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Exposure and carbon risk for mature and
old-growth forests from severe wildfire in
the Pacific Northwest, U.S.A.
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Mature and old-growth forests (MOG) provide essential ecosystem services, yet they face increasing
threats. Currently, high-intensity, high-severity wildfires are the main driver for loss of MOG on
federally managed forests across the United States. Quantifying MOG forests with greatest exposure
to stand-replacing wildfires provides essential information for land managers. We integrated
geospatial data from fire behavior simulations (fire intensity), fire refugia prediction (fire severity), forest
type mapping, and carbon estimates to assess exposure of MOG forests to stand-replacing wildfires
in national forests within the Northwest Forest Plan region of the Pacific Northwest. We show that ca.
75% of MOG exposure is in areas with historically frequent, low-severity fire, that fire refugia capacity
may help mitigate exposure between 6 to 21% across forest types, and expected carbon emissions
are greatest in the Klamath Mountains ecoregion. Our findings demonstrate the geography of
exposure for MOG and aim to inform regional priorities for MOG stewardship.

Mature and old-growth (MOG) forests provide crucial ecosystem services,
from carbon sequestration1,2, ecotourism and cultural services, regulation of
hydrological cycles3, to critical habitats for biodiversity4. Through the 1900s,
MOG on national forests in the United States (USA) experienced major
declines due to logging5. In recent years, wildfires have become the primary
threat to older forests on many federal lands5, representing a net loss of 2.6
million acres of mature forest and 700,000 acres of old-growth forest since
20005 on federal lands mandated for multiple uses (e.g., timber, habitat,
recreation). Current trends reveal a continuous increase in area burned and
wildfire severity in the westernUSA recorded in the last decade6,7, driven by
a growth in number of human ignitions8–10, warmer and drier fire seasons,
along with increased droughts, exacerbated by climate change11–14, and
landscape fuels created throughmanagement and fire exclusion policies15,16.

Developmentof landmanagement strategies to address the lossofMOG
to stand-replacing wildfire is critical to maintaining these socio-ecological
resources. Quantifying the spatial footprint of regional exposure of these
high-value resources using spatial data and fire ecology analytics provides
information necessary to understand the geography of MOG forests with
greatest (and least) exposure, and help prioritize stewardship actions. Here,
weuse the termexposure to represent the spatial coincidenceof the likelihood
of stand-replacing fire and the location of highly valued resources17.

The importance of MOG has been long recognized in the Pacific
Northwest USA, and efforts to protect MOG forests, conserve biodiversity,

and support timber economies led to the creation of the Northwest Forest
Plan (NWFP) in 199418.Given themonitoring needs for this plan, an annual
time series of forest structure and composition map layers was developed
and annually updated19,20. These same data layers can be used to understand
the geography of hazard in this region, which first requires mapping MOG
forests (e.g., using Old-Growth Structure Index—OGSI19,20), recognizing
variability in MOG forest types, and understanding MOG ecological
dynamics.Differentiating between types ofMOG—such as dry forest,moist
forest, and cold forest or e.g., by using Potential Natural Vegetation—
PNV21—is essential to interpretingMOGresilience andmanagementneeds.
Equally important is integrating the concept of fire refugia—areas that burn
less severely or less frequently than their surroundings (e.g., topo-climatic
fire refugia, holistic fire refugia)22–25—to identify where the interaction
between topography, vegetation, and fire weather and climate is most likely
to provide refugial capacity and maintain MOG in the face of fire. Finally,
including information about historical fire regimes, i.e., fire frequency and
severity patterns prior to European settlement26, provides context for
understanding exposure to stand-replacing fire, given the effects of fire
exclusion policies in reshaping forest conditions in the region formore than
150 years.

Risk-based landscape analysis can inform landmanagers anddecision-
makers as to the expected outcomes for values at risk froma range of actions
and a no-action alternative27. This risk framework incorporates the
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likelihood of an event, the distribution of event intensities, and the impact of
each intensity on the value at risk (the response function), allowing esti-
mation of the expected value change from each management action. Cur-
rently, simulations and empirical statistical models are a fundamental
component of fire risk assessment frameworks for hazard prediction (e.-
g.28,). Large-scale fire simulations have been used in multiple studies and
contexts, as they are able to provide crucial knowledge across broad regions
and help shape fire and forest management policies29. Recent developments
in fire simulations supported the creation of national maps of annual burn
probability and conditional fire intensity (flame length) in the USA30.
Among other applications, these nation-wide products quantify and guide
target actions to highest exposure of human communities to wildfires31,32,
leading to the development of a national strategy to address the wildfire
crisis in thewesternUS29. Similarly, estimates of annual burnprobability and
specificflame length values can be combined to generate information on the
expected annual burned area at high-intensity fire (aBAHI). Given that fire
intensity is related to fire severity33, this fire descriptor can then be used to
assess the exposure ofMOGto high-intensity/high-severity stand-replacing
fire, and provide a comprehensive framework for informing conservation
efforts aimed at sustaining MOG forests in fire-prone landscapes.

In this study, our primary objective is to quantify the geography of
exposure of MOG forests to intense wildfire behavior linked to high-
severity fire effects in forests. Understanding this exposure is essential
for guidingmanagement actions that reduce the risk of stand-replacing

wildfire and sustain critical ecosystem services. Particularly, we ask: 1)
how does exposure of MOG to wildfire vary among national forest
units, ecoregions, and forest types, within the context of historic fire
regimes; 2) what is the potential role of fire refugia in mitigating
exposure to stand-replacing fire?; and 3) what is the geography of
projected carbon emission related to loss of MOG to stand-replacing
wildfire as a key ecosystem service provided by MOG forests? We use
fire behavior simulations to assess the exposure of vegetation-specific
MOG forests located in national forests (NFs) in the region of the
NWFP in the Pacific Northwest USA (Fig. 1) to high-intensity stand-
replacing wildfires. We identified the MOG forest types that are most
exposed to high-intensity fires, integrated these outcomes with quan-
titative estimates of fire refugia to understand the potential capacity of
local-scaled biophysical conditions tomaintainMOG, and analyzed the
results in the context of historical fire regimes to connect our findings
with current understanding of socio-ecological risks of fire exclusion.
By using the NWFP as an example, we showcase how multiple data
layers - such as fire exposure, forest type, and fire refugia - can be
combined to comprehensively characterize MOG exposure to stand-
replacing fires. Overall, fire exclusion has left historically fire-resilient
MOG forests disproportionately exposed. This analysis offers critical
information to inform discussion of regional priorities for MOG
stewardship to promote the resistance and resilience of MOG forests
and forest ecosystems as a whole.

Fig. 1 | Location of the Northwest Forest Plan study area in the western United States, and the national forests within it. a Shows the Omernik Level III ecoregions, and
b shows the historical fire regimes (adapted from ref. 26).
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Results
MOG exposure to stand-replacing fires
The amount of simulated annual burned area at high intensity (aBAHI)
represents the magnitude of exposure for each NF, ecoregion, and forest
types within the footprint of the NWFP region (Fig. 1) Figures S1 and S2
illustrate mapped aBAHI across the entire region, also presented as inter-
active figures (https://firerefugia.forestry.oregonstate.edu/npj_MOG_
interactive.html). Results for old-growth forests (Fig. 2a) show the Shasta-
Trinity NF is the most exposed to high-intensity fires, with an annual
average area of aBAHI of ca. 800 ha (representing 1% annually of the total
amount of old-growth in this NF), followed by the Okanogan-Wenatchee
NF and by Klamath NF, with an aBAHI of ca. 710 ha (0.8%) and ca. 500 ha
(0.65%), respectively. A similar pattern is observed in mature forests (Fig.
2b), with Okanogan-Wenatchee being the NF with more area of mature
forests threatened annually by high-intensity fire (ca. 2500 ha, representing
1% of the total amount of mature forests in this NF), followed by Shasta-
Trinity (ca. 2100 ha, 0.9%) and Klamath (ca. 800 ha, 0.6%).

By ecoregion and for both old-growth and mature forests, the highest
exposure is in the KlamathMountains/California HighNorth Coast Range,
followedby theNorthCascades (Fig. 2). The ecoregionwith lowest exposure
is the Coast Range. In fact, for both old-growth andmature forests, the total
aBAHIwithin the KlamathMountains/California HighNorth Coast Range
(hereafter Klamath Mountains) alone is higher than the sum of the aBAHI
in all the other NF and ecoregions.

Calculating the exposure as percentage of total MOG within a study
unit provides important detail for understanding the context of potential
loss. The Okanogan-Wenatchee has the highest percentage and amount of
MOG exposed to high intensity fire, followed by Shasta-Trinity, Mt. Hood,
and Klamath (Fig. S3). Overall, the calculated aBAHI is correlated with the
totalMOG in eachNF, illustrating themoreMOG there is themore likely it
is to be exposed. Notable exceptions include fire-infrequent Mt. Baker-
Snoqualmie and the Willamette NFs with proportionally lower exposure
given high amounts of MOG (Fig. S4). Similar patterns occur when calcu-
lating exposure as percentage of totalMOG in each ecoregion. For example,

Fig. 2 | Annual burned area at high intensity (aBAHI, in ha). The figure shows
estimates for (a) old-growth and (b) mature forests by national forest within the
Northwest Forest Plan region, organized by ecoregion and by PNV forest type. Note
the range of values illustrated on y-axis varies among panels. Panels are organized
from highest to lowest, from left to right; the Klamath Mountains and North

Cascades ecoregions host the highest overall exposure for both old-growth and
mature forests. To view these data as percentage of total area, see Supplementary
Material Figs. S3, S6, S8, including interactive materials: https://firerefugia.forestry.
oregonstate.edu/npj_MOG_interactive.html.
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substantial MOG (37% of total in study area) occurs within the Klamath
Mountains ecoregion and it has the highest aBAHI of all ecoregions (Fig.
S3). Within MOG as a whole, the proportion of mature versus old-growth
exposed to stand-replacing fire (aBAHI) varies by NF and forest type, but
over the region old-growth forests are less exposed (Fig. S5).

The most exposed forest types, by total area, across the region are the
white fir—grand fir and Douglas-fir Potential Natural Vegetation (PNV)
types, with ca. 1371 ha and 671 ha annually exposed in old-growth areas,
and 3006 ha and 2662 ha in mature forests, respectively (Fig. S6). The
estimated exposure is roughly correlated with total area of eachMOG forest
type (Fig. S7),with someexceptions.Notably, the subalpinefir—Engelmann
spruce MOG forest type is relatively rare but has the highest annual per-
centage of total MOG exposed (Fig. S8). The PNV forest type classification
system identifies forests by their dominant ‘late seral’ species, i.e., in the
absence of disturbance. Accordingly, white fir-grand fir and Douglas-fir
forest types are often proxies for forests where historically frequent ormixed
severity fire regimes maintained dry, open forest species (e.g., ponderosa
pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), sugar pine
(Pinus lambertiana), oaks (Quercus spp.) and tanoak (Notholithocarpus
densiflorus, larch (Larix spp.), etc.) as characteristic old forest components,
and where fire exclusion has resulted in the densification and infilling of
stands to closed-canopy late seral conditions.

MOG exposure to stand-replacing fires: fire refugia capacity
Topo-climatic and holistic fire refugia data are integrated into analysis to
further refine andquantify the geographyof exposure to stand-replacingfire
for MOG, since fire refugia capacity presents the opportunity to mitigate
wildfire exposure. The topo-climatic fire refugia dataset considers topo-
graphic variables and climate to model fire refugia capacity, while the

holisticfire refugia datasetuses the variables of topography,fireweather, and
fuels/vegetation tomodelfire refugia capacity25. The twodatasets can also be
combined, so that fire refugia capacity is identified whenever at least one of
the datasets indicates fire refugia (topo-climatic + holistic).

Fire refugia capacity potentially protectsMOGagainst stand-replacing
wildfire, represented here as a change (delta) in aBAHI. Figure 3 shows the
overall change in aBAHI, organized by national forest and ecoregion.
Overall, the cumulative layer that includes areas with high probability of
topo-climatic and holistic fire refugia indicates the greatest capacity (by
area) for protecting MOG, followed by the topo-climatic, and then holistic
fire refugia layers alone. Considering both layers as a combined indicator of
refugial capacity leverages the related information each provides. Note, we
consider fire refugia capacity here as ‘potential’, recognizing these models
represent probabilities offire refugia and are not intended to provide certain
outcomes. In absolute terms, the Shasta-Trinity shows the greatest potential
change in aBAHI for all three classes of fire refugia capacity. In comparison,
the Okanogan-Wenatchee appears to have more limited refugial capacity
forMOGboth in absolute and relative terms (see Table S1 andTable S2). By
percentage change in aBAHI for MOG (Fig. S9), the Siuslaw exhibits the
highest fire refugial capacity, highlighting strong fire refugial capacity in a
context of relatively low aBAHI. Naturally, the overall area of fire refugia in
MOG sites, and percentage of MOG classified as fire refugia varies across
NFs (Fig. S9). For example, the Siuslaw NF shows the highest fire refugia in
MOG areas (85% (ca. 100,000 ha) of all MOG sites are considered to be fire
refugia when considering the topo-climatic + holistic dataset), while the
Fremont-Winema shows the lowest (4% (ca. 2700 ha) of all MOG sites
when considering the same fire refugia dataset).

Overall, old-growth forests (Fig. 3a) and mature forests (Fig. 3b) show
similar patterns for reduction in aBAHI when considering fire refugial

Fig. 3 | Reduction (delta) in the annual area (ha). The figure shows reductions of (a) old-growth and (b) mature forests area exposed to stand-replacing fires by national
forest when considering fire refugia capacity. Note the range of values illustrated on y-axis varies among panels. Panels are organized fromhighest to lowest, from left to right.
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capacity. By overall area,mature forests havemore fire refugia capacity than
old-growth (Fig. 3), but proportionally a greater amount of old-growth
forest occurs in fire refugia (Tables S1 and S2). A total of 8%, 19%, and 24%
reduction in aBAHI is estimated for old-growth across the study area for
holistic, topo-climatic and holistic + topo-climatic datasets, respectively.
For mature forests, the estimated reduction in aBAHI is 6%, 17% and 20%
for the same datasets. When considering MOG forests as a whole, we esti-
mate a reduction of 6%, 18% and 21% in aBAHI from fire refugia capacity.

We quantified the relative exposure of MOG by forest type and the
role of fire refugia to highlight forest types potentially facing the highest
risk of loss, even if those forest types are not widespread (Fig. 4). Overall,
the MOG forest types proportionally most exposed to stand-replacing
fire across the NWFP region are subalpine fir (1.1% aBAHI), foothill
pine (0.9%), Douglas-fir (0.9%), and white fir—grand fir (0.7%; Fig. 4a).
From these four forest types, the exposure of both the subalpine fir and
foothill pine is almost entirely within a single NF (Okanogan-
Wenatchee and Shasta-Trinity, respectively (Fig. S6)—also highlighting
the limited area of these forest types in the region—Fig. S8), while the
exposure of white fir—grand fir and Douglas fir appears to be more
dispersed, reflecting the widespread range of these forest types (Fig. S6).
Figure 4b shows the reduction in the exposure to stand-replacing fires
for each forest type when fire refugia are considered. From the four
forest types proportionallymost threatened by stand-replacingwildfires
(subalpine fire, foothill pine, Douglas-fir, white fir-grand fir), the sub-
alpine fir type seems to occur in areas where fire refugia capacity is the
weakest, particularly when considering the holistic fire refugia. This
limited fire refugial capacity likely reflects the properties of this eco-
system type, and low fire resistance plant traits for dominant tree species
such as thin bark. The Douglas-fir type shows the highest fire refugia
capacity, illustrated by the potential reduction in the annual percentage
of MOG exposed when considering all fire refugia datasets (topo-cli-
matic+ holistic). Both foothill pine and white fir—grand fir forest types
show intermediate fire refugia capacity. Of note, the tanoak, Port Orford
cedar, and redwood forest types also show high refugial capacity
demonstrated by a high reduction in annual exposure to stand-replacing
wildfires, particularly when considering the holistic fire refugia. The
patterns described above are similar between old-growth and mature
forests (Figs. S10 and S11).

Comparison with historical fire regimes
The aBAHI in MOG forests classified by historical fire regime provides
important context for exposure metrics. For most NFs, the greatest aBAHI
occurs in areas historically characterized by “very frequent fire with low
severity” and “frequent fire with mixed severity”, with 11 of 16 NF having
more than 50% of aBAHI in these two classes (Fig. 5). This is particularly
evident in theKlamathMountains ecoregion.These regionswherefirewas a
frequent disturbance process have experienced the most impactful change
in stand and landscape conditions from fire exclusion, which has led to fuel
accumulation and consequent emergence of homogeneous landscapes that
arenowprone toburnathigh-intensity andhigh-severity. In comparison, in
the Coast Range and North Cascades ecoregions, a large proportion of
aBAHI occurs in areas characterized by “infrequent fire with high severity”
and “moderately frequent with mixed severity”, suggesting a closer align-
ment between historical and contemporary fire regimes (see Figs. S12,
S13 and S14 for characterization of aBAHI per fire regimes). From the NFs
characterized by an infrequentfire regime, theWillamette shows the highest
exposure.

When considering the overall aBAHI regardless of NF, the fire regime
classesdominatedby “very frequentfirewith lowseverity” and “frequentfire
with mixed severity” account for ca. 75% of the overall aBAHI, suggesting
high contemporary exposure in locationswith historically frequentfire (Fig.
5; see Fig. S15 for proportional exposure of old-growth andmature forests).

Exposure of forest carbon in MOG to stand-replacing wildfire
The total carbon stored in MOG forests is an important ecosystem service,
where stand-replacingfire can result in near-termemission of stored carbon
to the atmosphere. The amount of carbon stored inMOGstocks is unevenly
distributed acrossNFs (Fig. 6a),withWillamette andMt. Baker-Snoqualmie
showing the greatest amount of carbon (ca. 90 million and 84 million tons,
respectively). In terms of ecoregions, both Cascades and Klamath Moun-
tains show the highest carbon in the NWFP region, with ca. 277 and 233
million tons of carbon, respectively, together representing ~71% of the total
carbon in the NFs inside the NWFP. Overall, the spatial pattern of carbon
stored follows the pattern observed for MOG area across NFs.

Combining the estimatedexposure to high-intensitywildfires (aBAHI)
with the information of carbon sequestered in MOG forests provides
information about the annual expected carbon emissions from high-

Fig. 4 | Proportional reduction in exposure to stand-replacing fire in forest types by integrating fire refugia capacity. aRepresents the annual percentage ofMOG forest
exposure to stand-replacing wildfires and b the estimated reduction in exposure, expressed as annual percentage, when fire refugia capacity is considered.
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intensity fire (eCEHI) by area of interest (Fig. 6b), and proportional effects
(Fig. 6c). The eCEHI is calculated by weighting the likelihood of stand-
replacingfires by the estimated carbonemissions fromthosefires;weuse the
eCEHI terminology to recognize uncertainty in wildfire emissions and fire
simulated intensity. The Okanogan-Wenatchee and the Shasta-Trinity are
the two NFs with the highest value of overall potential fire-released carbon
from MOG forests, with 80 thousand (0.14% of total carbon in the forest)
and 77 thousand tons (0.12% of total carbon in the forest) annually of
eCEHI, respectively, corresponding to ca. 53% of the total carbon emissions
across the region. In terms of the eCEHI by ecoregions, the Klamath
Mountains shows the highest value,with an annual average of 160 thousand
tons from MOG forests (54% of the total eCEHI). By considering propor-
tional effects we’re able to identify areas where MOG-carbon stored is
moderately abundant but has high risk of loss, such as the Okanogan-
Wenatchee, Shasta-Trinity, Klamath, Mt. Hood and Six Rivers (Fig. 6c).
Overall, eCEHI (carbon emissions) is strongly correlated with aBAHI
indicating a general equivalency of contemporary MOG carbon profiles
across the region (see Fig. S16).

By summing eCEHI across all forests, approximately 300 thousand
tons of carbon (0.04% of the total carbon sequestered in MOG across the
study area) are estimated to be emitted annually as a consequence of stand-
replacing fire in MOG forests. When we integrate fire refugia capacity, the
pattern is the same as described above in ‘fire refugia capacity’, with the
KlamathMountains showing the highest potential reduction in eCEHI due
tofire refugia capacity, particularlywhen considering the holisticfire refugia
data product (Fig. S17). Across NFs, fire refugia capacity is estimated to
reduce expected annual carbon emissions from MOG between 7% (corre-
sponding to ca. 20,000 tons for holistic dataset) and 21% (corresponding to
ca. 60,000 tons for topo-climatic + holistic dataset).

Discussion
Mature and old-growth (MOG) forests on federal lands in the Pacific
Northwest, along with the critical ecosystem services they provide,
are increasingly threatened by stand-replacing wildfires5. In this
study, we quantify the geography of MOG exposure to stand-
replacing (high-intensity, high-severity) fire for national forests by
integrating fire exposure, fire refugia capacity, forest type, historic fire
regimes, and carbon estimates. Our findings illustrate clear spatial
variability in the exposure of MOG forests to stand-replacing fires
across NFs and ecoregions of the Pacific Northwest. By NF, MOG
forests within the Shasta-Trinity, Okanogan-Wenatchee, and Kla-
math have the highest exposure to high-intensity stand-replacing
fires by area exposed (hectares exposed). The most exposure was
found to be in areas historically characterized by “very frequent fire
with low severity” and “frequent fire with mixed severity”, suggesting
high contemporary exposure in locations with historically frequent
fire. By ecoregion the Klamath Mountains have the highest exposure
by area. We underscore the exposure of specific MOG forest types,
particularly white fir—grand fir and Douglas-fir Potential Natural
Vegetation (PNV). When considering the percentage of MOG type
exposed, the subalpine fir, foothill pine, Douglas-fir, and white fir—
grand fir types show the greatest exposure, which, together with
information from historic fire regime classes highlights a profile of
vulnerability in montane, infrequent fire cold forests (subalpine fir)
and fire excluded dry forest types. Carbon emissions were strongly
correlated with exposure to high-intensity fire across the region,
suggesting that the assumed protection of MOG against stand-
replacing fire would generally equate to protection of terrestrial
carbon equivalently among forests. By comprehensively identifying

Fig. 5 | Percentage of aBAHI by historical fire regime classification, by ecoregion,
NF, and all NFs combined. Green and purple represent historic fire regimes where
frequent, low severity fire is understood to be critical for maintaining forest

resilience. NA represents areas with no fire regime assigned (i.e., classified as non-
forested areas in ref. 82).
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areas of greatest exposure using the context of NF, ecoregion, forest
type, and historical fire regime, we offer insights to inform land
stewardship decisions and support efforts to maintain and restore
MOG forests.

By including concepts and data sources for fire refugia capacity in our
characterization of exposure, we revealed where fire refugia present the
opportunity to mitigate exposure to stand-replacing fire at local scales.
Interestingly, the greatest amount of fire refugia capacity for MOG was

Fig. 6 | Estimated carbon sequestered and carbon emitted during stand-replacing
wildfire in national forests of the NWFP region. a Represents carbon sequestered
(million tons) in MOG forests, b annual average of carbon emitted due to stand-

replacing wildfire (eCEHI) in thousands of tons), and c annual percentage of the
initial carbon stock lost due to stand-replacing wildfires.
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identified in the Klamath Mountains ecoregion, including Douglas-fir and
tanoak forest types, likely due to the complex terrain in this ecoregion, and
the importance of topography34 as key predictors in both the holistic and
topo-climaticfire refugia products. In contrast,fire refugial capacitywas low
in areas dominated by fire-sensitive trees such as subalpine fir—Engelmann
spruce, in part reflecting their low fire resistance traits. We found pro-
portionally higher refugia capacity in old-growth forests than in mature
forests— likely related to old forest development depending on longevity
provided by refugial locations, and mature “fire-excluded” forests more
likely to occur outside of fire refugia locations supported by topographic
features. Regarding the expected carbon emissions from high-intensity fire,
we estimate annual emissions of 300 thousand tons, from which the
Okanogan-Wenatchee and the Shasta-Trinity NF contribute ca. 53%. Fire
refugia capacity could potentially reduce overall carbon emissions from
high-intensity fires by up to 21%. Overall, we found that the occurrence of
fire refugia may offer some degree of local protection to MOG forests, but
themagnitude of this effect varies considerably amongNFs, forest type, and
typology of fire refugia considered. By comprehensively identifying areas of
greatest exposure, we offer insights to inform land stewardship decisions
and support efforts to maintain and restore MOG forests and their carbon
profiles.

The type of mature or old-growth forest is an important consideration
for conservation and management decisions, and our findings illustrate
variability in exposure by forest type and historical fire regime across the
region.When considering the total amount of area threatened annually, our
analysis revealed that white fir—grand fir and Douglas-fir forests are the
most expansive exposed types across both old-growth and mature forests.
These two forest types often represent dry MOG forest, where historically
frequent fire has been excluded and forest succession has contributed to
expansion of highly continuous fuels. Fire exclusion has resulted in sig-
nificant changes in forest structure, composition, and distribution (e.g.,
densification, mesophication, expansion of stands from fire refugia)35–38, in
historically more open-canopy stands, which increase fire intensity and
severity. However, when considering the proportion of the forest type in
mature and old-growth forests, subalpine fir, foothill pine, Douglas-fir, and
white fir—grand fir have the highest exposure. Subalpine forests are cold
seasonal snow-type forests where fire behavior is strongly linked to hot-dry-
windy conditions and timingof snowmelt. In these regions, infrequenthigh-
severity fire events are a dominant component of the historic and con-
temporary fire regime. Subalpine forests were previously identified as
experiencing the largest increase in fire frequency and severity in the period
1985–2010 in the eastern Cascade Mountains39. Our results reinforce the
urgent need for restoration and adaptation efforts in dry forest settings to
reduce the probability of stand-replacing fire and tailor actions to support
characteristic MOG forest types40,41.

The analysis provides a demonstration of how fire analytics can
provide estimates characterizing exposure of MOG to stand-replacing
fire by leveraging unique information from different products.
Including fire refugia capacity in analysis allowed us to identify the
potential role of fire refugia in mitigating exposure to stand-replacing
fire predicted by fire behaviormodels, through local biophysical settings
that could provide conditions that protect MOG34. Fire spread simu-
lations are crucial to capture fire patterns across large landscapes42, but
are usually run at a spatial resolution that captures coarser patterns and
using model assumptions that are not as sensitive to local fire refugia
(e.g., 270 m used for fire simulations against the 30 to 90 m resolution
used for fire refugia mapping)23,43. Fire refugia products identify bio-
physical settings most likely to persist as fire refugia at local scales and
provide probabilistic maps of potential fire refugia capacity with a high
spatial resolution based on recent observations of fire effects. Further-
more, the fire refugia models we use here are relativized–in other words
they represent the probability of fire refugia given a fire were to occur.
By synthesizing the aBAHI and fire refugia capacity metrics, we more
comprehensively capture fire probability, intensity, and severity as a
whole. As the science-manager community increasingly develops new

data analytic products it is important to consider, and to experiment
with, how data ensembles can be brought together in effective ways.

We used historical fire regimes to provide context for interpreting the
patternsof areaburnedat high intensity (aBAHI).Thehistoricalfire regimes
characterizefire frequency and severity prior to fire exclusion (i.e.,≈ 1850s),
which are oftenused to estimatehowcurrent conditions are departed froma
more resistant and resilient historical condition. Our results show the
majority of aBAHI occurs in areas that historically burned frequently and
with low tomixed severity, where current conditions aremore likely to carry
crown fire than in the past. Fire exclusion is a well-described driver for
landscape homogenization, fire intensity, severity, and size44, with greatest
impacts in ecosystems historically adapted to frequent fire16. As a con-
sequence, recent decades show an increase in burned area and severity, that
led to the loss of important forest and ecosystem components45,46. The
MendocinoNF is a particularly extreme examplewhere ca. 90%of the forest
has burned in theperiod2018-2023.Even thoughoverallfire exposure in the
Mendocino is relatively low compared with other NFs, the effects of long-
term fire exclusion had altered the forests such that they had become highly
susceptible to adverse fire effects. Protecting the remaining MOG forests
that occur in fire refugia from stand-replacing fires while restoring his-
torically resilient forest conditions outside of fire refugia is critical to avoid
the complete loss ofMOG across the forest. High-severity fire has played an
important ecological role in the NWFP region historically; however, the
patch size, overall regional extent, and frequency of high-severity fire in
recent years are raising concerns for forest management and conservation,
given the legacy of land use and land cover change in the region. Interest-
ingly, a fire deficit still likely persists even considering the recent increase in
burned area47, but that deficit skews toward insufficient lower severity fire.
As highlighted by Parks et al.47, area burned in recent years is not unpre-
cedented across many North American forests, but fire severity likely is.

Areas that historically burned frequently with low severity have been
identified as priorities for fuel treatment for more than two decades48. Our
findings further highlight the need for landmanagers to prioritize reducing
fire intensity and stand-replacing fire in these areas with historically high-
frequency low-severity fire to safeguard MOG trees and forest stands.
Theoretically,managers could treat a standofMOGthat isfire excluded and
vulnerable to stand-replacing fire to restore it back to a more fire resistant
MOG condition, as an example of active management supporting MOG
forests. Importantly, it is critical to understand there is still fire refugia
capacity in landscapes where fire exclusion has modified forest conditions.
Fire refugia can occur as open-canopy and closed-canopy fire refugia40, with
unique biophysical conditions to support maintenance and recruitment of
MOG forests. Integrating fire refugia into conservation planning, and
understanding their characteristic locations on the landscape40, can help
managers distinguish where protective actions are sufficient and where
active restoration (e.g., thinning, prescribed fire) is most needed to restore
heterogeneous landscape mosaics, and to create fire resilient conditions to
support habitat for species, and maintain ecosystems services41.

In the Pacific Northwest USA, MOG forests are widely recognized as
crucial global carbon reservoirs49,50, particularly relevant for climate change
mitigation strategies. Our analysis revealed that the Willamette and Mt.
Baker-Snoqualmie NFs support the greatest amount of carbon in forest
ecosystems of the NWFP region and that these two forest units do not
currently have high exposure to stand-replacing fires in MOG relative to
other forests in the region. However, projected increases in frequency and
extent of largewildfires due to climate change are expected across the region,
especially on theWillamette National Forest51,52, as seen in the last few years
of observed fire activity.

We found that expected carbon emissions from high-intensity fire
(eCEHI), i.e., loss, are highly correlated with exposure, such that stand-
replacing fires impact all MOG types and geographies similarly. The
variability observed in fire effects, including above ground carbon loss, is
dependent on fire intensity. Our analysis is restricted to high-intensity fire
withinMOGand calculations do not include combustion of carbon in soils,
so it is unsurprising that carbonemissions scaledirectlywith the areaburned
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at high intensity. The Okanogan-Wenatchee and the Shasta-Trinity are the
NFswith the greatest exposure for carbon emissions to the atmosphere from
MOG, corresponding to 80 thousand and 77 thousand tons annually of
eCEHI, respectively, corresponding to ca. 53% of the total eCEHI from
MOG across NFs. The Klamath Mountains ecoregion shows the highest
eCEHI value, with the majority (54%) of the estimated emissions from
MOGoccurring in this region. Fire refugial capacity shows a relevant effect
in reducing eCEHI (total maximum reduction of ca. 60,000 tons - 21% -
when considering the topo-climatic + holistic dataset), with the Klamath
Mountains being the ecoregion with the greatest reduction in eCEHI. The
potential loss of MOG forests, either due to intense wildfires or due to
potential modification in federal forest policy and harvest restrictions53 will
impact the capacity of these forests to serve as carbon reservoirs in the
future51,54.

Our findings are highly dependent on the definition and mapping of
mature and old-growth forests55, and characteristics of fire behavior and
severity. Defining MOG forests was previously described as a “wicked
problem”56, as its definition relies on considerations of ecology, policy, and
values57. However, ongoing and future investments in MOG mapping
continue to provide refined estimates of this important stage of forest suc-
cession through remote sensing andfield estimation.The results shownhere
are also highly dependent on the fire simulations. Carlson et al.58 andMoran
et al.59 showed that estimated burn probability BP are correlated with
observed burned area in the subsequent years. This benchmarking of per-
formance also highlights areas where burn probability was underestimated
due to recent changes in climate, vegetation or human ignition patterns that
were not reflected in the fire simulations58. Building on these efforts, there is
still aneed to evaluate howwellfire spreadmodels can replicate observedfire
intensity patterns, especially given that recent FSimmodeling for theNWFP
region indicates increasing fire activity in the moister forest types52. Simi-
larly, fire refugia models have elements of uncertainty and error40, such that
our assumption here that locations identified with high fire refugia capacity
would necessarily mitigate high-intensity fire predicted by the fire behavior
simulations in silica is unlikely to occur at all times if played out in the real
world. However, these models and fire analytics provide the opportunity to
use best available scientific data to understand complex phenomena at
broad scales of management and scientific relevance.

MOG mapping technologies, fire spread simulations, and fire refugia
models are in constant refinement. For instance, lidar data are being
increasingly used for mapping MOG in ways that complement existing
methods, newfire simulations include relevant updates in input data,model
calibration, and analytical windows to better characterize fire hazard and
dynamic landscapes. Also, fire refugia models becomemore robust as more
historical data become available to train and test models40. Potential
refinements to the carbon emissions modeling include quantification of
carbon combustion in soils and improved representation of forest floor
carbon pools, expanding the temporal analysis to quantify the carbon fluxes
associatedwith the transitionof trees from live biomass to deadmaterial e.g.,
through delayed mortality and decomposition, and storage of carbon in
relatively stable forms of pyrogenic carbon. Finally, it is important to note
that climate change was not considered in any part of the analysis. Climate
change is expected to have a significant impact on fire frequency, extent and
behavior in this region11,51,52. The increase in extreme fire seasons, together
with other climate events such as droughts, can further exacerbate fire
severity and treemortality60,61.WhilehistoricallyMOGforests, especially the
interior portions of closed-canopy MOG patches, are generally more
resistant to these climate-enabled events62–64, the continued loss ofMOG, the
edge effects created by landscape fragmentation, and continued impacts of
fire exclusion in historically frequent fire landscapes may further erode the
persistence of MOG across the region. Identifying management actions to
protect and restore existing MOG, and recruit MOG in the long-term, are
key conserving and adapting forests of the region to global change.

With this study we provide a regional overview and spatial ecology of
MOG exposure to stand-replacing fire, that contributes to the ongoing
conversation about forest stewardship, restoration, and adaptation of forest

ecosystems in the PNW.We demonstrate how exposure of MOG forests to
stand-replacing wildfire varies among national forest units, ecoregions, and
forest typeswithin the context of historic fire regimes; examine the potential
role offire refugia inmitigating this exposure; and estimate the geography of
projected carbon emissions related to loss of MOG to stand-replacing
wildfire. The findings from our work can be of interest to researchers,
regional and localmanagers, and planners65 to support the decision-making
process, including for example, the distribution and prioritization of
restoration and fuel reduction investments.Wedemonstrateone example of
using fire refugia data and concepts to refine wildfire risk assessment, but
emphasize there aremany differentways these products could be applied, as
illustrated in the growing case studies using fire refugia data to inform
management25,40,41. Continued collaborative partnerships between scientists
and local managers to develop realistic strategies and tools to mitigate loss
and restoreMOGwithin forest landscapes are critical to the development of
science-based solutions for forests globally.

Methods
Study area
The studywas conducted in theNorthwest Forest Plan area (NWFP; Fig. 1).
TheNWFPcovers ca. 9.9millionhaof federallymanaged forest lands across
western Oregon, Washington, and northwestern California. The NWFP
was established in 1994 to balance the competing demands of protecting
old-growth forests, conserving biodiversity, and supporting timber pro-
duction and rural communities18. Our study was conducted in ca. 8 million
ha, unevenly divided across 16 NFs and one national scenic area located
inside theNWFP as identified in Fig. 1. TheModoc and LassenNFwere not
considered in this study since only ca. 3% of their area is inside the NWFP
footprint.

Mature and old-growth forest data (MOG)
We used the Old-Growth Structure Index (OGSI) to quantify mature and
old-growth (MOG) forest across the region19. The OGSI is a continuous
metric that incorporates structural attributes typically associated with older
forests, that was developed for monitoring purposes across the NWFP
region. It is defined using density of large live trees, diversity of live tree size
classes, density of large snags, and cover of down woody material19,20. The
index ranges from 0 to 100, with higher values reflecting increasing old-
growth structural characteristics20. Two thresholds are applied to OGSI to
reflect mature and old-growth forests, based on estimated stand age: ≥ 80
years (OGSI-80), representing forests that had achieved structure associated
withmature and late-successional forest in the region, as well as forests that
progressed past maturation and show a structure associated with old-
growth; and ≥200 years (OGSI-200) that represents only forests with a
structure associated with old-growth in the NWFP region20. To isolate
mature forests from old-growth forests, the spatial footprint of OGSI-200
was subtracted from the OGSI-80 to differentiate between the spatial dis-
tribution of mature forests and old-growth (MOG) forests.

The OGSI maps representing mature and old-growth forests were
further classified based on spatial pattern: cores, edges, fingers, and
scatter19,20. In this study, we selected only the cores and edges (that together
form patches), which represent stands of older forest that are at least 0.8
hectares in size. Fingers and scatter were discarded from the analysis as they
represent isolated or fragmentedMOG forests19. The selection of patches of
MOG identified fromOGSI follows previous analysis, see ref. 19. However,
it is important to recognize that usingOGSI tomapMOGforests is basedon
forest inventory and analysis (FIA) plots integratedwith remote sensing and
gradient nearest neighbor models–and despite the maps being the best
available estimate of MOG across the region, they are not perfect
representations.

Here, we used the OGSI version updated to 2025 (latest version
available) at 30m resolution. This version considers the OGSI value from a
baseline model year of 2017, then corrects the classified value in areas with
relevant disturbance (e.g., fire severity) between the years 2018 and 2024.
TheMorphological Spatial Patterns algorithm is usedwith theseOGSImaps
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to develop the landscapemetrics of core, edges, fingers, and scatter based on
neighboring pixels19.

Potential natural vegetation (forest types)
Weused Potential Natural Vegetation (PNV) to quantify forest types across
the region66 and summarized these into 18 forest types. PNV reflects the
capacity of land to support specific ecosystems, and can be interpreted as
what “would become established if all successional sequences were com-
pleted (…) under the present climatic and edaphic conditions” in the
absence of human and natural (e.g., fire) interference21. We use the PNV to
characterize the spatial patterning of forest types as they would likely occur
under current climate and soil conditions, and then interpret the results in
the context of historic fire regimes to clarify the “potential” or climax stage,
versus “characteristic” forest types in locations where fire exclusion has
disrupted fire-succession cycles. For example, a white fir-grand fir PNV
represents biophysical settings that could support closed-canopy stands
with these true firs as the dominant tree type in the absence of fire (e.g., their
potential or climax). However, historically frequent fire in these dry forest
typesmoreoften kept them inopen-canopy conditions,with importantfire-
resistant species like ponderosa pine being the ‘characteristic’ historical
condition; the same could be said for the Douglas-fir PNV. This is also true
for moister forest types. For example, the western hemlock PNV is the
‘potential’ for what we largely observed as characteristic Douglas-fir forests
across the region. The exclusion offire inmany forest types of the region has
resulted in infilling and densification, including the loss of historically
characteristic old pines and oaks. The PNV system is valuable as a scaf-
foldingof forest types across the region, butneeds tobe interpreted correctly.
The PNV is determined by several factors, including climate, geology,
geomorphology, soil characteristics, and vegetation67, and reflects the rela-
tionships between vegetation, land, and ecosystem processes68.

Here,we used the 2022 version ofPNV for the region66. ThePNVmaps
were built using gradient nearest neighbor modelling69, with further
refinements that consider local characteristics (see70 for details on methods
and accuracy assessment).We overlapped the 30m resolution 2022 version
of PNVwith theOGSI data to classify the different zones ofmature and old-
growth forests.

Wildfire simulation
Weusedfire occurrence and growth simulations to quantify the exposure of
MOG forest to high-intensity wildfire. Simulation data were derived from
the FSim model30,42, which was designed to simulate fire occurrence and
growth under thousands of hypothetical fire seasons that represent current
spatial patterns and fire regimes. FSim attempts to model the ignition and
growth of relatively large and fast-moving fires, since those are the ones
accounting for themajority ( ~80–97%)of total area burned. For this reason,
the weather conditions used to simulate fire spread represent at least the
80th percentile condition, i.e., dry fuel conditions30. Fire growth and beha-
vior is calculatedusing standardFlamMap routines and theminimumtravel
time (MTT) algorithm. FSim outputs include burn probability and fire
intensity (e.g., flame length) of a given area (i.e., pixel) in the landscape. The
fire simulations used were developed by Dillon et al.30 for the United States
with a spatial resolution of 270 meters. The FSim model was calibrated by
comparing the simulated and historical statistics, such as mean annual
number of large fires permillion burnable acres, andmean annual large-fire
area burned permillion burnable acres (see ref. 30 formore details). Thefire
simulations represent the landscape that existed in the year of 2020. Every
year, the fuelsprofile of the region changesdue to additionaldisturbance and
succession, however, due to the computational demand of running these
models it is common for simulations to be used in analyses even if there is a
modest difference in the timestamps of data being used. The broad regional
scale of analyses means that the overall patterns observed are robust, even if
the fuel characteristics of any particular pixel may have changed. The FSim
simulations (both the current and previous version) have been used in a
wide rangeof studies (e.g. refs. 31,32),with somehavingdirect impact onfire
and land management policies29.

Our focus in this study is on high-intensity fire that would be expected
to degrade MOG forest zones through high-severity, stand-replacing fire
effects. The FSim outputs of annual Burn Probability (aBP) and probability
of flame length over 2.4m (8 feet) were combined to create the annual Burn
Probability ofHigh-Intensityfire (aBPHI). Theuse of 2.4 mas a threshold to
define high-intensity fires was based on the possibility of occurrence of
torching and crown fire, as identified in Tedim et al.71.

Old-growth exposure to high-intensity wildfires
Theprobability of occurrence of high-intensitywildfirewas calculated as the
product of the probability offlame length over 2.4m and the estimated aBP.
This was converted to annual burn area at high intensity (aBAHI)72 by
multiplying by the area of each pixel j (30m resolution):

aBAHIj ¼ aBPj × ðFLP ≥ 2:4m jÞ× areaj ð1Þ

Where aBAHIj is the annual burned area at high intensity ( ≥2.4m; in
hectares) in pixel j;aBPj is the estimated annual burnedprobability at pixel j;
the FLP ≥ 2:4m is the probability of a fire exhibit a flame length greater or
equal to 2.4 m in pixel j; and the pixel area represents the area of pixel j,
which is 0.009 hectares (30-m resolution resulting from resampling of the
original resolution to match the remaining datasets). We use the term
‘stand-replacing fire’ to refer to high intensity behavior.

Fire refugia data
We used fire refugia data products to quantify fine scale locations on the
landscape where unburned or low severity fire effects are expected if a fire
were to occur (i.e., contingent on fire occurrence). Fire refugia can be
described as locations that burn less severely and/or less frequently than
surrounding areas22–24. The termfire refugia is used in aflexibleway, and can
be applied to unburned areas as well as areas that experience low severity
fires. The fire refugia data products were developed using more refined
topographic information than included in the fire simulations, and are
estimated using statistical models at a finer spatial scale.

Two datasets of fire refugia were used in this study: the topo-climatic
and the holistic fire refugia25. The topo-climatic fire refugia uses four
topographic variables conditioned on climate (normal fire environment
from Davis et al.51) as explanatory variables to model the conditional
probability of fire refugia. The topo-climatic fire refugia models do not
include information on fuels/vegetation, and characterize the fire environ-
ment based on 30-year baseline normal climate (1971–2000); predictions
for climate at 1991–2020, 2031–2060, and 2071–2100 are available but not
used here. Theholisticfire refugia incorporate topography,fireweather, and
fuels/vegetation to model the conditional probability of fire refugia, fol-
lowing general methods illustrated in ref. 73. The holistic fire refugia pro-
ducts were developed for three different fire weather conditions: benign,
moderate and highfireweather conditions.Here, we selected thefire refugia
probability calculated from the high fire weather conditions scenario, that
represents the 90thpercentile of daily temperature and the 10thpercentile of
daily relative humidity. Bothfire refugia datasets are available for theNWFP
area74.

The twofire refugia datasets represent complementary estimates offire
refugia capacity, quantified as a continuous likelihood for occurrence of fire
refugia, conditional on fire burning the pixel. Following previous studies25,
we set a threshold of 40% to define potential fire refugia sites, as this
threshold represents a moderate-high fire refugia potential. The datasets
were used individually to generate a 1) holistic and 2) topo-climatic refugia
scenarios, and 3) topo-climatic+ holistic by extracting themaximum value
of fire refugia between the two datasets per pixel and applying the 40%
threshold25. There is no one best way to apply fire refugiamodels to analysis.
Increasingly managers and scientists are applying fire refugia data to ana-
lyses and decision-making and co-producing ideas for how best to include
fire refugia products for a given goal, for example see refs. 25,40,41.

We integrated these fine scale fire refugia data (30m for holistic, 90m
for topo-climatic) with the coarser scaled FSim exposure to high-intensity
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fire (aBAHI) data to identify the degree towhichfire refugial capacitymight
mitigate loss of MOG to stand-replacing fire, in particular due to topo-
graphic protection and stand conditions. The assumption is that high-
intensityfires (or stand-replacing fire effects) do not occur insidefire refugia
areas, even if a high-intensity fire occurred in the fire behavior simulations.
However, we emphasize that fire refugia capacity here is considered as
‘potential’, recognizing these models represent probabilities of fire refugia
and are not intended to provide certain outcomes. Validation studies to
compare predicted fire refugia capacity with observed fire severity from fire
events not used for model development demonstrates that observed low/
unburned fire severity patterns generally correlate with high fire refugia
probability, though with substantial variability40,73. Both the fire simulations
and fire refugia data are models considered best available science that
capture generalized fire effects.

Historical fire regimes
We use data mapping historical fire regimes to characterize the conditions
prior to European colonization and settlement, and before the disruption of
fire stewardship practiced by Indigenous peoples, and fire exclusion policies
(ca. pre-1850 in the western US26). Four fire regime categories were
identified26 and include: infrequent fire with high severity, moderately fre-
quent with mixed severity, frequent fire with mixed severity, and very fre-
quent fire with low severity.

The four categories of fire regime estimate the pyrogeography of
the region. Following the characterization in Spies et al.26, infrequent
fire with high severity is generally categorized by more than 200-year
return intervals and by large patches (1 thousand to one million acres)
of high-severity fire, as stand-replacing events. The moderately fre-
quent with mixed severity fire regime is characterized by fires with a
return interval between 50 to 200 years, with burned areas exhibiting
patches burned at high-severity interspersed with moderate and low
severity. The frequent fire withmixed severity category is characterized
by a return interval between 15 to 50 years, with medium sized-patches
(up to 10,000 acres) burned at high-severity and widespread low
severity fire. Finally, the very frequent fire with low severity is char-
acterized by 5 to 25-year return interval, dominated by low intensity
low severity surface fires. Historically, fire was more frequent in drier
forests with ponderosa pine (Pinus ponderosa), grand fir (Abies
grandis) and white fir (Abies concolor), Douglas-fir (Pseudotsuga
menziesii) and tanoak (Notholithocarpus densiflorus)26. Moister and
colder ecosystems with western hemlock (Tsuga heterophylla), Pacific
silver fir (Abies amabilis), mountain hemlock (Tsuga mertensiana),
Engelmann spruce (Picea engelmannii) and grand fir were character-
ized by lower fire frequency but with higher intensity and/or severity26.
Historical fire regimes are often used as a guideline for restoration of
resistant and resilient forest ecosystems, considering the long history of
persistence of those forest types prior to fire exclusion policies (e.g.,
refs. 48,75). Fire exclusion is considered one of the major threats to
historically frequent and mixed severity fire ecosystems, due to local
and landscape increases in fuel loads, continuity, and homogeneity in
the last 100+ years16,76.

Carbon data
We used the forest carbon dataset produced in (77; 2020 data is unpublished
but available from the author). Forest carbon was estimated for 2020 at a
spatial resolution of 30mby simulating TreeMap78 and FuelMap79 stands in
theFire andFuelsExtension to theForestVegetationSimulator (FFE-FVS)80

and extracting the total stand carbon from the Carbon Table. The forest
carbon was then intersected with the mapped MOG forests.

The expected annual carbon emitted by stand-replacing wildfires
(eCEHI) was calculated using an actuarial framework27. FFE-FVS was used
to simulate fires at a set of six intensities to estimate carbon emissions to
correspond to FSim conditional flame length probability (FLPs) maps, also
reported in the Carbon Table. Expected carbon emissions from high-
severity wildfire were calculated by multiplying the carbon emissions from

the two highest FLs (8–12 ft and ≥12 ft) by the corresponding FLP, sum-
ming these results, and weighting them by the total burn probability. The
eCEHI was calculated for each pixel j as:

eCEHI ¼ aBPj

X6

i¼5

CEi;j × FLPi;j ð2Þ

where aBPj is the annual burn probability of pixel j burning at any flame
length;CEi;j is the estimated carbon emissions atfire intensity i for pixel j;
and FLPi;j is the probability of pixel j burning with a flame length of i,
given a fire occurs. FLPs are calculated from distribution of fire inten-
sities for each pixel from FSim fire spread simulations at fixed intervals,
i.e. 8–12 ft, but carbon emissions from wildfires were estimated by set-
ting static flame lengths in FFE-FVS simulations. For FLP5 (flame length
≥ 8 feet and < 12 feet) themid-point value of 10 ft was used, and for FLP6
the class of flame length ≥12 feet a value of 20 ft was used30. The carbon
and carbon emission datasets were generated at a spatial resolution of
30 m; and represent immediate carbon emissions from above ground
biomass combustion.

Geospatial analysis
This study uses several datasets to assess MOG exposure to stand-replacing
wildfire, as detailed above. The datasets have different native resolutions,
from the coarser 270m fire simulation data to the higher resolution 30m
data from the MOG, PNV, holistic fire refugia, and carbon sources. All
datasets were snapped and resampled to 30m resolution as needed. The
datasets were then overlapped to estimate exposure of MOG forests inside
NFs in theNWFP region at a 30-m resolution; note that resampling to 30-m
resolution does not reflect additional spatial detail. All analyses were con-
ducted in R environment81.

Data availability
All dataused in this study arepublicly available.Thedata generated from the
analyses is available upon reasonable request.

Code availability
All the code developed in this study for the analyses is available from thefirst
author upon reasonable request.
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