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Wildfires will intensify in the wildland-
urban interface under near-term warming

Check for updates

Calum X. Cunningham 1 , John T. Abatzoglou 2, Todd M. Ellis1, Grant J. Williamson 1 &
David M. J. S. Bowman 1

Dangerous fire weather is increasing under climate change, but there is limited knowledge of how this
will affect fire intensity, a critical determinant of the socioecological effects of wildfire. Here, wemodel
relationships between satellite observations of fire radiative power (FRP) and contemporaneous fire
weather index, and then we project how FRP is likely to change under near-term warming scenarios.
The models project widespread growth in FRP, with increases expected across 88% of fire-prone
areas worldwide under 1.5 °Cwarming. Projected increases in FRPwere highest in theMediterranean
biome and Temperate Conifer Forest biome, and increases were twice as large under 2 °C warming
compared to 1.5 °C. Disaster-prone areas of the wildland-urban interface saw an average of 3.6 times
greater projected increases than non-disaster-prone areas, suggesting wildfire impacts will intensify
most in regions already vulnerable to dangerous wildfires. These findings emphasise the urgent need
to anticipate changes to fire behaviour and proactively managewildland-urban ecosystems to reduce
future fire intensity.

Climate change has increased extreme fire weather globally1, leading to
larger, more intense, and more destructive wildfires2–4. Fire intensity,
measuring the rate of energy released by the combustion of organicmatter5,
is a critical feature of changing fire regimes because intensity influences the
degree to which fires can be suppressed, as well as their effects on ecosys-
tems, societies, smoke exposure, and carbon emissions6–9.

Some regions have experienced increases in fire radiative power (FRP)
—a proxyoffire intensityoftenusedby remote sensing studies (e.g.10)—over
the last twodecades.This includes a global trendof increasingFRPatnight11,
as well as regional increases in FRP in southern Australia, western North
America, andmost boreal forests12. Thenumber of energetically extremefire
events has more than doubled this century globally, with the six most
extreme years occurring since 201713. Recent fire disasters with extra-
ordinary property damage and loss of life (e.g., LosAngeles 2025,Valparaiso
2024, Lahaina 2023) have drawn sharp focus on the problem of intense fire
intersecting the wildland-urban interface—the area where human devel-
opmentmeetswildlands14. There is already strong evidence thatfire regimes
are changing and that fire weather will continue to increase with warming
temperatures15,16, but there is little understanding of how changes in fire
weather will affect both fire intensity and exposure of the wildland-urban
interface (WUI) to intensifying fire around the world7.

To address this gap,wedeveloped statisticalmodels of theFRPof active
fires observed byMODIS satellites from 2000 to 202317, and then projected
fire intensity under relatively near-term climate projections.We focused on

warming of 1.5 °C above preindustrial levels, corresponding to approxi-
mately the next decade or two18, and 2 °C. These scenarios represent an
additional 0.48 °C and 0.98 °C above the period 2000–2023, respectively.
They reflect a realistic decision horizon for vegetation management and
planning, distinct from abstract, end-of-century predictions, such as the
frequently used high-end emissions scenario that involves >4 °C warming
by 210019. Predicting near-term conditions also has the benefit that vege-
tation types and human distributional patterns will be broadly similar to
those underwhich ourmodels of FRPwere fitted. This is important because
forecasting longer-term vegetation is plagued with uncertainty due to
intrinsic climate-vegetation-fire feedbacks20, uncertain effects of increasing
fire frequency such as interval squeeze21, land cover change from human
activities, and the contrasting effects of CO2 fertilisation and atmospheric
drying on plants22,23. Short-range projections obviate these uncertainties, as
well as longer-term uncertainties in climate models and the emissions
pathway we ultimately take.

To project fire intensity, we fit generalised additive mixed-effects
models (GAMs) of FRP as a function of contemporaneous Canadian Fire
Weather Index (FWI)24, while accounting for other environmental variables
that likely influence fire intensity (tree cover, leaf area index, slope, biome,
biogeographic realm, ecoregion). FWI is a numeric rating of the influence of
weather on fire behaviour calculated from consecutive daily observations of
temperature, relative humidity, wind speed, and precipitation24, and has
been widely used to evaluate fire weather and risk around the world

1Fire Centre, School of Natural Sciences, University of Tasmania, Hobart, Australia. 2Department of Management of Complex Systems, University of California,
Merced, Merced, CA, USA. e-mail: calum.cunningham@utas.edu.au

Communications Earth & Environment |           (2025) 6:542 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-025-02475-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-025-02475-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-025-02475-y&domain=pdf
http://orcid.org/0000-0003-1640-2533
http://orcid.org/0000-0003-1640-2533
http://orcid.org/0000-0003-1640-2533
http://orcid.org/0000-0003-1640-2533
http://orcid.org/0000-0003-1640-2533
http://orcid.org/0000-0001-7599-9750
http://orcid.org/0000-0001-7599-9750
http://orcid.org/0000-0001-7599-9750
http://orcid.org/0000-0001-7599-9750
http://orcid.org/0000-0001-7599-9750
http://orcid.org/0000-0002-3469-7550
http://orcid.org/0000-0002-3469-7550
http://orcid.org/0000-0002-3469-7550
http://orcid.org/0000-0002-3469-7550
http://orcid.org/0000-0002-3469-7550
http://orcid.org/0000-0001-8075-124X
http://orcid.org/0000-0001-8075-124X
http://orcid.org/0000-0001-8075-124X
http://orcid.org/0000-0001-8075-124X
http://orcid.org/0000-0001-8075-124X
mailto:calum.cunningham@utas.edu.au
www.nature.com/commsenv


(e.g.1,25,26). Based on the statistical relationship between FWI and FRP, we
then projected FRP under future fire weather. Future FWI was estimated
using a pseudo climate change experiment that involved perturbing his-
torical FWI values (2000–2023) by monthly pattern scaling27 as derived
from the multi-model median of 20 general circulation models (Supple-
mentary Table 1). After projecting future fire intensity, we intersectedmaps
of the estimated change in fire intensity with a recent map14 of the WUI,
allowing us to identify geographic concentrations of human exposure to
increasing fire intensity over near-term horizons most relevant to decision
making28.

Results
Fire weather increases fire intensity
Fire weather was positively associated with fire intensity in all biomes, but
response curves varied in steepness and curvature among biomes (Fig. 1).
GAMs explained on average 30% of the deviance (range: 20–42%) in FRP,
and FWI improved model fit for each biome (Supplementary Fig. 1). The
steepest responses to FWI occurred in regions well-known for intense fires
with high socio-economic costs7,29, most notably, the Temperate Broadleaf
Forest biome inAustralia andSouthAmerica, theTemperateConifer Forest
biome in North America, and the Mediterranean biome globally (Fig. 1).
These steeper response curves imply that increases in fire weathermay have
more pronounced effects on fire intensity in those regions compared to
regions with flatter response curves. The best-performing models (Sup-
plementary Fig. 1) consistently revealed different effects of FWI at day and
night, with nighttime FRP consistently lower (Supplementary Fig. 2). The
best-performingproxyof fuel loadvaried bybiome,with FRPbest explained
by leaf area index in sevenbiomes andbypercent tree cover in the remaining
six biomes (Supplementary Fig. 1).

Projected changes in fire weather and fire intensity
Projected fire weather under 1.5 °C and 2 °C warming (Supplementary
Fig. 3) indicates that the number of days exceeding the 93rd percentile
(2000–2023) of FWI (FWI93) will increase by an average of 2.3 and 5.3 days
per year globally (Supplementary Fig. 4), respectively. Increases were most
pronounced outside the tropics (Supplementary Fig. 3), with the Medi-
terraneanbiomeprojectedunder 2 °C tohave anadditional 7.7 daysper year
above FWI93 (Supplementary Fig. 4). We focus here on FWI93 because it
reflects potentially dangerous fire weather that would occur in most fire
seasons (25thworst day in a year) and has been shown to be associatedwith
energetically extreme fire events7, but see Supplementary Fig. 6 for a com-
parison of other FWI percentiles.

Under theFWIprojections, ourmodels project that 88%(+1.5 °C) and
89% (+2 °C) of fire-prone (see Method) areas on Earth are likely to
experience statistically significant increases in fire intensity (i.e., lower
confidence bound for the projected difference > 0), while holding other
predictors unchanged.Under 1.5 °Cwarming, FRPprojections increased by
a global mean of 0.69MW/pixel (1%), with increases as large as 29.7MW/
pixel (7.1%) in the temperate broadleaf forests of South America. Increases
were largest in the boreal forests, western North America, southern Ama-
zonia, southern South America, Mediterranean Europe, southern Africa
and southern Australia (Fig. 2b).

Patterns were similar but an average of 2.1-fold larger and up to
64.8MW/pixel (15.6%) under 2 °C warming (Fig. 2c). The substantial
increase from 1.5 °C to 2 °C highlights the importance of every prevented
increment of warming. Substantial parts of these regions, such as the
Amazon rainforest and boreal forests, contain intact forests of immense
natural value with major carbon stores, while the remainder include the
juxtaposition of flammable wildlands and urban areas (i.e., the WUI).
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Fig. 1 | Fire weather index (FWI) is positively associated with fire radiative
power (FRP). Lines show the fitted responses (±95% CI) from the GAMs, with all
other predictors held at their realm-specific means. Panels are ordered from largest
to smallest effect of FWI, measured by the difference between the maximum and

minimumpredictions of FRP in response to FWI. Lines show the fitted responses for
daytime FRP, but see Supplementary Fig. 2 for a comparison of day and night
responses to FWI. For visualisation purposes, axes are shown on the log scale, and
the x-axis is truncated at 10.
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Near-term increases in fire intensity in the wildland-urban
interface
Intersecting a map of the WUI14 with projected increases in fire intensity
(Fig. 1c) identified several regions already known for their relatively high
incidence of socially disastrouswildfires29—namelywesternNorthAmerica,

Chile, South Africa, Mediterranean Europe and southern Australia—as loci
of substantial change (Fig. 3 and Supplementary Fig. 7). In support of this
pattern, increases in projected fire intensity under 1.5 °C warming were 3.6
times larger at 159 WUI locations (reported by Cunningham et al.29) that
have experiencedmajor socioeconomicwildfire disasters from1980 to 2023

Fig. 2 | Increasing fire weather under climate
change will lead to increasing fire radiative power.
a Projected fire radiative power from the GAMs
under FWI93 for the period (2000–2023) aligning
with the MODIS active fire data. b, c The difference
between projected FRP under FWI93 historical
(2000–2023) and FWI93 with 1.5 °C and 2 °C
warming above preindustrial levels (0.48 °C and
0.98 °C above 2000–2023). FWI projections were
based on a pseudo climate change experiment
involving the multi-model median of 20 general
circulation models. For visualisation purposes, the
colour scale of a is on the square root scale and
b, c are on the asinh scale. Areas in white are outside
of the fire-prone Earth (see Method).
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compared to other areas of the WUI globally (mean of 2.42MW/pixel vs
0.67MW/pixel; two-sample Wilcoxon test p < 0.00001; Fig. 3g). This pat-
tern implies that effects of wildfire in disaster-prone regions will become
further exacerbated under near-term climate change.

Discussion
Fire intensity is rising in some ecosystems11,12, making firesmore destructive
anddifficult to control.Our analysis provides near-termprojections of likely
changes in wildfire intensity globally, suggesting that fire intensity will rise
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Fig. 3 | Projected change in fire intensity in the wildland-urban interface with
1.5 °C warming. a Projected change in FRP on FWI93 (Fig. 1c) was intersected with
the estimated distribution of the wildland-urban interface in 202014. Colours show
areas of theWUI, and grey shows non-WUI.b–fRegionswith the largest increases in
projected FRP in the WUI. Crosses show 159 WUI disasters from a systematic

dataset of major wildfire disasters from 1980 to 202329. g Projected changes in fire
intensity were larger in locations of the WUI that have experienced major wildfire
disasters during the period 1980–2023 compared to the WUI more broadly, sug-
gesting disaster-prone regions will be further exposed to disastrous fires. See Sup-
plementary Fig. 7 for 2 °C warming.
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across most of the Earth’s fire-prone areas under warming scenarios of
1.5 °C—roughly reflecting the coming decade—and 2 °C. These changes
were not evenly distributed, with the largest increases in FRP projected for
regions that contain highly flammable ecosystems, such as the Mediterra-
neanbiomeand theTemperateConifer Forest biome.TheWildland–Urban
Interface, as the locus of major wildfire disasters, is of profound importance
for human adaptation to extreme wildfires14,30–32. Regions of the WUI
already known forwildfire disasters29 were projected to see disproportionate
intensification of fire compared to other areas of the WUI, potentially
amplifying the impacts of fire in places where consequences are already
severe. These projectionsmatch emerging evidenceof recent anomalousfire
seasons or events, including inwesternAmazonia, Australia, Canada, Chile,
France, Greece, Hawaii, Portugal, Siberia and the western United
States3,4,33–36.

It has been widely reported that fire weather will continue to increase
with climate change15,16, andourfindings provide important newknowledge
onhowsuch changeswill likelymanifest infire intensity. This canhelp focus
attention on where fire behaviour, rather than fire weather, will change
most. For example, althoughfireweather is projected to increase by a similar
magnitude across the boreal forests (Supplementary Fig. 3), our models
project thatfire intensitywill increaseby a larger amount inNorthAmerican
boreal forests than European or Siberian boreal forests (Fig. 2b, c; Supple-
mentary Fig. 5), aligningwith analysis that suggests European boreal forests
are less sensitive to changes in climate37.

Although expected, projections of increasing fire intensity are con-
cerning because fire suppression becomes increasingly difficult as fire
intensity increases, pushing fires closer to exceeding suppression
capacity38,39.While the projected increasesmay seem relativelymodest, they
are increments added to fires that are already difficult to contain. Because
FRP is only expressed for fires that have already ignited, the projections of
FRP must be interpreted as conditional on the presence of an ignition. If
climate change, as expected, also drives changes in other aspects of fire
regimes, such as ignition probability15 and rate of spread40, this means the
projected increases in fire intensity are likely to occur alongside other
changes that also make fires more difficult to control. Taken together, there
is the very real risk that effective fire suppression is currently masking the
potential for very destructive fires because such changes in already hazar-
dous locations may push systems past critical thresholds, leading to dis-
proportionate increases in damage41.

Beyond suppression, increasing fire intensity will likely lead to
increasing carbon emissions becausefire intensity is directly proportional to
biomass burned6. This is in linewith an emerging trend of increasing carbon
combustion efficiency42 and emissions per unit area from fires43. It is also
likely that intensifyingfireswill bemore ecologically destructive.Our results
are likely conservative because they focus only on changes to fire weather. If
other climate-related effects act independently of fire weather and lead to
higher fuel loads—such as CO2-driven increases in primary productivity22,
drought-induced tree mortality23, or windthrow44—then we might expect
larger increases in fire intensity than those projected here.

We used the MODIS active fire dataset because it is the longest-
running dataset on fire radiative power, indicating increases in energetically
extreme fire events13 and increasing nighttime fire intensity11 over the last
two decades. Active fires detected by MODIS can be substantially smaller
than the 1 km2 pixel17, meaning there is inevitably some noise in matching
fires to environmental variables. Future research could refine the spatio-
temporal scale of analysis, thereby reducing various uncertainties. For
instance, newer, finer-scale datasets of FRP, such as VIIRS (375m resolu-
tion), should allow for tighter spatial matches between fires and land use.
Moreover, newer geostationary satellites allow for higher temporal resolu-
tion linkage between fire intensity and weather, including using (e.g.,
hourly) fire weather indices based on regional climatologies (e.g., the
McArthur Forest Fire Danger Index in Australia45). Such finer-grained
analyses will also better characterise fireline intensities and more precisely
resolve the effectiveness of mitigation and suppression efforts. As distinct
from event-specific forecasts, which may be better modelled by fire

propagation models, our outputs offer projections that can be used to
anticipate and plan for broad-scale changes in future fire regimes over the
coming decades.

Our results provide a global perspective on likely human vulnerability
to extreme wildfire, thereby focusing on adaptation and mitigation strate-
gies. We find that wildfire intensity will likely continue to increase in the
near term, especially in already-vulnerable regions of the WUI, as well as
regions with vast carbon stores such as the boreal and Amazon forests. Any
increases in fire intensity in already-problematic regions will likely amplify
the effects of fire,making fires that are already difficult to control evenmore
so. This points to a critical research and development frontier in fire science
and mitigation: managing ecosystems to reduce the intensity of wildfires46.
Doing so will require major socio-ecological adaptation and innovation,
including increasing the use of low-intensity prescribed fire and other
preventativemitigationmeasures47,48, allowingfires to burn undermoderate
conditions if it is safe todo so38, and incorporating thewisdomof Indigenous
use of low-intensity fire49, at scales ranging from individual properties to
broader landscapes50.

Methods
Thegeneralworkflow, includingdataprocessing,modelling, andprojection,
is summarised in Fig. 4. Analysis was conducted in R version 4.4.051, with
package versions recorded in the “renv.lock”file included in the repository52.

Data and data processing
The MODIS sensors on NASA’s Terra and Aqua satellites identify active
wildfires based on thermal anomalies. The MCD14ML product provides
point locations of wildfire ‘hotspots’ at a resolution of 1 km, along with a
measure of each hotspot’s fire radiative power (FRP; megawatts). FRP has
been widely used as a proxy of fire intensity and is very highly correlated
with the rate of fuelmass combusted6.Hotspot locations represent the centre
of a 1 kmpixel that was identified as containing a fire somewhere within the
pixel. We omitted observations flagged in the MODIS dataset as likely
resulting from non-fire sources, and for additional robustness, we selected
only high-confidence fires (i.e., confidence > 50)17.

To explain and project the FRP of individual hotspots, we compiled 7
explanatory variables that we expected would influence fire intensity
(Table 1). Six of these variables measure static and dynamic features of the
environment, including slope, biogeography (biogeographical realm and
biome), and proxies of fuel load (percentage tree cover, leaf area index).
Whilefirehistory also influences fuel load,wedidnot attempt to include it as
an explanatory variable because there are insufficient long-term global
records of the time since last fire.

We used the Canadian Forest Fire Weather Index (FWI) system to
reflect the fire conditions coinciding with each hotspot. FWI is a numeric
rating of estimated fire intensity, calculated from consecutive daily obser-
vations of temperature, relative humidity, wind speed, and 24-h
precipitation24. The Canadian FWI system has been widely used in ana-
lyses of fire risk and fuel moisture around the world (e.g.25,26,53). FWI was
calculated using daily summaries of maximum temperature, relative
humidity, wind speed, and 24-h precipitation from ERA5 reanalysis54.

For each hotspot in the MODIS record between 2000 and 2023, we
extracted FWI on the day of the fire and extracted temporally dynamic
vegetation variables in the nearest year. Because the fullMODIS dataset was
excessively large for statistical modelling (n = ~103 million observations),
we sub-sampled the dataset to reduce its size while ensuring broad spatial
coverage; for 1-degree grid cells that had more than 500 hotspots, we ran-
domly sampled 500 hotspots (separately for daytime and nighttime hot-
spots), andwe retained all observations for grid cells that had fewer than 500
hotspots. This process ensured that all 1-degree grid cells containing a
hotspot, which we consider the fire-prone Earth, were retained for analysis,
while not unduly skewing the analysis to grid cells with superabundant data.
While this threshold itself is arbitrary, it ensured a tractable amount of data
for analysis, resulting in a dataset with 8.98million hotspots used formodel
fitting.
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Statistical modelling of fire radiative power
We constructed generalised additivemodels (GAMs) that explained the fire
radiative power of hotspots using the mgcv package version 1.9-155. GAMs
are like generalised linearmodels, except they can flexiblymodel non-linear
effects,making themwell-suited to revealing thresholds and non-linearities,
such as whether there are thresholds of fire weather above which fire
intensity increases sharply. We fitted the GAMs using the log-link Gamma
distribution, which is well-suited to modelling positive, continuous, right-
skewed data, such as FRP.We fitted separate GAMs for each biome because
we expected fundamentally different relationships in each. For each biome,
we fitted six competing models (see Supplementary Fig. 1 for model for-
mulas), with the most complex model taking the form:

FRP �f 1ðlog FWI; by ¼ realm× day=nightÞ þ f 2ðlogSlopeÞ
þ f 3ðvegetationÞ þ realmþ satelliteþ day=night

þ f 4ðecoregion; bs ¼ randomÞ þ f 5ðgridcell; bs ¼ randomÞ

where f1 indicates a smooth function of logFWI, differing for each combi-
nation of realmandday/night; f2 is a smooth effect of logSlope; f3 is a smooth
effect of proxies of vegetative fuel (either %tree or LAI, transformed per
Table 1); realm is a categorical effect that allows each realm to have its own
baseline; satellite is a categorical term used to control for the effect of the
different overpass times of the Terra and Aqua satellites; and day/night is a
categorical effect of whether a hotspot observation occurred during the day

or night, during which we would expect differences in intensity. Random
intercepts for ecoregionwere included to account for possible differences in
fire intensities among ecoregionswithin each biome, and random intercepts
for each 1-degree grid cell were included to account for other unmodelled
local effects on fire radiative power and control for likely similarities in
hotspots occurring in the same cell.

To prevent overly complex (i.e., wiggly) response shapes, the com-
plexity of smooth functions was restricted in line with our a priori expec-
tations (k = 5). Furthermore, to prevent overfitting, we fit the model using
thin plate regression splines with additional smoothing penalties, allowing
the term to be shrunk to zero if there is no evidence for an effect55. Models
were ranked based on their explanatory power by comparing the deviance
explained by each (Supplementary Fig. 1).

Projecting fire intensity under near-term climate projections
Using the best-performing model for each biome, we projected FRP under
near-term projected fire weather. Fire weather index was projected using a
pseudo climate change experiment approach that perturbs the observed
daily temperature, wind speed, relative humidity, and precipitation using
climatemodel results. Specifically,we apply apattern scaling approach27 that
scales local changes in each climate variable to first-order changes in climate
as in prior studies7,56. We used 20 climate models participating in CMIP6
(Supplementary Table 1) that had daily maximum temperature, minimum
relative humidity, precipitation, and 10-m daily mean wind speed. For each
model we calculated differences in monthly mean variables aggregated to a

Fig. 4 | General workflow of data processing and
analysis.
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common 1-degree horizontal grid between the 1850–1900 quasi-
preindustrial baseline using historical forcing and 2041–2070 using SSP2-
45 forcing.Monthly scale factorswere defined as the differences between the
two periods divided by the difference in global mean temperature. These
patterns assume a linear response between local changes in climate for each
variable and the amount of global warming and allow us to recast projec-
tions relative to the amount of global warming in a scenario-agnostic way.
While this approach does not capture attributes of changing variability, it
provides a sensible way to perturb observedmeteorological forcing that can
be seamlessly comparedwith theobserved record.WerecalculateFWIusing
the same procedures using the perturbed meteorological data for +1.5 °C
and +2 °C, representing 0.48 °C and 0.98 °C above the period 2000–2023.

Based on the modelled relationships between FRP and FWI, we pro-
jected FRP under near-term FWI. Specifically, we used theGAMs to project
FRP on 93rd percentile FWI for the period 2000–2023, and with 1.5 °C and
2 °C warming above preindustrial conditions. This threshold of FWI93
represents the~25thworst FWIday in an average year, reflectingpotentially
dangerous fire conditions that would occur in most fire seasons. This
threshold corresponds with the fire weather coinciding with a majority of
energetically extreme fire events7. In addition to focusing on FWI93, we also
provide a supplementary comparison of projected FRP on FWI95, FWI97.5
and FWI99. We produced maps of the difference (megawatts) between
projected daytime FRP under historical weather and FRP under the
warming scenarios at a resolution of 0.09° (~10 km).

To characterise human exposure to increasing fire intensity, we
intersected the map of change in FRP with a map of the wildland-urban
interface and intermix in 202014, considering those sub-categories together
as the wildland urban interface (WUI). Furthermore, to evaluate projected
change in FRP in disaster-prone areas of theWUI, we used the locations of
major disasters reported by a systematic analysis of major disasters from
1980 to 202329, defined as events that caused 10 or more fatalities or the 200
largest economic events relative to a country’s gross domestic product at the
time. From these events, we selected those intersecting the WUI (n = 159
disasters). We used a two-sample Wilcoxon test to compare projected
change in FRP at these disaster-prone locations with the rest of the WUI.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Pre-processed data andmodel projections are archivedat https://doi.org/10.
6084/m9.figshare.2871145452. MODIS active fire records used in the ana-
lysis are publicly available and were downloaded from the University of
Maryland ftp server (sftp://fuoco.geog.umd.edu). Biomes of the world were
downloaded from https://ecoregions.appspot.com/. Disaster locations from

Cunningham, et al.29 were largely based on the NatCatSERVICE dataset
(contact: https://www.munichre.com/en/solutions/reinsurance-property-
casualty/natcatservice.html) provided to us in 2018 by Munich Reinsur-
ance Company under a contractual condition prohibiting us from sharing
this commercially confidential dataset.

Code availability
Code is archived at https://doi.org/10.6084/m9.figshare.2871145452.
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