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C L I M AT O L O G Y

Anthropogenic warming drives earlier wildfire season 
onset in California
Gavin D. Madakumbura1,2*, Max A. Moritz3,4, Karen A. McKinnon1,5,6, A. Park Williams1,2,  
Stefan Rahimi1,7, Benjamin Bass1, Jesse Norris1, Rong Fu1, Alex Hall1,6

Annual wildfire area in California has rapidly grown in recent decades, with increasingly negative impacts on people. 
The fire season is also lengthening, with an earlier onset. This trend has been hypothesized to be driven by anthropo-
genic warming, but it has yet to be quantitatively attributed to climate drivers. Using a comprehensive fire occurrence 
dataset, we analyze fire season onset and climate controls on its variability and change during 1992–2020 in 13 Cali-
fornia ecoregions. Northern California ecoregions show stronger trends toward earlier onset compared to more arid 
southern California ecoregions. Onset has trended earlier for all but one ecoregion. Interannual variability of onset is 
dominated by climate variability and its influence on fuel moisture. Trend attribution inferred from onset-climate re-
lationships suggests that anthropogenic warming advanced fire season onset by 6 to 46 days during 1992–2020 in 11 
of 13 ecoregions. Continued warming is expected to further promote earlier fire season onsets.

INTRODUCTION
Increasingly large and severe wildfires in the western United States 
(US) have become more costly in terms of lives lost and damage to 
property and infrastructure in recent decades (1–3). In California, 
wildfire damages in 2018 alone were an estimated $148.5 billion (4). 
Anthropogenic warming has already promoted more fire-conducive 
conditions across many western US forested areas by increasing sur-
face temperature and evaporative demand (5, 6), and these trends 
are likely to continue when and where fuels are not limiting (7, 8). In 
recent decades, a significant positive trend in annual burned area 
has been observed in forested regions in California, with strong 
links to the anthropogenic warming in the region (9, 10). A robust 
understanding of the factors controlling fire season characteristics is 
vital for comprehending how anthropogenic warming influences 
fire conditions (11, 12).

Fire season onset timing is a fire season characteristic with prac-
tical applications in fire risk outlooks (13). An anomalously early 
onset suggests a potentially longer fire season, with an increased 
probability of extended burning time and a larger area burned (14). 
Onset has been identified as when fire-weather conditions first sur-
pass a selected threshold (15). Some fire-weather indices are heavily 
influenced by temperature variability and change, and, therefore, 
defining onset based on these indices may inherently suggest that 
anthropogenic warming advances onset in many regions (16, 17), 
including California (18). In addition, widely used fire-weather 
metrics may not represent complex hydrological processes such as 
snowmelt and snowpack influences on soil moisture (5), which in-
fluence fuel flammability. While fire-weather is indicative of fire 
danger, fire occurrence also depends on fuel availability and ignition 

(19). Adding to this complexity is California’s high diversity in terms 
of climate, topography, and ecosystems, which translates to highly 
diverse fire regimes (20, 21). Therefore, in addition to evaluating the 
impact of anthropogenic warming on wildfire through the analysis 
of fire-weather indices, it is crucial to conduct empirical analyses to 
assess how climate has contributed to variations and trends in the 
observed fire season onset (22). Furthermore, it is essential to disen-
tangle the contributions of anthropogenic warming from those of 
natural climate variability.

Using records of large fires (defined as fires with a final burned 
area larger than 400 ha), two previous works have investigated the 
fire season of the western US. The first study (23) highlighted that in 
high-elevation forests, fires have become more frequent and the 
wildfire season has lengthened, corresponding with earlier spring 
snowmelt and increased temperatures. Using the 10th percentile of 
the start dates of large fires as the fire season onset, the second study 
(24) showed that the onset shifted earlier in higher-elevation and 
southern ecoregions in the western US during 1984–2011, albeit 
with nonsignificant trends. Notably, there has been a lack of analyses 
using fire occurrence records to understand fire season onset. While 
a correspondence between drying trends and fire season onset has 
been suggested for a few regions in California in previous work 
(23, 24), quantifying this effect and extending the analysis to the 
entire state have yet to be done.

In this study, we investigate changes in fire season onset across 
the ecoregions in California, using an extensive record of fire occur-
rence data from 1992 to 2020 (25). By analyzing the distribution of 
recorded fire start dates, we establish a physically interpretable defi-
nition of fire season onset. To diagnose the causes of the observed 
trends in onset, we (i) consider the potential roles of nonclimate fac-
tors such as fuel types and ignitions and (ii) provide a detailed de-
composition and quantification of climate drivers, distinguishing 
between natural variability and anthropogenic warming.

RESULTS
Fire season onset
Figure 1 shows the time series of fire season onset (referred to as fire 
onset from hereon) for the 13 level III ecoregions of California (26). 
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Following (27), fire onset is defined as the fifth percentile of the em-
pirical cumulative distribution function of the discovery dates of 
fires during each calendar year (i.e., the day of the year; fig. S1). Our 
focus in this study is the main fire season of each ecoregion, which 
typically peaks in fire occurrence during the summer (fig. S2) when 
conditions are hot and dry (21). We found that the 10th percentile 

for the Southern California Northern Baja Coast and Sonoran Basin 
and Range and the 15th percentile for the Southern California 
Mountains are more suitable for representing the onset of the sum-
mer fire season, because of the wind-driven fire season that occurs 
at the beginning and end of the calendar year in these regions (Sup-
plementary Text). The seasonality of fire onset during 1992–2020 

Fig. 1. Trends in fire season onset during 1992–2020. Fire season onset time series (day of the year, shown on y axis) for each ecoregion. The subpanel inset histogram 
shows the distribution of the detrended onset date in months January (Jan) to August (Aug). The best-fit line is shown as a dashed line, with the trend value (days per year) 
annotated. Regions where P < 0.05 are indicated by bold font. False discovery rate of 5% was controlled for P values before estimating the significance. x-axis ticks are shown 
for the years 2000, 2010, and 2020 in each subplot. Shading represents the ±1 SD for each year, estimated from 100 bootstrap samples. Best-fit lines are Theil-Sen slopes.
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differs across ecoregions (Fig. 1, subpanel insets). Northeastern 
California (Cascades and Eastern Cascades Slopes and Foothills) 
shows a peak of fire onset in May to July. By contrast, northwestern 
and central California (Coast Range, Klamath Mountains/California 
High North Coast, Central California Foothills and Coastal Mountains, 
Central California Valley, and Sierra Nevada) have a peak in April 
to June; in southern California desert ecoregions (Mojave and 
Sonoran Basins and Ranges), the fire season often begins in the lat-
ter part of the cool season (January to March). These contrasts are 
indicative of the background climates among ecoregions. In addi-
tion to a later end to wet season precipitation, northeastern ecore-
gions have a large snow and subsurface water storage that can carry 
the moisture from the winter precipitation into spring and summer, 
delaying fire onset (28). Meanwhile, southern California deserts are 
more arid with an earlier end to a drier wet season, so soil moisture 
from winter is less persistent through the dry season (21). Further-
more, southern California can experience periods of very high fire 
potential even in winter, as this is the season when high vapor-
pressure deficit (VPD) offshore winds (e.g., Santa Ana) are most 
common and strongest (29). Southern California also has extremely 
high variability in the timing and magnitude of the winter rainy sea-
son and precipitation events within it (30), likely contributing to the 
elevated fire onset frequency during multiple months of the year in 
some ecoregions.

All ecoregions except the Sonoran Basin and Range show a nega-
tive trend in fire onset (i.e., fire onset date trends earlier). The arid 
and semi-arid ecoregions Mojave Basin and Range, Northern Basin 
and Range, Sonoran Basin and Range, and Central Basin and Range 
show statistically insignificant (P > 0.05) trends. The other ecore-
gions show significant trends (P < 0.05). The most negative trends 
are observed in the Eastern Cascades Slopes and Foothills (−2.46 days 
per year), Cascades (−2.44 days per year), Central California Foothills 
and Coastal Mountains (−2.12 days per year), and Southern California 
Northern Baja Coast (−1.81 days per year).

Drivers of an earlier fire onset
Fire onset trends toward an earlier fire season can be theoretically 
driven mainly by three elements that could increase the number of 
fires and therefore shift or stretch the distribution of fires earlier in 
the year (fig. S1): (i) increased fuel loads due to, for example, fuel 
accumulation (31), (ii) increased frequency of human-ignited fires, 
which tend to occur more year-round than lightning-ignited fires 
(32, 33), and (iii) climate trends such as reduced cool-season pre-
cipitation, atmospheric warming, and early snowmelt, which pro-
mote the drying of fuels earlier in the year (23). We investigate each 
of these potential drivers to understand their effects.

To investigate the potential influence of fuels, we determine, 
within each ecoregion, the fire onset for each of the three land cover 
types where fire is most common (Fig. 2). Changes to fuel loads and 
other characteristics such as horizontal or vertical continuity can 
influence the onset if they contribute to a shift in fire occurrence 
distribution. For instance, increased fuel loads in forests due to fire 
suppression (34) and increased dead and fine fuels from multiyear 
drought conditions (35) can increase the number of fires, and po-
tentially advance onset. Interannual variability of fire onset is highly 
similar across land cover types within ecoregions (shown as the cor-
relation with fire onset estimated using all fires in Fig. 2). Individual 
land cover types also follow the trend toward an earlier fire onset in 
each ecoregion. The largest negative trend in onset among the top 

three land cover types (Fig. 2, center) is larger than the trend of all 
fires in the ecoregion (shown in Fig. 1) for 8 of 13 ecoregions. The 
fraction covered by this land cover type ranges from 16 to 48%. Dif-
ferent vegetation types may have varying sensitivities to the under-
lying driver responsible for shifting onset earlier in the year. Some 
fuel types may experience an even stronger shift toward earlier onset 
than the ecoregion-wide average. In Sonoran Basin and Range, 
where a trend toward later onset is observed when all land cover 
types are considered, the shrub land cover type within that ecore-
gion experienced a trend toward earlier onset (−1.1 days per year; P 
> 0.05). In southern and western ecoregions, developed land is one 
of the land cover types with the most fire occurrences. A decreasing 
trend in onset over developed land can be seen in 11 of 13 ecore-
gions. In the northeast (north of Southern California Mountains 
and east of Central California Foothills), the land cover type where 
most fires occur is either tree or shrub, accounting for 47 to 75% of 
fires in each region. These areas experienced a negative trend in on-
set, ranging from −0.77 to −1.6 days per year (P > 0.05). A few ex-
ceptions to the general trend toward earlier onset are observed. In 
the Sonoran Basin and Range, developed and agricultural lands, 
which account for 62 and 9% of total fires, respectively, exhibited a 
nonsignificant (P > 0.05) trend toward later fire onset. The tree land 
cover type in the Central Basin and Range, where 9% of that ecore-
gion’s fires originate, also experienced a nonsignificant trend toward 
later fire onset. These exceptions aside, the results show a consistent 
decreasing trend in onset across different land cover types. This sug-
gests that a stronger external driver is influencing the trend toward 
an earlier fire season and that it is relatively insensitive to the differ-
ences in fuel availability and characteristics across land cover types.

The influence of human activities has shaped the distribution of 
fire occurrences in the US in the recent past (32). Natural ignitions 
through lightning tend to be limited geographically to high eleva-
tions and follow a seasonal cycle (36). Human ignitions generally 
cause the fire season across California to be broader than it would be 
with lightning ignitions alone (32, 37, 38). Human ignitions are in-
herently compound events, driven by both the number of accidental 
or deliberate ignitions and the environmental conditions (climate 
and fuel) that allow a fire to ignite. However, it is hypothesized that 
the human ignition potential has increased over time because of ris-
ing human activities (32, 38). Increasing human ignitions can shift 
or stretch the distribution of fire occurrences, making the fire onset 
earlier. However, the annual frequency of human-ignited fires actu-
ally significantly declined during our study period (Fig. 3). In the 
month that represents the most common fire season onset, the trend 
in the frequency of human ignitions was either zero or negative for 
11 of 13 ecoregions. Larger negative trends in human-ignited fire 
counts are observed later in the fire season, wherein the total num-
ber of fires is generally higher (fig.  S2). These trends suggest that 
changes in human ignition frequencies do not contribute to an ear-
lier onset. All else equal, reductions in human ignitions may pro-
mote a narrowing of the fire count distribution and a later onset, 
given that nonhuman ignitions are most common in the sum-
mer (32).

Climate variability can influence the timing of the fire season by 
altering interannual variations in hydrological processes, which, in 
turn, change fuel moisture levels. Anthropogenic warming can make 
the fire onset earlier primarily by shifting the temperature distribu-
tion toward warmer values, leading to warmer winter and spring 
temperatures, earlier snowmelt, enhanced evaporative demand, and, 
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Fig. 2. Trends in fire season onset during 1992–2020 for different land cover types. Fire season onset time series (day of the year, shown on y axis). Green, red, orange, 
brown, and purple colors are used for Tree, Developed, Agriculture, Shrub, and Herb, respectively. Results for land cover types that contain the three highest numbers of 
fires in each ecoregion are shown. For different land cover types, the fraction of fires during the period is annotated, along with the land cover type name, the linear trend 
of fire onset in days per year, and the correlation with the fire onset derived from all fires, respectively. Dashed lines show the best-fit line. The spatial map of California in 
the middle shows the largest negative trend among the three time series for top land cover types and the time series for all fires for each ecoregion. The trend for the entire 
ecoregion is annotated above the time series in each panel. Statistically significant trends and correlations (P < 0.05) are indicated by bold font. False discovery rate of 5% 
was controlled for before estimating the significance. Shading represents the ±1 SD for each year, estimated from 100 bootstrap samples. Best-fit lines are Theil-Sen slopes.
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consequently, drier fuels. To investigate the influence of climate, we 
show the correlation between the detrended fire onset and detrended 
climate time series of different seasons in Fig. 4 and fig. S3. Cool-
season (December to March) soil moisture is generally the variable 
with the highest correlation and is statistically significant for all but 
three ecoregions. This correlation is greatest for the Southern California 
Mountains (0.92), Central California Foothills and Coastal Mountains 
(0.89), Sierra Nevada (0.87), Sonoran Basin and Range (0.83), and 

Southern California Northern Baja Coast (0.82). Winter precipita-
tion generally has the next highest correlation, although this likely 
reflects mostly the same information as soil moisture. Spring to 
summer VPD shows strong negative correlations (fig. S3), espe-
cially for the Southern California Mountains (−0.77), Klamath 
Mountains/California High North Coast (−0.75), and Sierra Nevada 
(−0.71). This is similarly reflected by strong negative correlations 
with temperature in the same months. In high mountainous regions 

Fig. 3. Trends in the number of human-caused fires during 1992–2020. Statistically significant (P < 0.05) trends are shown in red. Note that the y axis range is different 
for the bottom-right panel, which represents data for the entire state of California. Dashed vertical line represents the mode of the monthly distribution of onset during 
the study period. Trend value corresponds to the mode of onset is annotated. False discovery rate of 5% was controlled for before estimating the significance.
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(Sierra Nevada, Southern California Mountains, and Cascades), on-
set date correlates positively with snow-water equivalent (0.77, 0.72, 
and 0.67, respectively), indicating later onset with heavier snow-
packs. It should be noted that fire season onset is derived solely from 
fire occurrence data and is, therefore, completely independent of the 
climate data in terms of data generation. The very strong correlations 
observed are thus indicative of the dominant climate control over 
onset variability. Overall, these relationships indicate that winter pre-
cipitation and snow can influence the fire onset through delayed ef-
fects on soil moisture and VPD, while spring to summer temperature 
and VPD can influence fire onset over shorter timescales.

Relationship between fuel moisture and fire season onset
To further investigate how climate can influence fire onset, we exam-
ine the relationship between fire onset and fuel moisture. Remote 
sensing–based estimates of vegetation moisture content can provide 
more spatially and temporally complete data compared to direct 
measurements of live fuel moisture content (LFMC) (39). Remote 
sensing–based reconstructions of dry-season (July to August) cano-
py water content (CWC) of vegetation canopy above 2 m in height 
(40) show significant positive correlations with fire onset across 
California (Fig. 5A). This strong relationship is particularly evident 
in southern California ecoregions, Central California Foothills and 
Coastal Mountains, Cascades, and the southern Sierra Nevada. We 
also investigate the potential role of fuel moisture using direct mea-
surements of LFMC from the National Fuel Moisture Database for 
regions with continuous temporal coverage (see Materials and Meth-
ods). Fire onset is significantly correlated with direct measurements 
of LFMC (Fig.  5, B to E), in particular for the Central California 

Foothills and Coastal Mountains (r  =  0.69), Southern California 
Mountains (r  =  0.71), Southern California Northern Baja Coast 
(r = 0.77), and Sierra Nevada (r = 0.66). Regions with particularly 
high fuel moisture and fire onset correlation in Fig. 5 also stand out 
as the regions where the soil moisture–onset correlations in Fig. 4 are 
strong. These results indicate that fuel moisture is the dominant driv-
er of interannual variability in fire onset date throughout much of 
California, with interannual variability in fuel moisture being driven 
by fluctuations in precipitation supply and evaporative demand 
(40,  41). These results provide additional evidence of the onset-
climate relationship through an independently derived measure.

Roles of natural variability and anthropogenic warming on 
observed fire season onset trends
We next decompose the influences of climate drivers on the observed 
fire onset trend. Using a causal effect network (CEN) framework 
(42–44), we identify the climate variables and seasons most likely to 
have a causal influence on fire onset for each region (see Materials 
and Methods and fig. S16). Precipitation during the early months of 
the wet season (October of the previous year to February of the cur-
rent year) is a dominant causal variable for onset across most ecore-
gions. Precipitation from late winter through spring is particularly 
important for some arid and desert ecoregions, such as the Mojave 
Basin and Range, Southern California Mountains, and Central Basin 
and Range. The effect of current-year VPD is evident in many ecore-
gions, particularly the Sierra Nevada, Southern California Moun-
tains, and Cascades ecoregions, which also exhibit a significant 
correlation between snowpack and fire onset (Fig. 4). We model the 
fire onset of each ecoregion as a linear function of causal climate 

Fig. 4. Relationship between climate variables and fire season onset. Correlation between detrended fire season onset and detrended precipitation, snow water 
equivalent, maximum temperature, VPD, and soil moisture. Correlation is calculated against the given variable, averaged over each antecedent 3-month running period 
(DJF, JFM, etc.). Lag values are considered from December of the previous year up to fire season onset. The strongest correlation for each variable across all seasons is 
shown here. Only regions where the correlation is significant (P < 0.01) are shown, and regions where correlation is not statistically significant are marked with hatching. 
False discovery rate of 1% was controlled for before estimating the significance.
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variables (table S1). Next, the time series of each climate variable is 
separated into natural variability and thermodynamic components 
using the dynamical adjustment technique (Materials and Methods). 
In brief, dynamical adjustment isolates the variability of the target 
climate variable that is linked to the variability in atmospheric circu-
lation (45–48). This is the dynamical component, which is interpret-
ed as dominated by natural variability. The residual contains the 
thermodynamic change, interpreted as dominated by anthropogenic 
warming. Using these time series of natural variability and anthro-
pogenic warming components, the contribution of each component 
to the fire onset trend is estimated (Fig. 6 and fig. S4).

We estimate that natural climate variability contributed to a large 
negative trend in fire onset date (toward earlier) for most ecoregions 
during our 1992–2020 study period. California experienced a severe 
multiyear drought during 2012–2015 (49, 50), which was a major 
factor driving this natural variability component. The largest contri-
bution from natural variability can be seen in the arid/semi-arid 
regions of the Mojave Basin and Range [accounting for a trend of 

−28 ± 22 days (means ± 1 SD), from 1992 to 2020] and the Southern 
California Mountains (−22 ± 16 days). The smallest influence of 
natural variability is observed in the Sonoran Basin and Range 
(−5 ± 13 days).

Central estimates of distributions show that anthropogenic 
warming contributed to an earlier fire onset in 11 of 13 ecoregions. 
This is particularly pronounced in the Cascades (−46  ±  9 days), 
Northern Basin and Range (−31  ±  9 days), and Sierra Nevada 
(−24  ±  7 days). Meanwhile, in southern California desert ecore-
gions, anthropogenic warming contributed to a slight delay in fire 
onset, ranging from +7 ± 8 days in the Mojave Basin and Range to 
+14 ± 9 days in the Sonoran Basin and Range. One possible reason 
for this is that these regions are more fuel limited, where moisture is 
needed for fuel growth, making the climate-onset relationship more 
complicated (51, 52). Another possible reason is that anthropogenic 
warming strongly affects temperature but may affect precipitation in 
more nuanced ways, for example, by intensifying precipitation 
events (53). In regions where precipitation totals and timing have a 

C

ED

BA

Fig. 5. Relationship between fire season onset and measures of vegetation moisture. (A) Correlation between fire season onset and reconstructed CWC using remote 
sensing and environmental data for the period 1992–2017. Each grid cell value represents the correlation between that grid cell’s canopy water record and the fire onset re-
cord for the ecoregion that the grid cell lies within. (B to E) Time series of the fire onset and representative LFMC measurements during 1992–2020 for Central California 
Foothills and Coastal Mountains (B), Southern California Mountains (C), Sierra Nevada (D), and Southern California Northern Baja Coast (E). Correlation between fire onset and 
LFMC (r) is shown in (B) to (E). Only statistically significant values, after controlling for a false discovery rate of 20% (with a corresponding P value of 0.04) are shown in (A).
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stronger effect on fire onset, such as southern California (Fig. 4 and 
fig.  S3), the impact of anthropogenic warming is expected to 
be weaker.

Climate variables do not fully account for the observed trends in 
fire onset in some ecoregions (as indicated by the difference between 
observed and modeled trend distributions in Fig. 6). Particularly in 
the Coast Range, Eastern Cascades Slopes and Foothills, and Cen-
tral California Foothills and Coastal Mountains, the linear model 
for onset explains only 51, 30, and 59% of the variability, respec-
tively. Possible reasons could include nonlinear climate influences 
not captured by our linear models or other factors not accounted for 
in the modeling framework.

DISCUSSION
Understanding how anthropogenic warming influences fire onset is 
critical for assessing the increased probability of fire occurrence. 
Previous efforts to understand fire onset have generally focused on 
the onset of fire-weather, but not the actual onset of the fire season 
(15,  54). Fire-weather indices are largely indicative of the atmo-
spheric evaporative demand and near-surface soil moisture and, 
therefore, serve as proxies for fuel moisture. However, they do not 
consider fuel load, fail to capture complex ecohydrological processes 
and feedbacks, and do not fully represent mechanisms relevant to 
fire onset (55). Our results based on fire occurrence data present an 
estimate of fire onset that is physically consistent with variations in 
surface and subsurface water budgets and fuel moisture across the 
distinct climate regimes of California.

Our results highlight a geographical divide across California in 
the contributions of anthropogenic warming versus internal vari-
ability to fire onset trends. A large, fire onset–promoting influence 
of anthropogenic warming in northern California ecoregions (e.g., 
Cascades, Sierra Nevada, and Northern Basin and Range) stems 
from the strong influence of temperature, likely by accelerating 
snowmelt (23, 28) and evapotranspiration (56). Anthropogenic 
warming in California has already emerged from the interannual 
temperature variability (57). This indicates a continuing shift in the 

distribution of fire onset in northern California beyond the enve-
lope of natural variability.

There is a large natural variability in precipitation in California 
(58), and considerable uncertainty remains regarding whether an-
thropogenic warming is increasing or decreasing precipitation (59). 
This makes the detection and separation of the anthropogenic warm-
ing component of precipitation challenging (60) and implies a large 
uncertainty in the estimates of the anthropogenic warming contribu-
tion. More subtle changes in precipitation characteristics, such as a 
shortening of the wet season (61), a decrease in precipitation frequen-
cy (55, 62), and an increase in the amount of water vapor available for 
intense precipitation events (53), could also influence statistics of 
aggregate fire season characteristics, such as fire onset. Anthropogenic 
warming also alters the precipitation partitioning in California, shift-
ing from snow-dominant to rain-dominant (63), thus modifying 
the fire-climate relationships identified in this study. In future work, 
climate-based modeling of fire onset presented in this study could be 
modified to incorporate these nonlinear changes in precipitation 
characteristics.

The climate control of fire onset is ubiquitous across California, 
in ecoregions with varying vegetation characteristics, from deserts 
to forests. The assessment of fire onset aggregated across an ecore-
gion may give more weight to the more fuel-abundant areas within 
the ecoregion. Other fuel characteristics can also exhibit interan-
nual variability (64). For example, wet years can promote fuel 
growth in fuel-limited regions (51,  52); meanwhile, drought may 
lead to vegetation mortality, which may further increase fire risk be-
yond that expected from fuel drying alone (35). However, we found 
similar trends in fire onset across different vegetation types. Future 
analysis can evaluate the role of land cover in modulating the effect 
of fuel moisture on fire onset.

Climate variability shapes fuel availability, ignition efficiency, 
and fuel combustibility, irrespective of the ignition sources (65, 66). 
However, most fire ignitions in California are caused by human ac-
tivities, which have major impacts on the number and seasonality of 
wildfires in the state, particularly by widening the fire season be-
yond the summer months when lightning is most common (32, 37). 

Fig. 6. Influence of natural variability and anthropogenic warming on observed trend in fire season onset. Trends in observed fire season onset from 1992–2020 
(Obs, light blue) and fire onset modeled using total climate variability and trend (Modeled, dark blue), natural variability (NV, green), and anthropogenic warming compo-
nent of climate variables (ANT, red). Modeled trend distributions are created by considering the uncertainty of the regression model and trend estimation, yielding 2900 
values per region (Materials and Methods). The uncertainty of the observed trend is estimated using leave-one-out sampling. Box plots indicate the median (orange 
horizontal line) and the interquartile range. Whiskers show the 2.5th and 97.5th percentiles. Outliers are shown by circles. Right panel shows the mean ANT contribution 
for each region.
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Therefore, we expect that the observed decrease in human-ignited 
fires (Fig. 3) (37) would, all else equal, promote a delayed fire onset. 
Last, the differences in fire onset variability and trend in different 
land cover types (Fig. 2) could be partly due to the limitation of hu-
man ignition, especially in regions far from human population and 
activities (38).

Our analysis provides a framework for understanding the mecha-
nisms through which climate controls fire onset. The anthropogenic 
warming component in predicting fire onset is indicative of what is 
to come, as warming trends continue. Thus, our findings have major 
implications for wildfire seasonal predictions and disaster preven-
tion and management strategies in coming seasons and years.

MATERIALS AND METHODS
Fire occurrence and climate data
We use the sixth edition of the US Forest Service Fire Program 
Analysis–Fire Occurrence Database (FPA-FOD) (25). The dataset is 
quality controlled and comprehensive and includes ~2.3 million 
wildfires recorded by US federal, state, and local agencies during 
1992–2020. In our analysis, we use the data attributes discovery 
date, location (latitude and longitude), and ignition cause classifica-
tion (human-caused or natural).

To investigate the climate drivers of fire season onset, we ob-
tained observed monthly precipitation, snow water equivalent, max-
imum and minimum temperature, VPD, and soil moisture from 
TerraClimate (67), which has a 1/24th degree spatial resolution for 
the period 1960–2020. For dynamical adjustment to isolate the natu-
ral variability, we use ERA5 (68) sea level pressure (SLP) data for the 
period 1960–2020.

Considering the spatial heterogeneity of climatic conditions and 
fire season characteristics (21) within California, we analyze 13 
ecoregions based on the US Environmental Protection Agency’s 
ecoregion level III classification (26). These ecoregions represent 
vegetation characteristics and climate conditions, from deserts to 
forests, and, therefore, results can implicitly indicate the role of veg-
etation in the onset-climate relationship.

Live fuel moisture data
We use dry-season (July to August) liquid water in canopy above 
2 m in height, created using deep learning for 1992–2017 (40). This 
dataset (69) has been developed using remotely sensed canopy water 
estimates and environmental data (e.g., elevation, slope, aspect, rela-
tive elevation, LANDSAT 8 surface reflectance, distance to the near-
est road, road density, maximum incident solar irradiation from 
four periods throughout the year, and spatial coordinates). More 
specifically, (40) used high-fidelity imaging spectroscopy and light 
detection and ranging data collected during August 2015, July 
2016, and August 2017. Using these remote sensing data, CWC was 
estimated for a total of 2.09 million ha of nonoverlapping coverage. A 
fully connected neural network with four hidden layers with 200 
neurons each was trained to model the estimated CWC using above 
environmental data. The year 2012 is missing from this dataset due 
to missing LANDSAT training data. More details on the deep learn-
ing model can be found in (40). Original data of CWC at 30-m spa-
tial resolution is regridded to a 270-m grid (70) for the analysis.

While remotely sensed CWC can serve as a proxy for live fuel 
moisture, it may not fully represent direct measurements of fuel 
moisture. As an independent measurement of fuel moisture, we use 

directly measured LFMC from the National Fuel Moisture Data-
base. LFMC is the ratio of the mass of water contained in a live plant 
to its total dry mass. We first select sites across California with at 
least one LFMC measurement during the August to September pe-
riod and at least 25 years of summer data from the 1992–2020 study 
period. Recognizing the potential impact of data gaps, particularly 
during extreme climatic events such as multiyear droughts or wet 
periods, we refine the selected dataset by excluding sites with any 
3-year consecutive period of missing data, aiming to mitigate distor-
tion in our correlation calculations. This provides at least one site for 
ecoregions Central California Foothills and Coastal Mountains, 
Southern California Mountains, Southern California Northern Baja 
Coast, and Sierra Nevada. We combine the regions with multiple 
sites to obtain one representative time series for each region.

Land cover data
To investigate fire onset across different land cover types, we use an-
nual land cover data from the National Land Cover Database (71). 
We consolidate land cover classes into broader categories: Developed 
(all intensity levels of developed land), Tree (deciduous, evergreen, 
and mixed forest types), Shrub (shrub, scrub, and dwarf scrub), Herb 
(grassland/herbaceous and sedge/herbaceous), Agriculture (pasture/
hay and cultivated crops), Wetlands (woody wetlands and emergent 
herbaceous wetlands), Barren (barren land rock/sand/clay), Water 
(open water), and Snow-Ice (perennial ice/snow). For each fire event, 
the land cover type of the year of the fire is selected based on the lati-
tude and longitude data recorded for the fire.

Estimation of causal climate drivers
To estimate the influence of natural variability and anthropogenic 
warming, we first develop a CEN following (42). We aim to model 
the onset based on climate and meteorological conditions. We 
choose multiple linear regression because its results and coefficients 
are easily interpretable. To select causal drivers for the regression 
model, we use the CEN, which applies the PCMCI causal discovery 
algorithm (43, 44). The PCMCI combines the PC algorithm (named 
after Peter Spirtes and Clark Glymour) (72) with momentary condi-
tional independence (MCI) to adapt it for time series data. The pro-
cess consists of a conditioning-selection step (PC) followed by the 
MCI step. If one aims to identify the causal link between X and Y 
(where X and Y are assumed to be the independent and dependent 
variables, respectively), the causal discovery algorithm can detect 
causal relationships while overcoming challenges such as the auto-
correlation of X, an indirect effect of X on Y via a third variable, or 
the presence of a common driver influencing both X and Y. Details 
about the PCMCI algorithm are provided in (43, 44), and (42) pres-
ents a step-by-step example of its application to Arctic teleconnec-
tion pathways, which we follow here. The methodology is outlined 
below with an example from the Southern California Mountains 
ecoregion (figs. S8 to S15).

The algorithm consists of a causal discovery phase, during which 
the causal network is identified for a target variable. The starting 
point is a fully connected graph, as shown in fig. S8 for the Southern 
California Mountains. Applying this algorithm to onset requires ad-
aptation. Onset is annual, whereas climate time series are on a 
monthly scale. In addition, onset timing varies by region (Fig. 1). To 
account for this, we define the latest month of onset in the historical 
record as the starting month (t = 0) and look back up to a selected 
lag (in this example, up to t − 18). Specifically, we consider lags 
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extending to December of the previous year to capture the preced-
ing wet season, making the total lag 18 months in this example. We 
consider the following as key drivers of fire onset: seasonal average 
precipitation, maximum and minimum temperatures, and VPD. Ef-
fects of antecedent conditions, such as rainfall and snowfall, and 
temperature persist into later seasons via soil moisture and, there-
fore, fuel moisture, thereby influencing the fire onset. Furthermore, 
antecedent climate conditions can influence the fire season by in-
creasing fuel load in fuel-limited regions. This is in addition to the 
concurrent meteorological conditions, such as VPD, which can in-
fluence fire onset through influencing dead/fine fuel moisture 
(51, 52). For example, in regions where the fire season window (gray 
shaded area in fig. S3) ends in June-July-August (JJA), we analyze 
the aforementioned variables across seasons: December-January-
February (DJF), January-February-March (JFM), February-March-
April (FMA), March-April-May (MAM), April-May-June (AMJ), 
May-June-July (MJJ), and JJA of the current year, as well as DJF to 
November-December-January (NDJ) of the preceding year. This re-
sults in 19 seasonal time series for each variable, yielding a total of 
76 potential predictor time series (19 seasonal time series for each of 
the four variables). The CEN framework provides a methodology 
based on causal discovery to identify the most important variables 
from this initial list. It should be noted that, since the relationship 
between meteorological conditions and onset is assumed to be me-
diated through soil and fuel moisture, we use 3-month mean condi-
tions rather than monthly values. This is because soil moisture is an 
integrated climate variable that depends on antecedent conditions.

After setting up the initial fully connected graph, the edges be-
tween the target variable (onset) and other variables at a given time 
lag are tested for removal using conditional independence tests. In 
this analysis, we use partial correlation, following (42). As the first 
step, we calculate the correlation between the fire onset time series 
of each year and antecedent climate variables (e.g., fig. S3) and select 
cases where the correlation is statistically significant at a P value 
threshold of α (P < α). In this example, α is set to 0.05. This set of 
selected variables is referred to as potential parents (Po). For the 
Southern California Mountains, the Po variables, along with their 
correlation coefficients (r values) and P values, are shown in fig. S9. 
Next, the Po variables are sorted based on the absolute value of their 
correlation with fire onset. Conditional independence tests are then 
performed between each Po variable and fire onset, starting by re-
moving the influence of the variable with the highest correlation 
(denoted as Z). This is done by calculating the partial correlation. In 
the given example, ppt_JFM is selected as Z. If a variable X has a 
statistically significant partial correlation with fire onset, it is con-
sidered to have an independent influence on fire onset beyond 
Z. Conversely, if the partial correlation is not significant, X is re-
moved from further analysis. In this case, we assume that there is no 
direct influence from X and onset and that the observed significant 
correlation between X and onset is due to the indirect influence 
through Z (42). The causal principle that a variable must precede in 
time or occur simultaneously with another variable to influence it is 
always enforced as a time-order constraint.

In the given example, conditioning on ppt_JFM removes the fol-
lowing variables from the parent list (Po): ppt_MJJ, tmax_JFM, 
tmax_FMA, tmin_MAM, tmin_AMJ, tmin_MJJ, tmin_JJA, vpd_
JFM, and vpd_FMA (fig. S10). This process objectively refines the 
Po list into a smaller subset (P1). The process is then repeated by 
conditioning on the next variable in P1 with the highest absolute 

correlation with fire onset. This step is illustrated in figs. S11 to S14 
using additional variables from Po. After evaluating conditional in-
dependence for a single variable, we incrementally include two, 
three, and more variables (e.g., fig. S15), continuing until the final 
list of independent variables converges. Last, we develop an ordi-
nary least squares (OLS) regression model for fire onset in each 
ecoregion, using the selected climate drivers (table S1). With these 
identified drivers and onset models, we then quantify their influ-
ence on fire onset (Fig. 6 and fig. S4). The final list of variables for the 
example case includes ppt_FMA, ppt_DJF, ppt_lag1_NDJ, and 
tmin_lag1_SON. Notably, ppt_DJF and ppt_lag1_NDJ share com-
mon months (December of the previous year and January of the 
current year). However, the causal discovery algorithm identifies 
these two variables as having unique, independent influences on on-
set, despite their shared temporal overlap (figs. S12 and S13).

To estimate the robustness of the causal discovery results, we use 
a moving block bootstrap approach (73). We generate 1000 block-
bootstrapped samples using a block size of 3 years. In this method, 
each block consists of 3 consecutive years, and resampling is per-
formed with replacement at the block level. The selected blocks may 
overlap, ensuring that temporal dependencies within each block are 
preserved while allowing for variability in the resampled dataset. 
Figure S16 shows the top 10 variables for each ecoregion, ranked by 
the percentage of selection as causal drivers. The causal drivers iden-
tified from the full time series (table S1) remain the dominant vari-
ables in the bootstrapped results (fig.  S16). For instance, in the 
Southern California Mountains, the causal variables obtained from 
the full time series are the top four most frequently selected across 
the 1000 resamples. The FPA-FOD dataset has a large number of 
very small fires (74). We redid the above bootstrap analysis by re-
moving fires smaller than 0.4 ha (1 acre), which removes 59% of all 
fires in the dataset (74). While this limits the information through 
limiting the sample size, we largely find similar causal drivers for 
many of the regions (fig. S17).

The significance level α, chosen for the causal discovery algo-
rithm, can have a notable impact on the results. To assess this sensi-
tivity, we repeated the above steps for α values of 0.01, 0.05, 0.1, and 
0.2 (table S2). For lower α levels, the variables most frequently iden-
tified in the moving block bootstrap resampling results (fig. S16) are 
the ones predominantly selected by the causal discovery algorithm. 
Increasing α allows for more flexibility, enabling the inclusion of ad-
ditional variables. These are also among the top causal drivers ap-
pearing in the bootstrapped results. On the basis of this assessment, 
we retain results from α = 0.05 for the next step. In addition, the 
correlation between onset and a given variable can be either positive 
or negative, reflecting the fact that California consists of both water-
 and energy-limited regions. Therefore, all correlation tests are two-
tailed, effectively reducing the α level by half (e.g., for α = 0.05, the 
actual threshold for significance is 0.025, and so on).

The resulting OLS regression model for onset, using the identi-
fied causal drivers as independent variables, is presented in tables S1 
and S3. All models are statistically significant [Prob(F) < 0.05], re-
siduals appear to be normally distributed based on the Omnibus test 
[Prob(Omnibus)  >  0.05], no strong autocorrelation is detected 
based on Durbin-Watson (between 1.5 and 2.5), and no strong mul-
ticollinearity is observed based on the condition number (<6) 
(table S3).

The causal discovery approach relies on several key assumptions 
and has inherent limitations. One is the Causal Markov Condition, 
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which implies that the parents (final causal drivers) of the target 
variable form a sufficient conditioning set to establish conditional 
independence with any other variable. Another is Causal Sufficien-
cy, which assumes that all common drivers of the target variable are 
included among the observed variables. In addition, the Faithful-
ness Assumption indicates that the conditional independencies ob-
served in the data arise from the structure of the causal graph itself. 
Beyond the uncertainties introduced by these assumptions, causal 
discovery results can also be influenced by data nonstationarities, 
nonlinear relationships between variables, and the choice of condi-
tional independence tests. We used Pearson correlation during the 
causal discovery step in this study, assuming a linear relationship 
between variables. However, using Spearman rank correlation yield-
ed largely similar causal drivers for onset (fig. S18), indicating that 
the linearity assumption was broadly satisfied. While nonlinear con-
ditional independence tests that are nonparametric and can general-
ize for nonlinear relationships are available, they may struggle to 
identify true causal relationships when the sample sizes are smaller, 
such as in this study (number of years = 29) (43). Moreover, while 
we demonstrate the sensitivity of results to the chosen significance 
level, an important next step is to implement false discovery rate 
control to ensure the robustness of causal inferences (43). A com-
prehensive discussion of the assumptions, data constraints, and 
methodological challenges in causal discovery can be found in 
(43, 44).

Estimation of the influence of natural variability and 
anthropogenic warming
To isolate the influence from natural climate variability, we use the 
dynamical adjustment technique (45–48). Dynamical adjustment 
isolates the variability of the target climate variable that is linked to 
the circulation-induced variability. This is the dynamical compo-
nent, which we treat as an estimate of natural climate variability. The 
residual contains the thermodynamic change. Dynamical adjust-
ment assumes that external forcings from anthropogenic emissions 
exert a thermodynamic response in y0, which is distinct from the 
random internal variability that influences y0 through circulation 
anomalies. Therefore, the residual of the model of y0, using a proxy 
for circulation, is assumed to be a noise-filtered estimate of the 
thermodynamic response of y0 to external forcing. We then approx-
imate the anthropogenic warming as the trend in the thermody-
namic response (48). Following (47), we use the SLP of the domain 
Northern Hemisphere 0°N to 80°N Pacific/North America sector 
110°E to 290°E as the variable that represents the circulation change 
and use partial least squares (PLS) regression to map a target climate 
variable for a given season of all ecoregions (dependent variable, y0) 
onto the SLP (independent variable, X0). We first remove the low 
frequency variability of X0 (Xlow_freq) and y0 (ylow_freq) using non-
parametric locally weighted scatterplot smoothing. This approach 
accounts for the forced response in circulation, assuming that the 
forced change in circulation is sufficiently smooth (45, 48). Then, 
the y = y0 − ylow_freq is mapped onto the X = X0 − Xlow_freq using 
PLS regression. The number of PLS components was selected using 
leave-one-out cross-validation. Natural variability component (dy-
namical component) is then estimated as the PLS modeled estimate 
(ymod) and the thermodynamic component is taken as the residual, 
y0 − ymod. We follow this procedure for each variable and each sea-
son, separately. Once we separate the natural variability and ther-
modynamic component of each climate driver used to model fire 

onset, the contribution from each component on the fire onset trend 
is estimated.

SLP is used to represent circulation, as opposed to other circula-
tion proxies such as geopotential height, since the latter may be 
more influenced by surface temperature fields (45). In addition, SLP 
of the selected domain has been successfully applied in dynamical 
adjustment for this target domain in previous studies (46, 47). It is 
important to note that the dynamical adjustment technique is just 
one among several methods available for this task (75). The impact 
of methodological uncertainty on the quantitative estimates pro-
vided may warrant further studies.

Uncertainty estimation of the regression model
The uncertainty in regression coefficients is calculated by applying a 
leave-one-out procedure. For each sample, we remove 1 year at a 
time and recreate the climate-onset least squares regression model, 
resulting in 29 different models.

For the uncertainty in the trend estimates and soil moisture con-
tribution to fire onset (total, natural variability, and anthropogenic 
warming), we randomly resample the years with replacement and 
calculate the trend of observed fire onset, modeled fire onset, natu-
ral variability component, and anthropogenic warming component, 
for 100 samples. To estimate the uncertainty of the attribution of 
observed trends in fire onset to trends in modeled, natural variabil-
ity and anthropogenic warming, we calculate the contribution of 
trends for each of the above-created 29 leave-one-out regression 
models. This results in 2900 estimates for each variable.

All trend estimates in this study are calculated using the non-
parametric Theil-Sen estimator (76, 77), and the P values are esti-
mated using the Mann-Kendall trend test (78, 79). False discovery 
rate is controlled for using the Benjamini-Hochberg method (80).

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S18
Tables S1 to S3
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