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Wildfires drive multi-year water quality
degradation over the western United
States

Check for updates
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Wildfires candramatically alterwater quality, resulting in severe implications for humanand freshwater
systems. However, regional-scale assessments of these impacts are often limited by data scarcity.
Here, we unify observations from 1984–2021 in 245 burned watersheds across the western United
States, comparing post-fire signals to baseline levels from 293 unburned basins. Organic carbon and
phosphorus exhibit significantly elevated levels (p ≤ 0.05) in the first 1–5 years post-fire, while nitrogen
and sediment show significant increases up to 8 years post-fire. During peak post-fire response years,
average carbon, nitrogen, and phosphorus concentrations are 3–103 times pre-fire levels, and
sediment 19–286 times pre-fire concentrations. Higher responses are linkedwith greater forested and
developed areas, which respectively explain up to 31 and 33% of inter-basin response variability.
Overall, this analysis provides strong evidence of multi-year water quality degradation following
wildfires in the western United States and highlights the influence of basin andwildfire features. These
insights may aid water managers in preparation efforts, increasing resilience of water systems to
wildfire impacts.

Forested watersheds provide high-quality water to nearly two-thirds of
municipalities in the United States1, making water treatment plants vul-
nerable to source water disturbances from wildfires2. Key contaminants
important in water treatment process design—turbidity, sediment, dis-
solved organic matter (DOM), and nutrients3—are frequently reported to
experience dramatic increases after wildfire events4–10. Increased sediment
transportation and turbidity levels following wildfires are common due to
the combined effects of burned vegetation and loss of root structure11–13, as
well as increased water repellency in burned soils producing higher runoff
rates13–15. Post-fireDOMandnutrient concentrations are often elevated due
to constituents released fromburned soils, aswell as leaching from increased
stream sediment10,16–20. While recovery and return to pre-fire conditions
often occur within a few months or years9,21, lasting effects have been
observed for decades following wildfires in several cases10,22. Numerous
publications have observed these effects in in situ data on hillslope and
watershed scales7,9,18,23–26. However, high natural variability between sites
limits the transferability of watershed-scale findings to broad, regional

trends. Scarcity of post-wildfire water quality data additionally hinders
efforts to isolate wildfire effects from highly variable background drivers22.
As wildfires have increased in both size and severity in the western United
States in the past several decades27–29, identification of trends in the mag-
nitude and duration of post-burn water quality responses are necessary to
inform water treatment plant preparedness and mitigation strategies.

Physical- and process-based models have been commonly used to
assess post-wildfirewater quality response30. However, thesemodels require
high temporal- and spatial-resolution datasets22, limiting analyses to smaller
domains with abundant data. As post-fire sedimentation rates have his-
torically been more highly studied and monitored than DOM and nutrient
responses9,31, thesemodels have also tended to focus on sediment and debris
flows30,32–37. Data-driven approaches offer an alternative to physical models,
with lower data requirements and a greater ability to capture multi-variate
relationships with high adaptability. These features are well-suited for
analyzing a wide range of complex post-wildfire responses22, such as the
runoff rates, landslide hazards, sedimentation, nutrients, and trace elements
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assessed in previous data-driven studies4,38–44. Additionally, as data-driven
analyses are not limited to individual watersheds or systems, these techni-
ques have allowed for post-fire assessments across entire regions39,44,45 and
countries41.

Using similar data-driven techniques, the goal of this study is to
determine broad, long-term trends in post-fire water quality responses across
the western United States. By focusing on both magnitude and duration of
water quality changes, this study aims to inform water treatment plant
planning and resilience efforts. We analyze a comprehensive set of sediment,
DOM, and nutrient contaminants critical in water treatment process design
over a large sample of watersheds to understand regional variability. Rust
et al.45 is the only post-fire study to previously analyze a similar set of
contaminants over the western United States, using statistical tests to
determine significant responses up to 5 years post-fire. However, our study
uniquely incorporates a regression-based approach to isolate wildfire effects
from background hydroclimatic drivers up to 8 years post-fire, following
similar methods used in Williams et al.44 and Beyene et al.39 for analyzing
post-fire runoff and trace elements, respectively. Additionally, to allow for
this more robust analysis for a traditionally data-limited application, we used
a custom-created dataset of 538 watersheds to maximize data availability—
significantly more numerous than the 65 to 179 basins used in previous
studies39,44,45. Using this framework, we quantified the duration and magni-
tude of impacts and identified predictors of inter-watershed variability.

Results
Unifying data across the western United States
In situwater quality data across thewesternUnitedStateswerefirst collected
and assessed across 245 burned basins, totaling 107,310 wildfire-affected

water quality datapoints on a daily timestep. These were analyzed and
compared to a set of 104,031 datapoints from 293 unburned basins. Data
comprised measurements of carbon, nitrogen, phosphorus, sediment, and
turbidity levels. As shown in Fig. 1, total suspended solids (TSS), total
dissolved solids (TDS), and turbidity (TURB) had the largest sample sizes,
with each making up roughly 17% of the total dataset. Dissolved organic
carbon (DOC), total inorganic nitrogen (TIN), nitrate (NO3

−), and total
dissolved phosphorus (TDP) had the least availability, each comprising 3%
or less of the total available water quality data. The rest of the constituents—
total organic carbon (TOC), dissolved inorganic nitrogen (DIN), total
phosphorus (TP), suspended sediment concentration (SSC), and suspended
sediment discharge (SSD)—had moderate sample sizes, with each com-
prising 5–10% of the total dataset. Data collection, watershed delineation,
and basin screening processes are described in Methods and further
information on constituent data is in Supplementary Table 1.

Taken in aggregate across the entire western United States, post-
wildfire water quality constituent levels generally increased, despite varying
rates of significant changes within individual basins. When comparing
constituent levels from eight years leading up towildfire events in all burned
basins to levels from two years after fire events (Supplementary Fig. 1), post-
fire means were greater than pre-fire means for all constituents except SSD
and TDS, which exhibited −16% and −3% changes in mean rates and
concentrations, respectively. Mean levels of aggregated carbon character-
istics showed up to a 462% increase post-fire, nitrogen and phosphorus
characteristics showed up to a 224% increase, sediment characteristics
showedup to a 254% increase, and turbidity showed up to a 4420% increase.
Data from individual basins exhibited similar post-fire changes overall,
though often lacking in statistical significance based on theMann-Whitney
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Fig. 1 |Water quality data availability in burned basins across the westernUnited
States. aMap of burned basins and available nutrient, DOM, and sediment water
quality measurements from 1974–2022, with the color indicating the most
numerous constituents at that site. b The proportion of each water quality variable
relative to total data available. The 12 key constituents analyzed are abbreviated as

follows: total organic carbon (TOC), dissolved organic carbon (DOC), total inor-
ganic nitrogen (TIN), dissolved inorganic nitrogen (DIN), nitrate (NO3

−), total
phosphorus (TP), total dissolved phosphorus (TDP), suspended sediment con-
centration (SSC), suspended sediment discharge (SSD), total suspended solids
(TSS), total dissolved solids (TDS), and turbidity (TURB).
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U-tests. The percent of basins where post-fire changes were statistically
significant ranged from 17% for TSS to 45% for DOC, with ~20–30%
significance rates typical for most of the other constituents.

Broad changes in post-wildfire water quality
Linear models were built for each constituent in each basin to control for
hydroclimatic variability across basins and through time, as described in
Methods. Model covariates included total daily precipitation, potential
evapotranspiration, maximum temperature, and estimated runoff, as these
are prominent drivers of background water quality levels in
streamflow24,42,43. Using these variables and water quality measurements for
each basin, models were trained on pre-fire data to isolate burn impacts,
characterizedby residuals inpost-fire periods. The frameworkused for these
models is shown in the following equation (Eq. 1):

C ¼
Xn

i¼1

βiXi þ β0 ð1Þ

where C is mean daily levels of a specific constituent, related to n hydro-
climatic covariates specified byX. The coefficients βwere calibrated over the
pre-fire data before applying models to the entire period of record. Model
performance metrics, tested using leave-one-out-cross-validation across
pre-burn periods, generally indicated acceptable model accuracy for water

quality modeling standards39,46. For each constituent, most models (i.e.,
greater than ~50%) had ratio of root mean squared error to standard
deviation values less than 0.9, percent bias values in the range of −10% to
10%, and Nash-Sutcliffe efficiency values greater than 0.2. Models with
extremely poor performance metrics were discarded to ensure accuracy of
the analysis (discussed further in Methods).

Sharp, extended responseswere observed after wildfire events for all 12
constituents (four of which are shown in Fig. 2)—consistent with post-fire
trends observedon smaller scales4,9. Responses, or residuals, in eachpost-fire
year were compared to constituents’ natural variability, characterized by
residuals frompre-burn periods and unburned basins. Significant (p ≤ 0.05)
increases in each post-fire year were determined when the means of resi-
duals across all burned basinswere above the upper 90% confidence bounds
of both unburned basins’ residuals for that same year, as well as burned
basins’ residuals from 8 years preceding wildfire events. Response magni-
tudes in eachpost-fire yearwere additionally determinedby thedifference in
mean residuals from average pre-fire residuals.

Following this method, significant increases were observed in the first
year post-fire for all constituents except TIN and TDP. Responses of TOC,
DOC, TP, TSS, and TURB all peaked in the first post-fire year as well, with
mean residuals increasing by 3213–28,570%comparedwith average pre-fire
residuals. TIN, DIN, NO3

−, TDP, and TDS had slightly delayed responses,
peaking in the second- or third-year post-fire with residual increases of
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Fig. 2 | Constituent responses across eight post-fire years.Model residuals from all
538 burned and unburned basins for four key constituents representing themain water
quality categories in this study: dissolved organic carbon, dissolved nitrate, total
phosphorus, and total suspended solids. For burned basins (n = 245), mean residuals
for each year are shown for seven years pre-fire (light blue bars), the year following
wildfire events (grey bars), as well as the following seven years post-fire (orange bars).

The black vertical lines on each bar represent 90% confidence intervals of burned
basins’ residuals for each year. Horizontal blue lines represent the overall 90% con-
fidence interval bounds for all seven pre-fire years together, extended through the post-
fire years to assess the significance of post-fire responses. To further assess post-fire
response significance, the gray ribbons represent the residuals from unburned basins
(n = 293), showing their 90% confidence intervals for each pre- and post-fire year.
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253–27,852% compared with pre-fire residuals. These responses were all
significant except for TDP,wheremean residualswere significantly elevated
compared to pre-fire data, but not compared to unburned basin responses.
This confirms previous reports of the highest post-wildfire water quality
responses within the first three years after a wildfire event9,22,23,47. However,
SSC and SSD responses showed a longer delay, peaking in the fourth year
post-fire with residual increases of 9829% and 1935%, respectively, com-
pared with pre-fire residuals. Where TSS peaked in the first year post-fire,
SSC and SSD responses are inversely proportional to streamflow and were
likely smaller in the first few years due to elevated post-fire runoff rates9.
Delayed spikes in sedimentation may have additionally been driven by
shallow landslideswhich canoccur in the years followingwildfire events due
to decaying roots from burned vegetation14,21,40. For nitrogen and phos-
phorus constituents, delays may have been due to variable vegetation
recovery timelines influencing stream nutrient concentrations43,48.

Responses of DOC, TIN, DIN, NO3
−, TSS, TDS, and TURB were

sustained for 5–8 years post-fire. Though these extended responseswere not
significant as compared with unburned basin responses in several cases,
concentrations of DIN andNO3

−were continually significantly elevated for
5 and 8 years, respectively. Long vegetation recovery periods4,22,48 may have
contributed to extended responses in nitrogen constituents, which are
highly influenced by plant regrowth, as well as sediment constituents due to
erosional effects from sparse vegetation9,12,13.

Inter-basin variability
The selected covariates in the model-building process provided insight into
drivers for eachwater quality constituent, which varied regionally as seen in
Fig. 3. Water-related covariates (i.e., precipitation and runoff) were

dominant for all constituents in all regions. However, the prevalence of
temperature-related covariates (i.e., temperature and potential evaporation)
and seasonal indicators (day of water year of the water quality measure-
ment) varied across regions. For sediment, nitrogen, and phosphorus
characteristics, temperature-related covariates had a greater influence in
mountainous and plains regions as compared with coastal areas. This may
be due to the effects of seasonal temperature fluctuations on vegetation
regrowth in these regions—shown to have a strong influence on post-fire
sediment and nutrient levels14,48. For carbon characteristics in a regional
context, temperature covariates had slightly greater influence in coastal
regions, with almost none in plains and deserts—potentially due to water
being the limiting factor for constituent transport in these dryer regions. The
day of water year when water quality measurements were taken was most
explanatory in the Southwest for carbon, nitrogen, and sediment char-
acteristics, and in mountainous regions for phosphorus. Similar to tem-
perature covariates, this may be due to seasonal variations in vegetation
growth in these regions. The spatial distribution of covariate influence
across the western United States is shown in Supplementary Fig. 3.

Basin and fire characteristics influence
The relative forested and developed areas for each basin, as well as the
distance of burn scars from basin outlets, showed strong correlations with
post-fire responses for several constituents. Pearson’s correlations between
each constituent’s residuals from the first two years post-fire and each
physical variable are shown in Fig. 4, with significant values (p ≤ 0.05)
bolded. The forest coverage in each basin had significant, positive rela-
tionships (correlation > ~0.2) with TOC, DOC, NO3

−, and SSC responses,
explaining 14%, 31%, 13%, and 18%of their variance, respectively. Thismay
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Fig. 3 | Covariates’ influence on water quality by region and constituent type.
Distribution of dominant covariates selected through the linear model building
process for each constituent in each basin in the West Coast (OR, WA, and CA),
Rocky Mountains (ID, MT, WY, UT, and CO), and Southwest (NV, AZ, and NM)
regions of thewesternUnited States. Different covariates are represented by different

colors, with temperature-related variables, total potential evaporation (pev) andmax
temperature (temp), in red colors and water-related variables, total precipitation
(precip) and total runoff, in blue colors. “DOY” represents the day of the water year
of the water qualitymeasurement. Evaluated constituents are combined into organic
carbon, nitrogen, phosphorus, and sediment categories.
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be due to higher post-burn runoff rates as reported inmore heavily forested
watersheds in previous studies44, resulting in increased constituent
transport.

Developed area had significant, positive relationships with DOC and
TDP, explaining 7% and 33% of their variability, respectively. This aligns
with previous reports that showed proximity to urban locations strongly
affects post-fire nutrient concentrations, likely due to the deposition of fossil
fuel emissions43. The distances between fires and basins’ outlets was sig-
nificantly negatively correlated with TDP and SSC, explaining 9% and 15%
of their variability, respectively. This may be due to diluting effects of
additional unburned tributaries introduceddownstream fromburned areas.

Discussion
By leveraging several decades of water quality data aggregated from 538
burned and unburned basins across the western United States, this study
provided evidence of distinct, wildfire-driven DOM, nutrient, and sedi-
mentation increases lasting up to 8 years post-fire. In past research, the
magnitude and duration of observed post-wildfire changes vary widely
between studies and are often not significant within individual basins9—
limiting the transferability of findings to other areas. Through maximizing
data availability, a regional scope, and control of climatic factors’ effects on
water quality, this study’s framework revealed significant signals in water
quality in the western United States for multiple years post-fire. While
previous studies have attempted more narrowly focused regional-scale
analyses, incorporation of 245 burned basins here along with 293 unburned
basins and over 200,000 combined datapoints was considerably more
numerous than the 65 to 179 watersheds used in other studies39,44,45.

Our findings provide strong evidence of multi-year persistence in
significant water quality degradation driven by wildfires across the domain.
While most previous wildfire studies have focused on short-term (~2–3
years) effects9, our study is consistent with findings from the few studies
which have analyzed long-term implications of wildfires on water
quality22,23,48,49. This suggests that long-term post-wildfire water quality
degradation is a common outcome. Here, we found that average post-fire
organic carbon concentrations were elevated for 2–8 years, inorganic
nitrogen concentrations were elevated for 5–8 years, phosphorus con-
centrations were elevated for 2–3 years, sedimentation was elevated for 4–8
years, and TDS and turbidity were elevated for 5–8 years, as compared with
pre-fire levels. For most constituents, these trends were significantly greater

than unburned basin responses in most years as well, though post-burn
responses tended to lower in magnitude and fall below the level of sig-
nificance after 2–5 years post-fire.

These longer-term effects suggest that wildfires on average impact
deeper layers of soil, burn larger vegetative structures, and disrupt nutrient
cycles to a greater extent than previously suspected. The slow return of
nitrogen concentrations to pre-fire conditions was likely due to nutrients
releasing from deep soil layers through combustion, then subsequently
getting washed away through elevated runoff rates—resulting in long
vegetation recovery periods following wildfires48. Similarly, DOM, sedi-
ment, and turbidity responses were likely elevated long-term due to lin-
gering erosional forces from loss of tree canopies and root structure14,
resulting in soil instability which took years to recover through vegetative
regrowth. This soil instability may have also driven the delayed responses
observed in SSC and SSD, which likely peaked in the fourth year post-fire
due to shallow landslides occurring years after runoff rates returned to pre-
fire conditions. These years-long elevated concentrations and delays in
responses support the importance of vigilant water quality monitoring for
years following wildfire events.

Watersheds with higher forest coverage and larger developed areas
tended to be associated with greater post-fire responsemagnitudes. Carbon,
nitrogen, and sediment responses had strong correlations to basins’ forested
areas, potentially due to greater deposition of organicmatter, nutrients, and
ash from larger fuel sources, as well as increased transportation from higher
post-fire runoff rates reported in more heavily forested watersheds44. These
constituents were also correlated with larger developed areas in basins,
potentially due to increased atmospheric deposition from burning fossil
fuels43. Though the proximities offires to sampling locationswere negatively
correlated with phosphorus and sediment, land cover characteristics overall
had a greater influenceon constituents thanburn extent andproximity.This
emphasizes the importance of the types of fuel available, versus area burned,
in post-fire water quality response43.

Though a high number of sites and datapoints were used in these
analyses, results were still limited by spatial and temporal data scarcity.
Analyzed watersheds were selected based on data quality criteria, meaning
sites lacking access and infrastructure for water qualitymonitoringwere less
represented in results. Within the sites selected, irregular and infrequent
water quality measurements resulted in a wide range of goodness-of-fit in
linear models built. Due to limited data timespans, only 8 post-fire years
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Fig. 4 | Relationships between post-fire constituent responses and watershed and
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or scrub, and grassland, respectively. Significant (p < 0.05) correlations are bol-
ded and slightly expanded.
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were analyzed, whereas previous studies have suggested that wildfire effects
may persist for decades9,22. Additionally, attribution of responsemagnitudes
to basin and fire characteristics was limited for many constituents (e.g.,
sediment characteristics) due to low numbers of datapoints and high
variability across sites. Future research may explore alternate modeling
methods to increase model skill, examine longer response durations as
additional years of data become available for recent wildfires, and incor-
porate additional covariates in assessment of inter-basin response varia-
bility. Normalized differenced vegetation index, soil information, and
wildfire severity (i.e., burn extent represented by soil and vegetation char-
acteristics) and intensity (i.e., burn temperature and duration), for example,
have previously been shown to affect post-wildfire water quality42,43,50 and
may be more closely correlated with constituent response magnitudes.

Findings from this study may help inform wildfire planning and
resilience efforts in the face of increasing wildfire threats27,51. In particular,
water utilities may consider the longevity and magnitude of the post-fire
responses identified in this study as possible benchmarks—preparing for
1–8 years of elevated constituent loads following a wildfire event, with the
potential for dramatic increases inmagnitude up to 300 times pre-fire levels.
Additional mitigation, such as sedimentation basins, may be required to
manage 8+ years of post-fire sediment,while shorter-term solutions such as
increased coagulant dosages may be considered for DOM responses3.
Another key finding is that variability in post-fire responses are partially
explained by physiographic watershed features, which highlights the
importance of localized assessments, depending on watersheds’ local
characteristics3. For example,more heavily forestedwatershedsmay require
expanded treatment capacity for DOM, nutrients, and sediment. Such
planning efforts are expected to become increasingly important in the
western United States in the coming decades, as wildfire hazards are pro-
jected to proliferate27,51 with water resources already stressed by increasing
drought driven by climate change52.

Methods
Site selection
Beginning with a set of 51,101 custom-delineated basins with in situ stream
water quality information from 1974–2022, burned and unburned basin
subsetswerefiltered by burn extent, data availability, and land cover criteria.
Initial data mining and basin delineation processes, including data sources,
are discussed further in the Supplementary Methods and displayed in
Supplementary Fig. 2. Using wildfire data from 1984–2021, basins were
designated as burned when the perimeter from at least one individual fire
overlapped with at least 5% of their total areas and unburned when no fires
intersected with more than 0.5% of their areas—similar to criteria in pre-
vious studies39,44,45. Wildfires which affected an individual basin within the
same water year were merged and considered as an individual fire event,
with the date of ignition designated as the start date of the first fire. Where
multiple fires affected the same basin outside of a single water year, events
which occurred less than six years after a previous fire were discarded.

Basin subsets were then screened for data availability and land cover
criteria. In an individual basin, each monitored constituent was required to
have at least 20 days of pre-fire data and 10 days of post-fire data, as well as a
period of record spanningmore than 3 years before and after the date of fire
ignition. Basins where these criteria were not met for any of their measured
constituents were discarded. For each of the unburned basins, the ignition
dates referenced for this filtering step were from fires affecting the closest
burned basins. Though these sample sizes are low for model-building

processes in individual basins, similar criteria were used by previous studies
which aggregated water quality data in basins across the western United
States39,45. Basins were further screened for those with greater than 25%
forest coverage and less than 5% developed area (i.e., cities and residential
areas) to maximize consistency in basins’ geophysical characteristics—
similar to thresholds used in Williams et al.44, and Beyene et al.39, respec-
tively. As shown in Table 1, the attributes of the final 245 and 293 burned
and unburned basins selected for analysis were similar between the two
subsets.

Regression-based response analysis
Broad changes in water quality constituents were assessed for each post-fire
year using a regression-based modeling approach, following similar meth-
ods as Beyene et al.39 and Williams et al.44. Multivariate linear regression
modelswerebuilt for eachbasin to control for the influenceof hydroclimatic
variables on water quality levels, with the goal of isolating post-fire changes
driven by wildfire activity. Natural variability in water quality was char-
acterized by responses in pre-fire data, as well as unburned basins—com-
pared to post-fire responses to assess their significance and magnitude
outside of expected trends22,44,53.

Hydroclimatic variables of precipitation, potential evapotranspiration,
maximum temperature, and runoffwere selected as candidate covariates for
the modeling process due to their known impacts on background water
quality levels in streamflow24,42,43. Precipitation, surface runoff, and
streamflow are the primary driving mechanisms of sedimentation and
turbidity, influencing erosional processes and heightened transportation
rates11,54. Temperature and potential evapotranspiration are correlated with
vegetation growth and stream temperatures, which control plant nutrient
uptake and deposition and oxygen solubility, respectively—influencing
nutrient and DOM concentrations55,56. A day of water year variable was
additionally tested as a candidate covariate for each model to capture
potential impacts of seasonality. While direct measurements of streamflow
and stream temperature would have been ideal candidate covariates, these
were only available for a small subset of the total basins. In an effort to
maximize the number of candidate study locations, we elected to use
reanalysis-based estimate for these quantities. While these lack in situ-level
detail, they are observationally-driven and were continuous in both space
and time.

As shown in Table 2, 49 candidate hydroclimatic covariates were
prepared for building each model: Four variables at daily timesteps, addi-
tionally calculated for three moving average window widths and two
transformations, plus the day of water year variable. First, gridded daily
hydroclimatic variables were averaged across each basin, creating a singular
time series for each. For each of these variables, 7-, 30-, and 90-day trailing
moving averagewindowswere then calculated for each day. These lag-times
were evaluated to capture the time required for transport of constituents to
basins’ outlets, as well as the effects of longer-term shifts in hydroclimatic
variables, e.g., a rainy season to a dry season, on constituent response41.
Additional square- and log-transformations were calculated for each
movingwindowsize for each covariate, as variable distributionsweremostly
non-normal (assessed using density distributions and Q-Q plots). Sources
and preprocessing steps for these covariates are discussed further in the
Supplementary Methods.

Multivariate linear regressionmodels were built for each constituent in
each burned and unburned basin using key hydroclimatic covariates. These
models were trained on pre-fire data to isolate the effects of hydroclimatic

Table 1 | Summary of basin characteristics for burned and unburned basin subsets

Basin subset Number of basins Size (km2) Burn extent (%) Fire-outlet dist. (km) Forested extent (%) Developed extent (%)

Burned 245 472.6 (5.1–63,407.8) 9.9 (5.0–100.0) 10.2 (0.0–97.4) 52.3 (25.0–91.5) 1.0 (0.0–5.0)

Unburned 293 470.7 (5.1–20,496.3) N/A N/A 58.6 (25.1–95.4) 1.5 (0.0–5.0)

Number of basins, area, percent burn extent, wildfire distance from basins’ outlets, percent forested extent, and percent developed extent are displayed. Median values are shown, with min-max ranges
displayed in parentheses.
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variables from burn effects. To improve inter-basin comparability, z-score
normalization was first applied to water quality data for each basin using its
pre-fire records. A correlation analysis was then completed for candidate
covariates in each model-building process to reduce potential collinearity.
The absolute maximum Pearson’s correlation was calculated between all
covariates, then those with a > 0.8 correlation with another covariate were
removed, keeping the one more highly correlated with the water quality
variable57.

To build each model, covariates were selected using a forward step-
wise approach, reducing potential overfitting due to high numbers of
potential covariates and low sample sizes39,44. The covariate with the
highest absolute Pearson’s correlation with the response variable, i.e.,
pre-fire constituent data, was first used to condition a single-variable
linear model. This initial model was evaluated using the Akaike infor-
mation criterion with a bias correction for small sample sizes (AICc)58,
which penalizes complexity and is recommended when the ratio of
sample datapoints to covariates is less than 4059. The model was then
applied over the pre-fire training dataset, calculating residuals from the
difference between observed and estimated constituent levels. From the
remaining candidate covariates, the one most highly correlated to the
previous model’s residuals was then added to create a new model, cal-
culating a new AICc. The additional covariate was retained if it lowered
the AICc value by more than 2. This process was repeated until
the addition of a new covariate did not satisfy the delta AICc
requirement.

Performancemetricswere calculated for eachmodel using a leave-one-
out cross-validation method applied to pre-fire data, similar to methods
used by Beyene et al.39, and McManus et al.60. Leave-one-out cross-
validation involves first assigning one day of covariate and predictand
variables as testing data, calibrating a model with data from the remaining
days, then using that model to predict the response on the testing day. This
process was repeated for each available day, then model performance
metrics calculated from the full observed and predicted datasets. Metrics
commonly used in water quality modeling were selected to evaluate each
model46: theNash-Sutcliffe efficiency61, percent bias, and the ratio of the root
mean squared error to standard deviation. These metrics describe, respec-
tively, the model error relative to the total variation, the tendency of the
model to overpredict or underpredict, and the goodness-of-fit of the
model39,62. Models with low skill—or ratio of root mean squared error to
standarddeviation scoresgreater than1—werediscarded to ensure accuracy
of results. An analysis exploring the influence ofmore strict filtering criteria
is analyzed and discussed in Supplementary Fig. 4, Supplementary Fig. 5,
and the Supplementary Discussion.

For each constituent, the mean and 90% confidence interval bounds
were calculated for basins in the burned and unburned subsets for each pre-
and post-fire year. Overall confidence bounds from all years of pre-fire
residuals in burned basins were also calculated. Fire-related change in a
post-fire year was then considered significant (p ≤ 0.05) if the residualmean
was outside both the confidence bounds for all pre-fire residuals in burned
basins, as well as the bounds of the unburned basins’ confidence interval for
that year. Responsemagnitudes driven by burn effectswere calculated as the
percent difference between average pre-fire residuals andmean residuals for
each post-fire year.

Inter-basin variability attribution
A correlation analysis was used to attribute differences in post-fire con-
stituent responses to geophysical watershed and wildfire characteristics.
Evaluated characteristics include percent forested, developed, shrubland,
and grassland areas in each basin, as well as basins’ areas, percent burn
extent, and the distance of wildfire burn scars from their outlets—factors
shown to be influential on water quality response in previous studies39,42–44.
Similar tomethods used inWilliams et al.44,model residuals averaged across
the first two years post-fire in each burned basin were first plotted against
each watershed and fire characteristic to visually assess their linear rela-
tionships. A best-fit linear model was applied to each combination, with an
R2 calculated to assess the strength of relationships. Correlations were then
assessed by calculating Pearson’s correlation coefficients between every
response and factor combination, additionally calculating which were sig-
nificant (p ≤ 0.05).

Data availability
The burned and unburned basin datasets and associated water quality data
used in the analyses in this paper are available at https://doi.org/10.5281/
zenodo.1020908863. The data directly used in generating the plots in this
manuscript and the Supplementary Information are also included in the
publisheddataset.Additionally, the originalwater qualitydataused to create
this dataset is available on the Water Quality Portal website (https://www.
waterqualitydata.us/), wildfire information is available on the Monitoring
Trends in Burn Severity website (https://www.mtbs.gov/), hydroclimatic
data from the ERA5-Land reanalysis dataset are available on theCopernicus
Climate Data Store website (https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-land), land cover information is available on the
Multi-Resolution Land Characteristics Consortium website (https://www.
mrlc.gov/), Shuttle Radar TopographyMission digital elevationmodel data
are available through the USGS Earth Explorer portal (https://www.usgs.
gov/tools/earthexplorer), and the National Hydrography Dataset stream-
lines are available on the Environmental ProtectionAgencywebsite (https://
www.epa.gov/waterdata/get-nhdplus-national-hydrography-dataset-
plus-data).

Code availability
R programming scripts used to create watershed delineations, clean and
analyze water quality data, and train linear models are available at https://
doi.org/10.5281/zenodo.1020908863. R version 4.3.3 was used to develop
and run these scripts.
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