire weather conditions, and growing wildfire 

risk.  

In addition to comparing ensemble model skill, this study also assesses whether ensemble 

forecasts outperform deterministic forecasts, the latter being more commonly used for 

predicting fire risk. By systematically evaluating ensemble forecast skill and uncertainty, this 

research aims to explore the potential advantages of ensemble models in the context of 

operational fire management. 
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2. Data

Multiple datasets were used in this study as inputs to the FWI System calculation,

including NWP forecasts from ensemble and deterministic models, as well as a reanalysis 

dataset for verification. This study focuses on the period from April to September for the 

years 2021 to 2023. This choice of timeframe was driven by two primary considerations. 

First, the fire season in the study region predominantly occurs within these months, making it 

the most relevant period for evaluating fire weather forecasts. Second, the challenge of 

downloading and processing the large meteorological datasets constrains the study period. 

Additionally, the years 2021 and 2023 experienced particularly intense wildfire activity 

across BC and AB, further underscoring the importance of evaluating fire weather forecasts 

during these years. The study region covered the geographical range of 48°N-60°N, 109°W-

139°W (as depicted in Fig. 6). The selected models provide global weather forecasts with 

varying spatial resolutions and lead times, supporting fire weather prediction and operational 

decision-making. Table 1 summarizes the key characteristics of these models and reanalysis, 

while the following subsections provide further details on data sources and processing. 

Table 1. Numerical weather prediction models and reanalysis datasets used in this study. 

Model Repository Resolution Time Step Lead Time Members 

ENS MARS 0.5° × 0.5° 0–90h 1h, 93–144h 3h, 

150–360h 6h 

Up to 15 days 50 

GEFS AWS Open Data Registry 0.5° × 0.5° 0–240h 3h, 246–384h 6h Up to 16 days 30 

GEPS CaSPAr-Globus web service 0.35° × 0.35° 0–384h 1h Up to 16 days 20 

HRES MARS 0.1° × 0.1° 0–90h 1h, 93–144h 3h, 

150–240h 6h 

Up to 10 days Single Forecast 

ERA5 Copernicus Climate Data Store 0.25° × 0.25° Hourly Daily - 

a. Numerical Weather Prediction (NWP) Forecasts

The Ensemble forecasts used in this study were obtained from three major global

ensemble forecasting systems: the Integrated Forecast System Ensemble Prediction System 

(ENS)  by the European Centre for Medium-Range Weather Forecasts (ECMWF 2022), the 

Global Ensemble Forecast System (GEFS) by the National Centers for Environmental 

Prediction (NCEP 2024), and the Canadian Global Ensemble Prediction System (GEPS) by 

the Meteorological Service of Canada (MSC 2024). Each forecasting system provides 
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probabilistic forecasts, representing a range of possible atmospheric trajectories. 

Additionally, deterministic forecasts were sourced from the Integrated Forecast System High 

Resolution Forecast (HRES) (ECMWF 2022). These forecasting systems were selected based 

on their operational reliability, global coverage, and applicability in fire weather forecasting.  

The ENS consists of 50 ensemble members, each with slightly perturbed initial conditions 

and slightly altered model physics. This study used the "Set III - Atmospheric Model 

Ensemble 15-day Forecast (ENS)" dataset (ECWMF 2024). Data was retrieved from the 

ECMWF’s Meteorological Archival and Retrieval System (MARS). GEFS consists of 30 

ensemble members that use different initial conditions and stochastic physics to capture 

forecast uncertainty (Zhou et al. 2022). GEFS data was accessed through the AWS Open 

Data Registry (NOAA 2024). GEPS forecasts are based on an ensemble of 20 perturbed 

weather forecasts that incorporate variations in initial conditions and model physics to 

represent forecast uncertainty. GEPS data was accessed from the Canadian Surface Prediction 

Archive (CaSPAr) (Mai et al. 2020). Note that GEPS data was unavailable for May 26, 2022. 

To ensure a fair comparison, this date was excluded from the corresponding analysis of ENS 

and GEFS forecasts. This exclusion does not affect the overall consistency, as the calculation 

for May 27, 2022, proceeded using ERA5 moisture codes from May 26. HRES is the highest-

resolution operational model from ECMWF, offering a spatial resolution of 0.1°×0.1°. Unlike 

ENS, which provides a range of probabilistic forecasts through multiple ensemble members, 

HRES issues a single deterministic forecast, often referred to as a “best-guess” prediction, 

based on the most likely atmospheric state. In this study, the HRES dataset used is “Set I - 

Atmospheric Model high resolution 10-day forecast (HRES)” (ECMWF 2024).  

b. Verification Data

The ERA5 reanalysis dataset is available hourly and a spatial resolution of approximately

31 km or 0.28125° on a reduced Gaussian grid (output at a regular latitude-longitude grid of 

0.25°) ( Hersbach et al. 2020). It provides a continuous and comprehensive global weather 

record, while the 4-D-Var data assimilation technique ensures that ERA5 are a physically 

consistent blend of observations and model data. While ERA5 reanalysis data may contain 

biases relative to direct observations, it offers a greater spatial and temporal coverage 

compared to in-situ station data and demonstrates good agreement with direct observations 

(Hersbach et al. 2020). Di Giuseppe et al. (2020) and McElhinny et al. (2020) also 
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demonstrated that ERA5 data are a good proxy for in-situ station observations in FWI 

calculations. 

For this study, ERA5 data from 1991 to 2023 were obtained from Copernicus Climate 

Change Service’s Climate Data Store (Copernicus Climate Change Service 2023). The 1991-

2020 period was used to calculate the climatology of both meteorological inputs and FWI 

System components, while data from 2021-2023 served as the validation baseline for 

forecasting systems. ERA5 data served not only as a benchmark for evaluating NWP-based 

FWI forecasts but also as an initial condition for FWI System forecasts, facilitating 

comparison across the different forecasting systems.  

Although ERA5 reanalysis data is used as the primary reference for forecast evaluation, 

we also include a supplementary validation using ground-based station observations to assess 

consistency (Appendix A). 

3. Methods

a. Fire Weather Index (FWI) System

The Canadian Fire Weather Index (FWI) System is an empirical model that quantifies the

effects of weather on forest fuel moisture and corresponding fire behavior (Van Wagner, 

1987; Lawson & Armitage, 2008). The FWI System includes complex interactions between 

the daily weather inputs: temperature, relative humidity, wind speed and 24-hour 

precipitation. As illustrated in Fig. 1, the FWI System consists of six components: three 

moisture codes that assess the dryness of various fuel layers and three fire behavior indices 

that estimate fire spread potential and fuel availability. These components interact to provide 

an integrated assessment of fire weather conditions, which is essential for fire management 

decision-making.  

 The three fuel moisture codes represent different layers of fuel and their drying/wetting 

processes. Moisture codes for the current day are derived by integrating the day’s weather 

inputs with the previous day’s fuel moisture codes, thus tracking the drying and wetting of 

fuels (Flannigan et al. 2016). The Fine Fuel Moisture Code (FFMC) estimates the moisture 

content of surface forest floor, which dries quickly and affects fire ignition probability, with 

higher values indicating drier conditions and increased ignition potential (Wotton 2009). The 

Duff Moisture Code (DMC) represents moisture levels in moderately compact organic 

material beneath the surface, responding to weather over days to weeks. The calculation of 
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DMC uses a complex set of equations including the simulation of drying and wetting 

processes of the duff layer. High DMC values suggest increased fuel availability for 

combustion (Van Wagner, 1987). The Drought Code (DC) reflects deep, compact organic 

layers, reacting to seasonal precipitation trends rather than short-term weather fluctuations. 

Higher DC values indicate prolonged dry conditions, making deep-burning fires more likely 

(De Groot 1998). Each moisture code has differences in their water capacity and drying times 

under equilibrium conditions. Specifically, time lags represent the time it takes for each fuel 

layer to lose two-thirds of its free moisture content with normal weather conditions 

(temperature 21°C, relative humidity 45%). The drying time lags for the three fuel moisture 

codes are 2/3 of a day (FFMC), 12 days (DMC) and 53 days (DC), respectively (Van Wagner 

1987; De Groot 1998; Lawson and Armitage 2008).  

The three fire behavior indices are derived from the moisture codes and provide estimates 

of fire spread and intensity. The Initial Spread Index (ISI) quantifies the expected fire spread 

rate based on FFMC and wind speed, with higher values indicating faster-moving fires. The 

Build-Up Index (BUI) integrates DMC and DC to estimate the total fuel available for 

combustion, where dry conditions in both layers lead to a higher BUI. Finally, the Fire 

Weather Index (FWI) combines ISI and BUI to assess overall fire danger, making it a critical 

indicator for fire management operations. Higher FWI values correspond to increased 

potential fire intensity and greater difficulty in suppression efforts. For a more detailed 

explanation of the system’s mathematical equations and its interpretation, refer to Van 

Wagner (1987) and Wotton (2009). 
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Fig. 1. Canadian Fire Weather Index (FWI) System. Adapted from Van Wagner (1987). 

1) PRE-PROCESSING

Pre-processing of NWP outputs is required for use with the FWI System, which relies on

local noon 2-meter temperature, 2-meter relative humidity, 10-meter wind speed values, 

previous 24-hour accumulated precipitation ending at local noon (Van Wagner, 1987; 

Lawson & Armitage, 2008).  

Since FWI System components are calculated at 12:00 local time, while NWP forecasts 

are initialized in UTC, a conversion to local time was applied to the forecast data using time 

zone information obtained from a global shapefile dataset (Natural Earth, 2024) to get the 

required time offset from UTC for each location in the NWP spatial datasets. Additionally, 

we created a land mask from the ECMWF land-sea mask to indicate whether each grid point 

is over land or water (ECMWF 2024). We excluded grid points over water from further 

processing for computational efficiency. 

In this study, Python packages xarray (Hoyer and Hamman 2017) and numpy (Harris et 

al. 2020), were used in processing the NWP meteorological inputs. All NWP meteorological 

inputs were loaded as four-dimensional data arrays: Nmember × Ntime × Nlon × Nlat, where 

Nmember is the number of ensemble members (e.g., 50 for ENS), Ntime is the number of 

forecast time steps, Nlon and Nlat represent the number of longitude and latitude grid points 

over the study domain (e.g., 60 and 25 at 0.5° resolution for ENS, 300 and 120 at 0.1° 
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resolution for HRES), enabling efficient handling of the ensemble members, time steps, and 

spatial coordinates. 

To align the original format of NWP variables with the FWI System’s needs, we carried 

out the following preprocessing steps. Temperature, relative humidity and wind speed were 

derived or computed as required for the FWI System following standard meteorological 

procedures. For ENS and GEPS, relative humidity was not directly available and therefore 

derived from temperature and dew point temperature following the method of Alduchov and 

Eskridege (1996). Wind speed was calculated from 10-meter  and  wind components. 

Precipitation values were accumulated from previous local noon to today’s local noon for 

each forecasted day. Maximum daily temperatures were also computed from the hourly air 

temperature for each forecasted day, where each day is defined by 0 to 23 hours local 

standard time for the local time zone. As discussed in section 3.a.2.ii, maximum daily 

temperature was used to calculate a proxy for snow on/off conditions for the FWI calculation 

as per Wotton and Flannigan (1993). 

When NWP model outputs did not align with local noon for a given temporal resolution 

and time zone offset, it was necessary to first interpolate the data. For instance, we applied 

linear interpolation to convert the 3-hourly ENS time steps into hourly, ensuring the 

extraction of local noon values. We also applied the interpolation to hourly values for 6-

hourly forecast periods. While such temporal interpolation introduces a potential source of 

forecast error, previous sensitivity analyses of weather elements in the FWI System (Lawson 

and Armitage 2008) have shown that moderate variations in temperature, humidity, wind 

speed, and precipitation typically result in only minor differences in FWI indices, which are 

not operationally significant. This indicates that the impact of our interpolation approach is 

likely negligible. 

In addition to preprocessing NWP model outputs, ERA5 reanalysis data underwent 

similar preprocessing to ensure consistency in the subsequent FWI System calculations. 

However, no temporal interpolation was required as ERA5 provides data at an hourly 

resolution. After preprocessing, we merged the processed variables into a consolidated 

dataset, aligned temporally to correspond with the forecast days in local time.  

2) FWI FORECAST
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FWI System components were calculated for each ensemble member of the NWP forecast 

models following a structured workflow: initialization of moisture codes, application of 

overwintering adjustments, and daily calculation of FWI System components. 

(i) Initialization of FWI System Moisture Codes

At the start of each forecast cycle, appropriate moisture code values were required to

initialize the FWI System. Since moisture states from previous day’s forecasts can introduce 

inconsistencies (e.g., one single poor forecast can propagate over time that leads to large 

errors), this study used ERA5-derived moisture codes and overwintering status to initialize 

the first forecast day (lead time = 1). These values were extracted from a continuous ERA5-

based FWI computation (Section 3.a.4), ensuring a consistent baseline across forecasting 

systems. 

For lead time ≥ 2 days, each NWP model used the moisture codes from its previous lead 

time instead of ERA5 values (e.g., lead time = 3 used those from lead time = 2), ensuring 

internal forecast consistency while maintaining the ERA5-derived initialization for lead time 

= 1. 

(ii) Overwintering Adjustments

To improve spring FWI initialization, we incorporated an overwintering adjustment based

on McElhinny et al. (2020), a step often been overlooked in prior ensemble fire weather 

forecasting studies (Boychuk et al. 2020; Di Giuseppe et al. 2020; Durão et al. 2022). This 

adjustment used each model’s daily maximum temperature to determine overwintering status, 

i.e., whether a given location is assumed to be snow-covered and therefore inactive with

respect to fuel moisture updates in the FWI System (Lawson and Armitage 2008). The FWI 

System was activated after three consecutive snow-free days or daily maximum temperatures 

above 12°C and deactivated after three days of snow cover or maximum temperatures below 

5°C (Van Wagner 1987; Wotton and Flannigan 1993). When a location transitioned out of 

overwintering, FFMC and DMC were reset to 85 and 6, respectively, representing moist 

spring conditions (Van Wagner 1987). DC was initialized using a precipitation-based 

adjustment that account for moisture carry-over from the previous fire season and 

accumulated winter precipitation (Lawson and Armitage 2008):  

(1)
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here, is the starting spring moisture equivalent of DC value,  is the final moisture 

equivalent of DC at the end of the previous fire season,  represents total accumulated 

winter precipitation, and two user-defined coefficients: a full carry-over fraction  (1.0) and a 

wetting efficiency  (0.75) (Van Wagner 1987; McElhinny et al. 2020). For locations still in 

overwintering, precipitation was accumulated for future DC recalibration, and all moisture 

codes remained unchanged. 

(iii) Daily Computation of FWI System Components

Following initialization and overwintering adjustments, daily FWI System components

were computed using the standard equations from Van Wagner (1987), based on each 

model’s daily temperature, relative humidity, wind speed, and precipitation. These 

calculations were performed for each ensemble member using parallelized processing 

through Python’s xarray and Dask (Rocklin 2015) libraries for efficient computation. 

3) ERA5-DERIVED FWI SYSTEM COMPONENTS

The ERA5-derived FWI System components were calculated using the same equations as

those applied to the NWP models, with the primary difference being the initialization 

process. Unlike the NWP models, which only used forecasts from April to September of year 

2021 to 2023, the entire year was used to calculate FWI from the ERA5 dataset. To ensure 

temporal continuity, daily moisture codes and overwintering masks were initialized using 

values from the previous day. The overwintering adjustment followed the same procedure 

outlined in Sections 3.a.2. At the beginning of 2021, moisture codes and overwintering mask 

were initialized using the final values from the end of 2020. 

b. Verification

1) SCORE METRICS

To assess the performance of NWP models in predicting FWI System components, we

employ multiple verification metrics that capture both deterministic and probabilistic forecast 

skill. The evaluation focuses on three key aspects: deterministic accuracy, probabilistic 

reliability, and event-based predictive capability. 

Mean Absolute Error (MAE) is used to quantify the deterministic accuracy of the 

forecasted FWI System components and their corresponding weather inputs. It is computed 

as: 
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(2) 

where   represents the forecasted value at a given time   and spatial location , 

represents the observed value from ERA5 at the same location and time.   is the number of 

forecast initialization times (or forecast days), and  is the number of spatial grid points 

included in the evaluation. In this study, we compute MAE in two ways: (1) by averaging the 

MAE of individual ensemble members, where the MAE is calculated for each ensemble 

member against ERA5 across the all the grid points and forecast initialization days, and (2) 

by calculating the MAE of ensemble-mean/median-derived FWI System components before 

comparing against ERA5. The latter approach evaluates the overall predictive skill of the 

ensemble mean or median, while the former provides insight into the spread and variability 

within the ensemble.  

To provide a baseline for forecast performance evaluation, we also calculated a 

climatological mean absolute error (MAE). For each calendar day and location, the long-term 

daily climatological mean for each FWI component and its meteorological inputs was derived 

from ERA5 data over the 1991-2020 period. For each forecast validation date during 2021-

2023, this daily climatology was compared with the corresponding ERA5 verification value, 

and the absolute differences were averaged over all grid points and dates. This climatological 

MAE represents the typical error when using a static, climatology-based estimate instead of a 

dynamic forecast. 

For the probabilistic forecast assessment, the continuous ranked probability score (CRPS) 

was employed as defined by Hersbach (2000). It is computed as: 

(3) 

where  is the cumulative distribution function of the ensemble forecast at time 

and location , and  is the corresponding observed value from ERA5. The Heaviside 

function equals 1 if , and 0 otherwise.   and  denote the total 

number of forecast initialization times and spatial grid points, respectively. The overall CRPS 

was computed by averaging over all times and locations, consistent with the MAE approach. 

CRPS evaluates the probabilistic skill of ensemble forecasts by comparing the cumulative 
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probability distributions of forecasted values against observations. It accounts for both 

forecast accuracy and uncertainty by comparing the entire distribution of forecasted values 

(i.e., the ensemble spread) against the observed value. Unlike metrics that only evaluate 

central tendencies (e.g., the mean), CRPS penalizes forecasts that are either biased or overly 

dispersed, thus providing a single score that reflects both the closeness of forecasts to 

observations and the variance of the forecast distribution (Gneiting and Raftery 2007). Lower 

CRPS values indicate better probabilistic forecast performance, as it captures both forecast 

accuracy and reliability, where reliability refers to how well the ensemble forecast 

distribution represents the actual variability in observations (Hersbach 2000). In the special 

case of a single ensemble member, CRPS and MAE are mathematically equivalent. In this 

study, CRPS values from the ENS, GEFS and GEPS were compared to evaluate their 

forecasting capabilities across various lead times and FWI System components. 

To assess the models' ability to predict extreme fire weather conditions, we applied 

Precision-Recall (PR) analysis to both ensemble and deterministic forecasts of FWI. The PR 

curve evaluates forecast performance by examining the trade-off between precision (the 

proportion of correctly predicted extreme events among all predicted extremes) and recall 

(the proportion of correctly predicted extreme events among all actual extremes). In our 

study, extreme fire weather is defined as FWI 19, this threshold being associated with high 

fire spread potential (Podur and Wotton 2011). The Area Under the Precision-Recall curve 

(PR-AUC) was used as the evaluation metric, where higher values (i.e., closer to 1) indicate 

better model skill in identifying extreme fire weather conditions while minimizing false 

alarms. We selected PR-AUC instead of more commonly used ROC-AUC (Hanley and 

McNeil 1982) because PR-AUC is more informative and sensitive in situations with 

imbalanced datasets. As highlighted by Saito and Rehmsmeier (2015), ROC curves can 

provide an overly optimistic assessment of model performance under class imbalance, 

whereas PR curves more directly reflect the performance on the minority class, making them 

more appropriate for evaluating rare events like high-risk fire weather days (in our study, 

only approximately 10% of all events had FWI 19). 

2) VERIFICATION PREPARATION

To compute the verification metrics, we employed the Python package xskillscore (2024).

To directly compare NWP FWI System forecasts with ERA5 FWI System components using 

xskillscore, we ensured consistency in both time and spatial scales. For intercomparison among 
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the three ensemble systems (ENS, GEFS, GEPS), the verification dataset ERA5 was bilinearly 

regridded to a common spatial resolution of 0.5° × 0.5° to ensure consistency. GEPS forecasts, 

originally provided on a rotated 0.35° grid, were first transformed to a geographic coordinate 

system and then regridded to 0.5° × 0.5°. For comparisons involving ensemble forecasts (ENS) 

versus the higher-resolution deterministic model (HRES), both ENS (i.e. 0.5°×0.5°,) and HRES 

(i.e. 0.1°×0.1°) were regridded to 0.25° × 0.25°, the same resolution as the ERA5 data used for 

validation, to maintain resolution consistency. All regridding was performed using xESMF 

with bilinear interpolation (Zhuang et al. 2022). 

4. Results

This section presents an evaluation of ensemble and deterministic models in predicting

FWI System components over BC and AB during the wildfire seasons from April to 

September in 2021-2023. Section 4a. compares the performance of the three ensemble 

systems: ENS, GEFS, and GEPS, highlighting differences in forecast quality across various 

FWI System components. Section 4b. focuses on a comparative analysis between the 

ensemble system ENS and the deterministic model HRES, assessing their relative strengths in 

FWI forecasting. 

a. Inter-model Comparison across Different Ensemble Models

1) MEAN ABSOLUTE ERROR (MAE)

Fig. 2 and Fig. 3 illustrate the MAE of FWI System components and their corresponding

weather inputs across forecast lead times for ENS, GEFS, and GEPS, with climatology-

derived benchmarks included for comparison.   

Across all FWI System components, ENS generally exhibits the lowest MAE, indicating 

superior predictive performance compared to GEFS and GEPS. This trend is broadly 

consistent across all lead times. A minor exception is observed for ensemble-mean-derived 

FFMC, where GEFS slightly outperforms ENS at lead times around days 10-11. The overall 

pattern is also reflected in the corresponding weather input performance (Fig. 3), where ENS 

generally outperforms both GEFS and GEPS in temperature, wind speed, relative humidity, 

and 24-hour accumulated precipitation. However, GEFS provides more accurate ensemble-

mean temperature forecasts after day 10 and relative humidity forecasts around days 10-11, 

which explains its relative advantage in FFMC during that window. The relative performance 

of GEFS and GEPS varies across different FWI components. GEFS performs slightly better 

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-25-0069.1.
Unauthenticated | Downloaded 09/30/25 08:02 PM UTC



17 

File generated with AMS Word template 2.0 

than GEPS for FFMC, DMC, and BUI but shows inferior performance for ISI and FWI. 

Analyzing the weather inputs, GEPS outperforms GEFS in temperature and relative humidity 

across all lead times. While GEFS initially provides better wind speed forecasts, but GEPS 

surpasses it after lead time day 6. Since the FWI System is not a simple linear combination of 

weather inputs, the complex interactions among variables influence the relative performance 

of the models. Additionally, because ERA5 reanalysis fuel moisture conditions for FWI 

calculations were used to initialize the first forecast day for all three ensemble models, the 

differences in DC (which has a strong dependence on antecedent conditions) performance are 

minimal across all three models.  

The ensemble-mean-derived FWI System components outperform individual ensemble 

members across all models and lead times. This aligns with the expectation that averaging 

across ensemble members smooth out individual forecast variability and reduces the impact 

of outlier predictions, leading to more accurate forecasts overall. As shown by the solid lines 

in Fig. 2 and Fig. 3, the MAE of ensemble-mean forecasts is consistently lower than that of 

individual members throughout the forecast lead times, demonstrating the advantage of using 

ensemble mean predictions for operational forecasting.  

For most FWI System components, ensemble forecasts maintain predictive skill beyond 

15 days, as their MAE remains lower than climatology. DC exhibits the most substantial 

advantage, with significantly lower MAE than climatology. This can be attributed to DC’s 

long-term memory effect, as it is primarily driven by accumulated precipitation deficits over 

weeks to months. Unlike short-term components (e.g., FFMC, ISI), DC has a longer time-lag 

(53 days), meaning errors in daily weather inputs do not immediately result in large forecast 

deviations. Another possible contributing factor is that climatology is based on 1991-2020 

conditions, whereas the model forecasts cover 2021-2023. Since 2021 and 2023 were 

characterized by drier and warmer conditions, the long-term climatology likely overestimates 

moisture availability. Consequently, model forecasts align better with the dry conditions at 

that time, leading to significantly lower MAE than climatology.  

A notable exception is ISI, which does not converge toward climatology over longer lead 

times. This discrepancy also extends to FWI, since FWI is partially dependent on ISI. The 

likely explanation is that ISI is derived from both FFMC and wind speed, making it highly 

sensitive to short-term variations in weather inputs. Errors in either variable can propagate 
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and amplify through ISI calculations over time, preventing MAE from stabilizing at 

climatological values beyond 7-10 days. 

Fig. 2. Mean Absolute Error (MAE) of FWI System components for ENS, GEFS, and GEPS verified 

against those from ERA5, across forecast lead times (in day). MAE is averaged over all grid points and 

forecast initialization times during the wildfire seasons (April-September 2021-2023). Dots indicate the 

average MAE across individual ensemble members, error bars represent the 5th-95th percentile confidence 

intervals, solid lines denote MAE for ensemble-mean-derived FWI components, and dashed lines show the 

climatological MAE, calculated by comparing ERA5 daily climatological mean values (1991-2020) with 

the ERA5 verification data during 2021-2023.  
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Fig. 3. Mean Absolute Error (MAE) of weather inputs for ENS, GEFS, and GEPS, verified against 

ERA5, across forecast lead times (in day). MAE is averaged over all grid points and forecast initialization 

times during the wildfire seasons (April-September 2021-2023). Dots indicate the average MAE across 

individual ensemble members, error bars represent the 5th-95th percentile confidence intervals, solid lines 

denote MAE for ensemble-mean-derived FWI components, and dashed lines show the climatological 

MAE, calculated by comparing ERA5 daily climatological mean values (1991-2020) with the ERA5 

verification data during 2021-2023. 

2) CONTINUOUS RANKED PROBABILITY SCORE (CRPS)

Fig. 4 and Fig. 5 illustrate CRPS values of FWI System components and the

corresponding weather inputs for the three ensemble systems (ENS, GEFS, and GEPS), along 

with additional comparisons using reduced ensemble sizes and a “Super Ensemble” that 

combines all ensemble members from ENS, GEFS, and GEPS, for a total of 100 members. 

The inclusion of these comparisons allows us to evaluate both the overall probabilistic 

predictive skill of each ensemble and the impact of ensemble size on forecast reliability. 
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As lead time increases, CRPS values rise, indicating both greater spread among ensemble 

members and increased deviations between forecast distributions and the observed values. 

Across all FWI System components, ENS consistently achieves the lowest CRPS values, 

demonstrating higher probabilistic skill than GEFS and GEPS. The relative performance 

between GEFS and GEPS varies by component and lead time: at shorter lead times (within 6 

days), GEFS performs worse than GEPS for FFMC, ISI, and FWI, while their performance is 

comparable for DMC, DC, and BUI. However, at longer lead times, GEFS surpasses GEPS 

across all FWI System components.  

ENS also maintains a clear advantages in all underlying weather input variables (Fig. 5). 

GEFS’s poorer performance in temperature and relative humidity at short lead times likely 

contributes to its higher FFMC errors, which in turn affect ISI forecasts. Although GEFS 

outperforms GEPS in wind speed, this benefit does not translate into improved ISI 

performance due to the ISI’s nonlinear and multiplicative sensitivity to both wind speed and 

FFMC. These results underscore the compounded influence of multiple weather inputs and 

error propagation within the FWI System.  

To assess the impact of ensemble size, we compare subsets of ENS and GEFS using the 

first 20 ensemble members (i.e., members 0-19 by index), matching the size of GEPS. As 

expected, reducing ensemble size leads to an increase in CRPS, confirming that larger 

ensembles provide improved forecast reliability. However, the relative ranking of the models 

remains unchanged, suggesting that ensemble size affects absolute performance but does not 

alter their comparative ranking. The Super Ensemble (100 members) further demonstrates the 

benefits of larger ensembles, particularly at longer lead times (beyond 7 days). While its 

CRPS is comparable to ENS, GEFS, and GEPS in the short term, the advantages of the Super 

Ensemble become more pronounced at extended lead times (10-15 days), where forecast 

uncertainty grows. While the Super Ensemble generally improves forecast reliability, its 

performance for DC within the first 7 days is slightly worse than ENS. This is likely due to 

DC's long memory effect, where short-term variability in additional ensemble members 

introduces noise rather than enhancing predictive skill. In addition, while increasing 

ensemble size enhances forecast reliability, its practical implementation depends on 

computational resources and operational constraints. Further evaluation is required to 

determine the optimal trade-off between forecast accuracy and computational efficiency, 

particularly for operational fire weather prediction. 
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Fig. 4. Continuous Ranked Probability Score (CRPS) of FWI System components for ENS, GEFS, and 

GEPS across forecast lead times (in day), verified against ERA5. CRPS is averaged over all grid points 

and forecast initialization times during the wildfire seasons (April-September 2021-2023). Dashed lines 

indicate reduced ensemble subsets of ENS and GEFS (each with 20 members, matching GEPS), while the 

Super Ensemble (100 members) combines all ensemble members from ENS, GEFS, and GEPS. 
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Fig. 5. Continuous Ranked Probability Score (CRPS) of weather inputs for ENS, GEFS, and GEPS 

across forecast lead times (in day), verified against ERA5. CRPS is averaged over all grid points and 

forecast initialization times during the wildfire seasons (April-September 2021-2023). Dashed lines 

indicate reduced ensemble subsets of ENS and GEFS (each with 20 members, matching GEPS), while the 

Super Ensemble (100 members) combines all ensemble members from ENS, GEFS, and GEPS. 

To complement the numerical evaluation of probabilistic forecast skill, we also analyzed 

the spatial distribution of CRPS for the FWI across BC and AB at selected lead times (days 1, 

3, 7, 10 and 15). The inclusion of spatial CRPS maps provides additional context for 

understanding the performance of ensemble models beyond aggregated statistical metrics. 

Fig. 6 presents the spatial maps of CRPS for FWI forecasts from ENS, GEFS, and GEPS, 

illustrating regional variations in forecast skills over time. FWI was selected because it is the 

most widely used fire danger indicator in the FWI System, providing an overall measure of 

fire potential based on weather conditions.  
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The spatial distribution of CRPS highlights several key patterns. At short lead times (day 

1 and day 3), CRPS values are generally lower across most regions, reflecting higher forecast 

skill. As the forecast lead time increases (day 7 to day 15), CRPS values increase across all 

regions, reflecting the expected decline in probabilistic forecast performance over time. The 

trend is particularly pronounced in areas of central to southern BC and southeastern AB, 

where forecast performance is lower. This trend can be attributed to the area’s dry conditions, 

strong wind variability, and sparse observational data for model initialization. The sensitivity 

of FWI to these factors leads to larger ensemble spread and reduced alignment with 

observations, particularly at extended lead times.  

Fig. 6. Spatial distribution of Continuous Ranked Probability Score (CRPS) for FWI across BC and 

AB, evaluated for ENS, GEFS, and GEPS at selected lead times (Days 1, 3, 7, 10, and 15). CRPS values 

are averaged over the wildfire seasons (April-September 2021-2023), with darker shades indicating lower 

predictive skill.  

b. Comparison of Ensemble and Deterministic Models

1) MEAN ABSOLUTE ERROR (MAE)

After we analyze the performance of the ensemble models verified against ERA5

reanalysis, we conclude that ENS demonstrates the best overall predictive performance across 

all FWI System components. Here we also assess whether a higher resolution deterministic 

model provides better accuracy than ensemble forecasts, at least at short lead times. To 

evaluate the differences between ensemble and deterministic models, we compare ECMWF 

ensemble forecasts (ENS) and deterministic forecasts (HRES). The first metric we consider is 

MAE. The analysis focused on all six FWI System components across 1-15-day lead times 

(Fig. 7). MAE was calculated for: (1) each ensemble member individually; (2) deterministic 
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forecasts (HRES); (3) ensemble-mean derived FWI System components (calculated after 

averaging each FWI System component across ensemble members); and (4) ensemble-

median derived FWI System components (calculated after determining the median of each 

FWI System component across ensemble members).  

In general, deterministic forecasts outperform individual ensemble members across all 

FWI System components. However, ensemble-mean and ensemble-median-derived forecasts 

perform better than HRES for most components. For short-term sensitive components (e.g., 

FFMC, ISI), ensemble-mean/median-derived values consistently outperform HRES across all 

lead times. For DMC, HRES initially performs better, but the ensemble mean/median surpass 

HRES beyond day 5. A similar trend is observed for DC, where HRES performs better for 

lead times less than 9-10 days. FWI, as an overall fire danger indicator, is better predicted by 

the ensemble mean/median across all lead times, despite ISI and BUI showing different 

relative performance patterns.  

To better understand these results, we include the corresponding weather input variables 

(Fig. 8), which follows the same legend conventions as Fig. 7. Although HRES shows no 

clear advantage over the ensemble mean/median for any of the weather input variables, it still 

performs better for certain FWI components, specifically, DMC within the first 5 days and 

DC within the first 9-10 days. This may be related to how we initialize the models using 

ERA5. Since all models start from ERA5-derived values, the deterministic model may exhibit 

lower initial variability because it does not have ensemble spread. As a result, it may initially 

align more closely with the ERA5 verification data at short lead times, especially for 

components like DMC and DC that are less sensitive to daily fluctuations. However, at longer 

lead times, errors in HRES accumulate, leading to increased forecast deviations.  

These findings suggest that while deterministic forecasts provide high-resolution 

predictions and outperform individual ensemble members, their usefulness in operational fire 

weather forecasting may be limited by their susceptibility to error propagation from single 

initial states and inherent variability in weather inputs. In contrast, ensemble-mean and -

median-derived forecasts reduce such issues by averaging across multiple ensemble 

members, effectively smoothing out individual deviations and reducing the impact of input 

variability. As a result, ensemble-derived predictions offer more reliable and accurate 

guidance, especially at longer lead times, and may be more suitable for operational fire 
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weather forecasting even when single deterministic values are required. 

Fig. 7. Comparison of Mean Absolute Error (MAE) between ensemble and deterministic forecasts for 

FWI System components across lead times (in day). MAE is averaged over all grid points and forecast 

initialization times during the wildfire seasons (April-September 2021-2023). The boxplots represent the 

MAE values The boxplots represent the MAE values (max., 75th-, 50th-, 25th-percentile, min.) across all 

individual ensemble members for each forecast lead time. The dots indicate the deterministic (HRES) 

MAE. The solid lines correspond to the MAE of ensemble-mean-derived (blue) and ensemble-median-

derived (green) FWI System components.  
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Fig. 8. Comparison of Mean Absolute Error (MAE) between ensemble and deterministic forecasts for 

weather inputs across lead times (in day). MAE is averaged over all grid points and forecast initialization 

times during the wildfire seasons (April-September 2021-2023). The boxplots (as described in Fig. 7) 

represent the MAE values across all individual ensemble members for each forecast lead time. The dots 

indicate the deterministic (HRES) MAE. The solid lines correspond to the MAE of ensemble-mean-

derived (blue) and ensemble-median-derived (green) weather inputs.  

2) PROBABILISTIC SKILL FOR HIGH-RISK FWI DAYS

From the previous analysis, we found that ensemble-mean-derived and ensemble-median-

derived forecasts outperform single deterministic forecasts for the overall fire risk component 

FWI in terms of accuracy, with lower errors in the MAE metric evaluation, especially at 

longer lead time. In this section, we explore another key advantage of ensemble models: the 

ability to provide probabilistic forecasts, offering insights into forecast uncertainty that 

deterministic models lack.  
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This comparison highlights the differences between ensemble probabilistic forecasts 

(ENS) and deterministic forecasts (HRES) for predicting extreme fire weather conditions 

(FWI ≥ 19) at different forecast lead times, using ERA5 reanalysis-derived FWI as the 

observational reference. Fig. 9 illustrates the spatial distribution of the ensemble forecast 

probability (left), deterministic forecast (middle), and ERA5 reanalysis (right) for the 

specified lead times (5 and 10 days). To illustrate the difference, we select September 22, 

2023, a particularly active fire day during which over 400,000 hectares burned in a single day 

(Jain et al. 2024). Ensemble forecasts provide probabilities of extreme FWI, while the 

deterministic forecast and the ERA5 reanalysis represent specific FWI values.  

At a lead time of day 5 (the upper subplots), both ensemble probabilistic forecast and 

deterministic forecast capture much of the spatial extent of high-risk regions. However, at a 

lead time of day 10 (the lower subplots), the differences between ensemble and deterministic 

forecasts become more pronounced. Ensemble probabilistic forecasts still capture high-risk 

areas with non-zero probabilities, but with reduced certainty. This decrease is expected due to 

the increasing uncertainty at longer lead times. In contrast, the deterministic forecasts fail to 

predict several regions of high risk entirely, especially around the BC and AB border in the 

vicinity of the Donnie Creek wildfire that burned through much of the 2023 fire season 

(Daniels et al. 2025). This underrepresentation shows the deterministic forecasts’ limitations 

in capturing the spatial variability and uncertainty of extreme fire weather conditions at 

longer lead times.  

To further quantify and evaluate the overall performance of ensemble and deterministic 

forecasts in predicting extreme fire weather conditions, we assess their ability to distinguish 

between high-risk and non-high-risk fire weather using the PR-AUC metric. We also include 

the other two ensemble models (GEFS and GEPS) into the comparison. Fig. 10 presents the 

PR-AUC values for ENS, GEFS, GEPS, and HRES across 10-15-day forecast lead times. At 

shorter lead times, deterministic forecasts (HRES) perform competitively with probabilistic 

forecasts, achieving high PR-AUC values (over 0.79 during the first 3 days). After lead time 

day 4, the gap between deterministic forecasts (HRES) and ensemble forecasts gradually 

becomes larger. The ensemble models maintain a consistent advantage, exhibiting higher PR-

AUC values across all lead times, demonstrating their superior ability to identify extreme fire 

weather days (FWI ≥ 19) while minimizing false alarms. The PR-AUC analysis aligns with 

the spatial probability maps in Fig. 9, which demonstrates the advantages of ensemble 
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forecasts in capturing high-FWI areas with probabilistic certainty. While deterministic 

forecasts provide precise but single-outcome estimates, they fail to convey forecast 

uncertainty, leading to missed high-risk regions, particularly at longer lead times. Ensemble-

based forecasts, however, provide decision-makers with probability distributions of extreme 

fire weather, supporting more effective wildfire preparedness and resource allocation 

strategies. 

Fig. 9. Spatial comparison of ensemble and deterministic forecasts of FWI for September 22, 2023. 

The left panel shows the probability of ensemble forecasts predicting FWI 19. Probabilities are 

calculated as the number of ensemble members forecasting the event divided by the total number of 

members (e.g., if 1 out of 50 members predicts FWI ≥ 19, the probability is 1/50 = 0.02). The middle panel 

presents the deterministic forecast, and the right panel displays ERA5 reanalysis. The top row corresponds 

to a 5-day lead time, while the bottom row corresponds to a 10-day lead time. 
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Fig. 10. Precision Recall (PR)-Area Under Curve (AUC) values for ENS, GEFS, GEPS, and HRES 

across forecast lead times (in day). PR-AUC evaluates the probabilistic skill in predicting high-risk fire 

weather conditions (FWI 19) compared to ERA5-derived observations.  

5. Discussion and Conclusion

In this study, we evaluated the predictive performance of three ensemble forecasting

systems (ENS, GEFS, and GEPS) and a deterministic model (HRES) for forecasting fire 

weather components over British Columbia and Alberta, Canada. Using ERA5 reanalysis 

data as the verification dataset, we assessed forecast quality through both deterministic and 

probabilistic metrics, including Mean Absolute Error (MAE), Continuous Ranked Probability 

Score (CRPS) and Precision Recall-Area Under Curve (PR-AUC).  

For most FWI System components, ensemble forecasts retain predictive skill up to 15 

days, particularly for long time-lag components like DC. In contrast, ISI remains sensitive to 

short-term variability in FFMC and wind speed, which in turn affects FWI and limits both 

indices from converging to climatology beyond lead time day 7. 
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Among the ensemble forecasting systems of ENS (50-member), GEFS (30-member) and 

GEPS (20-member), ENS consistently demonstrated superior performance across all FWI 

System components and weather inputs, as indicated by lower MAE and CRPS values. The 

ensemble size has influence on the forecast performance, with larger ensemble size generally 

showing better performance. However, even when we reduce the ensemble size to the same 

as GEPS’s 20 members, the relative ranking among models remains unchanged. The Super 

Ensemble (100 members), which combines all ensemble members from ENS, GEFS, and 

GEPS, provided further incremental improvements, particularly at lead times beyond 7 days. 

This improvement may stem not only from increased ensemble size but also from enhanced 

member diversity across different modeling systems, consistent with the advantages of multi-

core ensembles as discussed in Roberts et al. (2020). 

While deterministic forecasts (HRES) provided higher resolution and better than 

individual ensemble member, they were outperformed by ensemble-mean and ensemble-

median-derived forecasts for short-term sensitive FWI System components (e.g., FFMC, ISI 

and FWI) even at short lead times. A caveat is that HRES was regridded to match ERA5’s 

resolution, which may introduce biases. The advantage of HRES for DMC ( 5 days) and 

DC ( 9-10 days) may be related to the ERA5 initialization.  

Ensemble forecasting enhances muti-day predictability windows (i.e., short-, medium-, 

and long-term) by providing probabilistic forecasts rather than a single deterministic estimate. 

This allows fire managers to quantify uncertainty, improving decision-making at different 

timescales. Particularly over medium to long ranges, they provide confidence intervals 

around potential fire risk trends, reducing the bias from a single forecast outcome.  

However, even though ensemble forecasts provide probabilistic information, operational 

decisions often require a single representative value, such as a fire danger index. In this 

context, ensemble-mean or -median-derived FWI forecasts offer a practical and more skillful 

alternative to high-resolution deterministic forecasts. Our results show that ensemble 

mean/median forecasts (ENS) outperform the deterministic forecasts (HRES) across most 

FWI System components, even at short lead times. This highlights the dual advantage of 

ensemble forecasts: they not only improve uncertainty quantification but also provide more 

accurate single-value guidance when required for operational decision-making. 

One consideration for the evaluation of this study is the inherent connection between ENS 

and ERA5, as both originate from ECMWF modeling systems. Therefore, verification against 
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ERA5 could introduce biases, potentially making their results appear more closely aligned. 

As mentioned earlier, we also conducted a complementary validation using ground-based 

station observations (see Appendix A) to support the robustness of the evaluation. Although 

comparing point-based fire weather estimates with areal predictions remains challenging due 

to the uneven distribution of observation stations, the results show similar performance to the 

evaluation using ERA5 reanalysis. 

Further research can enhance ensemble models by applying advanced post-processing 

methods, including bias correction and machine learning approaches, thereby improving 

predictive skill. Additionally, improving model resolution while maintaining ensemble 

forecasting capabilities could improve predictions in complex terrain and localized fire-prone 

regions. Notably, since June 2023, ECMWF has updated the resolution of ENS to 0.1,  

which may further improve the performance of the ensemble models. This advancement also 

narrows the spatial resolution gap between ensemble and deterministic forecasts, reducing 

one of the primary advantages traditionally associated with deterministic models, though at 

the expense of significantly higher computational cost. 
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APPENDIX A 

Validation of Station Observational Data 

This supplementary analysis evaluates model performance using meteorological 

observations from 139 stations across BC and AB that maintained continuous records during 

April-September of 2021-2023. Only stations with complete data throughout the study period 

were included. The spatial distribution of these stations is shown in Fig. A1. 

To ensure consistency with the primary analysis, we calculated mean absolute error 

(MAE) for the FWI System components and corresponding weather variables using station 

observations as the reference. Model forecasts were bilinearly interpolated to match station 

locations. All FWI System calculations were initialized using ERA5-derived moisture codes 

from the previous day, consistent with the initialization methodology applied in the gridded 

verification. 

Figures A2-A3 present the inter-model comparisons across ensemble forecasts, while 

Figures A4-A5 compare ensemble and deterministic forecasts. Overall, the station-based 

evaluation broadly supports the findings from the gridded analysis, with similar model 

ranking and forecast performance patterns. 
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Fig. A1. Locations of the 139 ground-based weather stations used for station-based verification across 

BC and AB. Only stations with continuous daily observations during the study period (April-September 

2021-2023) were included. 

Fig. A2. Mean Absolute Error (MAE) of FWI System components for ENS, GEFS, and GEPS, 

verified against ground-based station observations across BC and AB during April-September 2021-2023. 

ERA5 reanalysis is included as a reference. Dots indicate the average MAE across ensemble members, 

error bars represent the 5th-95th percentile confidence intervals and dashed lines show the ERA5 MAE. 
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Fig. A3. Mean Absolute Error (MAE) of corresponding weather input variables for ENS, GEFS, and 

GEPS, verified against ground-based station observations across BC and AB during April-September 

2021-2023. ERA5 reanalysis is included as a reference. Dots indicate the average MAE across ensemble 

members, error bars represent the 5th-95th percentile confidence intervals and dashed lines show the 

ERA5 MAE. 
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Fig. A4. Comparison of Mean Absolute Error (MAE) between ensemble (ENS) and deterministic 

(HRES) forecasts for FWI System components, verified against ground-based station observations across 

BC and AB during April-September, 2021-2023. The boxplots represent the distribution of MAE values 

across individual ensemble members, dots denote deterministic forecasts (HRES), and solid lines indicate 

ensemble-mean and ensemble-median-derived FWI components. 
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Fig. A5. Comparison of Mean Absolute Error (MAE) between ensemble (ENS) and deterministic 

(HRES) forecasts for corresponding weather input variables, verified against ground-based station 

observations across BC and AB during the wildfire seasons (April-September, 2021-2023). The boxplots 

represent the distribution of MAE values across individual ensemble members, red dots denote 

deterministic forecasts (HRES), and solid lines indicate ensemble-mean and ensemble-median-derived 

weather inputs. 
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