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Future enhanced threshold effects of
wildfire drivers could increase burned
areas in northern mid- and high latitudes
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Wildfires exhibit extensive nonlinear characteristics and threshold effects in response to
environmental changes. However, how threshold effects affect wildfire responses and their future
changes remains unclear. Here we identified thresholds where wildfire-driver relationships shift and
estimated the impact of threshold effects onwildfire dynamics in the 21st century in northernmid- and
high latitudes (>30°N). Wildfire-driver thresholds, coregulated by gradient differences in heat and
moisture conditions, vegetation productivity, and human activities, effectively explain the spatial
patterns and uneven responses of wildfires. Despite the dominance of temperature, precipitation, and
socioeconomic status onwildfires, 30.70%ofwildfire changes are attributed to their threshold effects,
notably in boreal and temperate ecosystems. Climate change will enhance the threshold effects of
wildfire drivers, leading to a 47.81 ± 3.08% increase in burned areas by 2030–2100 compared with
2001‒2022. Our findings highlight that enhanced threshold effects of drivers promote future wildfire
changes, posing challenges to fire suppression.

Comprehending the response of ecological properties to environmental
changes and their linkages to climate change is crucial to reveal the global
ecosystem’s evolutionary process and future changes1,2. Nonlinear relation-
ships and threshold effects are pervasive in ecological processes’ response to
external pressure3. Specifically, ecological properties are relatively insensitive
to external changes until those changes reach their thresholds; once these
thresholds are approached or crossed, small changes produce dispropor-
tionate impacts on ecological properties, even causing abrupt and irreversible
regime shifts2,4. Nonlinear responses and threshold effects increase the
uncertainty and unpredictability of ecological processes, challenging the
assessment of ecosystem stability and adaptability to climate change5,6.

Wildfire is a representative ecogeographic process governed by non-
linearity and threshold effects3,4. Thresholds act as switches that, once
exceeded, triggerwildfire occurrencesor ecological process shifts. Therefore,
wildfires are considered the final result of multiple drivers working together
to reach their thresholds7,8. Similarly, cross-scale thresholds determine the
transition in fire size from smaller to larger scales (e.g., from local scale to
regional scale) and serve as key properties for revealing changes in fire
behavior and multiscale interactions during wildfire spread. Beyond these
thresholds, cross-scale interactions and feedback emerge, accompanied by

changes in the dominant driver of spreading wildfires9,10. Ongoing global
warming may drive changes in external factors that reach thresholds, trig-
gering broader and more intense wildfires11,12. In this case, even minor
variations inwildfiredriverswould causedramatic changesand intensify the
extremity of wildfires. These perspectives indicate the universality of
thresholds and threshold effects in wildfire responses and highlight the
importance and urgency of understanding their impacts and mechanisms.

Previous works have revealed nonlinear wildfire response patterns and
determined thresholds for dominant wildfire drivers, such as temperature,
precipitation, and fire weather indices13–15. These thresholds help clarify
critical conditions for wildfire occurrence or explain regional differences in
fire regimes and response characteristics. However, most thresholds were
determined for entire regions or at broad spatial scales, neglecting the spatial
heterogeneity of the thresholds across sub-geographic units. This limits the
applicability of thresholds in similar ecoregions or localized subregions and
the ability to analyze wildfires under threshold relationships16. Moreover,
although threshold relationships between individual drivers and wildfires
have been clarified17,18, how the thresholds (or threshold effects) of different
drivers interact and how the interplays of wildfire drivers are coupled with
their threshold effects to control wildfires remain unclear. This gap exists
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becauseparameters for estimating threshold effectshavenotbeen integrated
into frameworks andmodels to analyzemultifactorial interactions, limiting
the ability to capture nonlinear wildfire response characteristics in multi-
factor settings.

Climate changemay compel wildfire drivers to approach or surpass their
thresholds over broader extents and amplify its impact on future wildfires by
changing threshold effects13,19. Some studieswarned thatwarming in theArctic
is reaching a threshold above which even minor warming could trigger an
exponential increase in wildfires and a rapid shift in fire regimes11,20. However,
the consequencesofnonlinear changes inwildfiresmaybeunderestimateddue
to the inadequate quantification of threshold effects in current wildfire pro-
jection approaches2. For example, a lack of knowledge about threshold effects
increases the uncertainty of future wildfire predictions, limiting the ability to
explain the spatiotemporal variability in wildfires under climate change4,18.
How wildfires respond to climate change under the influence of threshold
effects and to what extent wildfire changes are related to threshold effects
remain unclear. Thus, examining the role of threshold effects in wildfire
changes is critical for accurately predicting future wildfire patterns and
revealing the responses of wildfires to climate change.

Northernmid- and high latitudes (>30°N) are hotspotswherewildfires
exhibit the most substantial interannual variability and the most pro-
nounced responses to climate change21,22. Here, the ecosystem stores more
than 50% of global biological carbon and almost 30% of soil carbon23,24, in
which wildfires constitute the dominant ecological process controlling
carbon emissions25. The feedback cycle shows that global warming is
accelerating atmospheric and soil drying, thereby increasing the likelihood
of more extensive and frequent wildfires26. Increasing wildfires due to
warming climates in turn release additional CO2, further contributing to
global warming25. Therefore, clarifying wildfire dynamics in mid- and high
latitudes under threshold relationships has global implications for under-
standing climate change, ecosystem functional shifts, and carbon cycles.
This study aims to elucidate how threshold effects affect wildfire response
processes and their future changes. We addressed three key questions: (a)
What spatial patterns do the thresholds and threshold effects of wildfire
drivers exhibit? (b)What key role do threshold effects play inwildfire driver
interactions? (c) How will wildfires respond to climate change under the
influence of threshold effects?

Results
Thresholds and threshold effects of wildfire drivers at
ecoregional scales
We examined the relationships between burned areas (BA) and individual
wildfire drivers in each ecoregion (Supplementary Figs. 1–7). The nonlinear
response of wildfire to drivers was identified in 148 pairwise relationships
(Supplementary Figs. 2, 4, 6), and valid thresholds were determined for 142
of these pairs (Supplementary Figs. 3, 5, 7). The impact of drivers on
wildfires changed abruptly after thresholds were exceeded, in which
threshold effects enhanced wildfire changes in 66 pairs of relationships but
weakened wildfire changes in 76 pairs (Fig. 1).

Climate conditions in polar and boreal ecosystems were closer to their
thresholds and had lower thresholds than those in other ecoregions
(Fig. 1a–f). Thus, high-latitude climates, such as mean temperature
(Tem_FS) and averagemonthlyfireweather index (FWI_FS) during thefire
season, weremore likely to reach thresholds and trigger shifts in climate-fire
relationships. In temperate ecosystems, total precipitation (Pre_FS)
thresholds notably exceeded their regional averages (Fig. 1b). In contrast,
thresholds for vapor pressure deficit (VPD_FS), preseason temperature
(Tem_PFS), preseason precipitation (Pre_PFS), average leaf area index
(LAI_FS), and gross domestic product (GDP) closely aligned with regional
averages (Fig. 1d–g, i). Once these thresholds were exceeded, dry climates,
increased vegetation productivity, and intensified human activities
enhancedwildfire changes notably. This highlights that the threshold effects
of moisture conditions, vegetation, and socioeconomic activities strongly
influenced temperatewildfires. Inmost subtropical ecosystems, LAI_FS and
total net primaryproduction (NPP) are currently below thresholds andhave

not yet reached a level where increasing vegetation productivity would
weaken wildfire changes (Fig. 1g–h). In this case, dry climates, increasing
human activities, and land cover change rate (LCC) until their thresholds
were exceeded amplified wildfire changes (Fig. 1d–e, i, k). Conversely,
regional averages of population (Pop) exceeded their thresholds by 1.5
orders of magnitude (~30 times), and population variation has somewhat
weakened changes in subtropical wildfires (Fig. 1j). Overall, thresholds and
threshold effects of wildfire drivers varied across ecoregions, but they were
relatively consistent across ecoregions with identical climate zones.

Significant correlations and spatial covariation patterns were shown
between thresholds of different wildfire drivers (Fig. 2). Positive correlations
were found among the thresholds of Tem_FS, FWI_FS, VPD_FS, LCC, and
Tem_PFS (Fig. 2a). These thresholds increasedwith increasing temperature
across ecoregions, showing spatial patterns controlled by latitudinal dif-
ferences in heat conditions (Fig. 2b; Supplementary Fig. 8). Positive corre-
lations were also identified among thresholds for Pre_FS, Pre_PFS, LAI_FS,
and NPP. These thresholds exhibited comparable spatial and latitudinal
patterns that increased with elevated precipitation, vegetation productivity,
and socioeconomic activity (Supplementary Fig. 8; Fig. 2b–d). Conversely,
we found negative correlations among thresholds of FWI_FS, LAI_FS, and
Pop, showing minimized FWI_FS thresholds in regions with high vegeta-
tion productivity and population thresholds. Such spatial patterns were
controlled by gradient differences in temperature and vegetation pro-
ductivity (Fig. 2b–d). However, positive correlations among the strengths of
threshold effects were minimal and uncommon (Fig. 2a). Despite some
similarities of variations in their threshold effects across spatial gradients
(Fig. 2f–i; Supplementary Fig. 9), these drivers did not exhibit distinct spatial
patterns in threshold effects. We only found that the threshold effects of
GDP were correlated with those of LCC and enhanced with increasing
precipitation (Fig. 2g).

Contribution of drivers and threshold effects on wildfires
The multifactorial model containing threshold parameters exhibited pas-
sable performance and robustness, with an explanatory power of 0.47
(Supplementary Fig. 10). Wildfire drivers and their threshold effects
explained 69.30% and 30.70% of the BA changes, respectively, with a con-
tribution ratio of approximately 7:3 (Fig. 3). Threshold effects had greater
contributions to BA in subtropical steppes (33.05%) and deserts (30.37%),
temperate steppes (34.90%) and deserts (34.40%), and boreal coniferous
forests (30.45%), but lower contributions to BA in temperate coniferous
forests (25.94%), subtropical humid and dry forests (27.13% and 17.93%),
and borealmountain systems (25.65%) (Figs. 3 and 4a, b). Accordingly, the
contributions of threshold effects to the BA also exhibited a distinct spatial
pattern along the latitudinal gradient. The threshold effects contributed
most substantially (~30%) in the region between 47°N and 60°N, while the
weakest contribution (~25%) was observed between 35°N and 42°N. In
comparison, the remaining regions showed a contribution of approximately
27%.Overall, changes in wildfire drivers themselves dominated BA changes
in northern mid- and high latitudes, and their threshold effects contributed
to approximately one-third of the BA changes.

Precipitation (Pre_FS and Pre_PFS), GDP, FWI_FS, and temperature
(Tem_FS and Tem_PFS) are the dominant wildfire drivers (Fig. 3). Pre-
cipitation explained 25.28% of the BA changes and served as the strongest
explanatory variable ofwildfires in 23.26%of the land areas (Supplementary
Table 2), includingdeserts, steppes, andmountain systems in temperate and
subtropical regions (Fig. 4c). TheGDP explained 13.07%of the BA changes,
notably affecting wildfires in 13.03% of the land areas, especially around
human settlements. In contrast, temperature and FWI_FS explained only
8.82% and 6.21% of the BA changes during the fire season, respectively.
Theywere the strongest explanatory variable ofwildfires in2.24%and1.24%
of the land areas, respectively, mainly in the mountain systems of eastern
Siberia and North America and the temperate coniferous forests of East
Asia. Moreover, the threshold effects of precipitation, temperature, LCC,
and LAI_FS collectively explained 19.87% of the BA changes (Figs. 3 and
4d). They were the strongest explanatory variables of wildfires in 23.68% of
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land areaswhen excluding themain contribution of the drivers and focusing
only on threshold effects. The threshold effects of precipitation contributed
more to wildfires than those of temperature (8.26% > 5.43%) and covered
broader areas than the threshold effects of temperature (13.77% > 8.64%).
Notably, wildfires in the tundra, woodland, andmountain systems in boreal
ecosystems and temperate steppes were mostly controlled by threshold
effects of temperature and precipitation. In summary, precipitation, tem-
perature, and their threshold effects, alongside socioeconomic status, were
the dominant factors that influenced wildfires over a vast spatial extent.

Future changes in wildfires under the impacts of threshold
effects
Ourmodel predicted the annual average BAduring the fire seasons for each
period in each of the four socio-climatic scenarios (Fig. 5). Their average
showed that the BA in mid- and high latitudes will increase by 0.31 million
km2 from 2030–2100, an increase of 47.81 ± 3.08% compared with the

2001–2022 average. The rates of BA changes will decrease from 45.84% and
48.90% in the near term (2030–2050) to 41.53% and 46.13% by the end of
the 21st century under the SSP1-2.6 and SSP2-4.5 scenarios, respectively.
Conversely, the BA change rates will increase from 45.62% and 46.06% in
the near term to 57.86%and56.35%by the endof the 21st century under the
SSP3−7.0 and SSP5-8.5 scenarios, respectively.

Future changes in BA during the fire seasons exhibited similar spatial
patterns under four socio-climatic scenarios (Fig. 5a–f; Supplementary
Fig. 11). By the end of the 21st century, 32.74% of the land surface will
experience a large increase in BA ( > 15 km2 grid−1). A notable decrease in
BA ( > 20 km2 grid−1) will emerge across 7.60% of the land surface. Notably,
future BA changes are pronounced in temperate and boreal ecosystems
across all scenarios (Fig. 5g–i). The promoting effects of higher emission
scenarios onBAwere accumulated inhigh latitude ecosystemswith ongoing
climate change, intensifying spatial differences in BA changes across sce-
narios (Fig. 5a–f; Supplementary Fig. 11). Statistics also revealed that BA

Fig. 1 | Thresholds and threshold effects of wildfire drivers at ecoregion scales.
a–d Thresholds and threshold effects for climatic variables during the fire season:
Tem_FS, Pre_FS, FWI_FS, and VPD_FS, respectively. e–h Thresholds and
threshold effects for preseason climatic and vegetation productivity variables:
Tem_PFS, Pre_PFS, LAI_FS, and NPP, respectively. i–k Thresholds and threshold
effects for socioeconomic and anthropogenic variables: Pop, GDP, and LCC,
respectively. Ecoregion abbreviations were defined in the Methods section. The
blue bars are the average of wildfire drivers in each ecoregion, facilitating

comparisons with thresholds. The positions of colored dots on the x-axis are the
thresholds of wildfire drivers, with text labels on the right side. The color scale of
the dots is the strength and direction of the threshold effects (z-score scaled). The
blue, yellow, and red fonts are the average thresholds in the polar and boreal,
temperate, and subtropical ecoregions, respectively. Note: The original values of
Pop and LCC include decimals, resulting in negative values after logarithmic
transformation. Supplementary Note 1 contains detailed information on the
identification of threshold effects.
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increases were greater in temperate and boreal ecosystems, exceeding
20000–50000 km2 in each ecoregion with a percentage increase of less than
50% (Fig. 5g–l). Conversely, BA increments are generally less than
20000 km2 in some subtropical and polar ecosystems, with percentage
increases ranging from 100% to 250%. Therefore, substantial BA increases
will be concentrated in temperate and boreal ecosystems. BA in subtropical
and polar ecosystems will exhibit long-term and rapid growth trends,
despite relatively smaller BA increases due to smaller land areas.

The contribution of threshold effects to BA will also change by an
averageof 2.66 to 4.14percentagepoints (SupplementaryFig. 12),whichwill
enhance in 21.76%of the land areas andweaken in 17.75% of the land areas
under four socio-climatic scenarios (Fig. 6a–f). Notably, the contribution of
threshold effects enhanced by more than 15 percentage points in most
boreal tundra, temperate steppes, and subtropical moist forests, while it
weakened by nearly 10 percentage points in some boreal coniferous forests,
subtropical dry forests, and subtropical mountain systems. Although
changes in the contribution of threshold effects exhibited similar spatial
patterns across different scenarios (Supplementary Fig. 12), they will
enhance additionally by 2 ~ 3 percentage points under higher emission
scenarios over broader areas. Further analysis showed that changes in future
BA have strong positive linear relationships with changes in the contribu-
tion of threshold effects (Fig. 6g). The enhanced contribution of threshold
effects under climate change was projected to result in a more pronounced
increase in BA in boreal mountain systems, temperate grasslands, and
temperate and subtropical deserts, nearly doubling the impact compared
with that in other ecoregions.

Discussion
The nonlinear threshold relationships between wildfires and their drivers are
pervasive andvary regionally, effectively explaining the spatial heterogeneity of
wildfire response patterns across ecoregions and similarities within climate
zones. Thresholds formost climate drivers are lower andmore easily exceeded
in polar and boreal ecosystems (Fig. 1a–f), suggesting that even small climate
shifts may cause climate drivers to exceed thresholds first and alter wildfire
responses11,15. This finding provides robust evidence to explain the high sen-
sitivityofhigh-latitudewildfires to climatechangeandsupports thenotion that
climatic thresholds shape northern high-latitude fire regimes4,13. We also find
that increasing precipitation, coupled with drought, vegetation productivity,
and human activities that exceed their thresholds, ultimately drive increases in
temperate wildfires (Fig. 1b–i). In regions where dry conditions and human
ignitions are met, an adequate preseason moisture supply may reduce fuel
limitation by improving vegetation productivity27, thus promoting wildfire
changes, especially in arid temperate steppes and desert shrublands28. Con-
versely, subtropical wildfires are seldom limited by fuel and are driven by heat,
drought, and socioeconomic factors (Fig. 1d–e, i–k). Therefore, subtropical
wildfires rapidly increase once these thresholds are exceeded29. However,
human control measures have exceeded their thresholds and moderated the
changes in subtropical wildfires, especially around densely populated areas,
suggesting that sustained and effective interventions help curb the trend of
increasing wildfires30.

The spatial differences and covariation patterns of thresholds are shaped
by gradient differences in heat and moisture conditions, vegetation pro-
ductivity, andhuman activities (Fig. 2).Wildfire driverswith similar properties

Fig. 2 | Correlations and spatial covariation patterns among thresholds (or
threshold effects) of different wildfire drivers. a Lower and upper triangular
matrices show the correlation coefficients between the thresholds of wildfire drivers
and the correlation coefficients between the threshold effects (absolute value). The
binary trees represent cluster relationships among variables. b–e depict the linear

spatial covariation patterns of the thresholds along spatial gradients (slopes with
p<0:05), whereas f–i illustrate the spatial covariation patterns of the absolute values
of threshold effects (z-score scaled). The colors on the right secondary axis corre-
spond to the variable colors. Refer to Supplementary Table 1 for the slopes, R2, and p
values of the linear regression models.
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mayreach their thresholdsunderanalogousenvironmental conditions, leading
to comparable spatial patterns. Moreover, regional differences in climate,
vegetation, and human activities essentially determine ecosystem stability to
control the conditions under which drivers reach thresholds, thereby shaping
their spatial covariation patterns. For example, ecosystems with limited heat,
moisture, and vegetation tend to have weaker ecosystem stability1,31, making
wildfires more susceptible to external changes and prone to exceeding
thresholds related to fuel availability (Fig. 2b–d). Conversely, ecosystems with
relatively high thresholds for preseason climates, vegetation productivity, and
population generally exhibit relatively strong ecosystem stability22,27, making
wildfires prone to thresholds related to flammability (Fig. 2b, e). More
importantly, correlations and covariation patterns among thresholds also
suggest that changes in individual drivers may trigger ripple effects of wildfire
responses, causing successive exceedances of interconnected thresholds32. For
example, higher temperatures increased both vapor pressure deficit and pre-
season temperature, sequentially triggering their thresholds, as these thresholds
are positively correlated and jointly driven by heat variability (Fig. 2a–b).
Moreover, their threshold effects may interact with each other to obscure the
spatial pattern of threshold effects of individual drivers32,33. For example, the
negative threshold effects of vapor pressure deficit and preseason temperature
partially counterbalance the positive threshold effects of temperature in boreal
and polar ecosystems (Fig. 1a, d, e). Consequently, their threshold effects fail to
exhibit notable spatial patterns along the heat gradient (Supplementary
Table 1). This argument explains our unexpected results—the lack of distinct
spatial patterns of the threshold effects along environmental gradients for
individual drivers (Fig. 2f–i).

We identified temperature, precipitation, and socioeconomic status as
the dominant drivers of mid- and high latitude wildfires (Figs. 3 and 4c).
Numerous studies have confirmed that droughts promote wildfires due to
rising temperatures and decreasing precipitation11,26,34. Conversely, human
activities, such as agricultural expansion and intensification or fire sup-
pression, led to decreases in BA30,35. Our results also highlight that threshold
effects explained roughly one-third ofwildfire variability, especiallywith the

most pronounced impact at northern high latitudes (> 50°N) (Figs. 3
and 4b). Warming and drought have intensified wildfires at high latitudes
due toArctic oscillations, sea-ice loss, andmoisture transport changes20,24,36.
In this context, we argue that temperature, drought, and their threshold
effects may interact to facilitate wildfires in high-latitude ecoregions
(Fig. 4c–d). For example, threshold effects amplified thepromoting effects of
warmer and drier conditions on wildfires, leading to an increase in large
wildfires11,37,38. Conversely, threshold effects had a relatively weaker impact
near 40°N (Fig. 4b–d). In these regions, wildfires are influencedprimarily by
precipitation and GDP, whereas the threshold effects of FWI_FS, LAI_FS,
and LCC are weaker and rarely enhance the influence of dominant drivers.
These findings extend the current understanding of multifactor threshold
effects and interactions between drivers and their threshold effects.

Ongoing climate change is projected to increase the annualmeanBA in
mid- and high latitudes by 47.81 ± 3.08% from 2030–2100 under socio-
climatic scenarios (Fig. 5). This finding was supported by several regional-
scale studies, which projected a 3% to 52% increase in California wildfires
under warming climates and a 40% to 100% increase in wildfires in Med-
iterranean Europe under different climate scenarios39,40. Importantly, our
results highlight that lower emission scenarios can substantiallymitigate the
long-term increasing trend in wildfires, keeping the overall increase in
burned areas to 41% by the end of this century (Fig. 5g–i). Comparatively,
the overall increase in burned areas will exceed 55% under higher emission
scenarios, posing a substantial threat to boreal ecosystems in particular. In
this context, although the burned areas in temperate steppes are expected to
continually decrease due to enhanced human control measures (Fig. 5a–f),
themitigating effect on the overall increase inwildfireswill be rather limited.
Likewise, previous projections forColoradowildfires indicatedBA increases
of 39% and 95% by 2100 under RCP4.5 and RCP8.5, respectively, while
increases of 22% by 2050 and 11% by 2100 are projected under RCP2.641.
Therefore, if humandevelopment follows the lower emissions scenarios, the
slowdown in the wildfire growth rate will help slow the process of carbon
emissions and global warming.

Fig. 3 | The contribution of wildfire drivers and their threshold effects. The
heatmap is the absolute Shapley additive explanation value (SHAP) of wildfire
drivers and threshold effects in each ecoregion. The bar and pie charts above
summarize the total contributions of the drivers (Var) and threshold effects (TE).

The cumulative bar charts on the right quantify the contribution ratios of drivers and
threshold effects in each ecoregion. The variables suffixed with _TE indicate the
threshold effects of the corresponding driver.
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Climate change will promote future wildfire changes in mid- and high
latitudes by enhancing the contribution of threshold effects to wildfires
(Fig. 6). Wildfires in temperate and boreal ecosystems contribute to more
than 80% of burned areas in northern mid- and high latitudes (Supple-
mentary Fig. 13c–d) and are more sensitive to climate change and suscep-
tible to threshold effects. Therefore, minor climate change is sufficient to
causewidespread and substantial increases inwildfires, evenwith a relatively
slight enhancement of the threshold effects due to climate change11,15. This
explanation fits with our results that wildfires in these ecosystems will
considerably increase but have a lower overall increment rate under climate
change (Fig. 5g–l). Subtropical ecosystems, accounting for approximately
18% of wildfires, showed strong and positive linear relationships between
enhanced threshold effects and increasing BA (Fig. 6). Wildfires in sub-
tropical ecosystems also exhibited aminor increment but amore substantial
overall change rate (Fig. 5g–l). A possible explanation is that climate change
strengthened the role of threshold effects in wildfire responses (Fig. 6g),
thereby increasing the variability of subtropical wildfires21,42,43. These find-
ings suggest that the nonlinear response of wildfires to external changes due
to threshold relationships will pose great challenges for future wildfire
prediction and land management.

Our insights into threshold effects and future wildfire changes have
three limitations. First, threshold effects are inherent properties of wildfire
response and theoretically depend entirely on ecosystem characteristics and
the intensity of external disturbances. However, data quality, spatial scales,
and parametricmodelsmay introduce noise and lead to the identification of
‘pseudo-thresholds’ that lack ecological significance44,45. While bootstrap
and comparison tests provide statistical reliability measures for our esti-
mates, validation through empirical experience remains indispensable.

Second, we used thresholds obtained from the early 21st century and
assumed their robustness in the future. However, ecosystem adaptation to
climate change, vegetation feedback, and shifts in human development
conceptsmay alter these threshold parameters, introducing nonstationarity
into the established relationships4,46,47. Meanwhile, such changes may also
potentially trigger additional drivers of otherwise linear changes to exhibit
nonlinearity and threshold effects in the future, complicating the identified
multifactor interactions. Finally, although we have validated the perfor-
mance of GCMs in climate change projections by considering their
uncertainty (Supplementary Note 2), the inherent differences between
GCMs may affect our projections48, which are determined by their initial
parameters.

In conclusion, this study offers key insights into the role of threshold
effects in controlling both present and future changes in wildfire dynamics.
We identify key thresholds where relationships between wildfires and their
drivers shift, revealing the widespread nonlinear response of wildfires to
environmental changes. Our findings suggest that the geographical differ-
ence in thresholds effectively explains spatial patterns of the wildfires and
their uneven responses, and the threshold effects of drivers overall con-
tribute to roughly one-third ofwildfire variability in northernmid- andhigh
latitudes.Morenotably, climate changewill enhance the impactof threshold
effects onwildfires to exacerbate variability in future wildfires. By the end of
this century, burned areas inmid- and high latitudes will increase by at least
41% under low emissions scenarios and by more than 55% under high
emissions scenarios. Wildfire dynamics in mid- and high latitudes will be
more variable under climate change due to the nonlinear threshold rela-
tionships between wildfires and drivers, challenging future wildfire man-
agement and risk assessment. This study gives added importance to

Fig. 4 | Spatial maps of the total contribution of threshold effects and the most
important drivers and threshold effects. a Total contribution of the threshold
effects. bEnlarged views of six regionswith the highest and lowest contributions. The

latitudinal profile of the contribution of threshold effects and the highest and lowest
ranges are shown. c,d Spatial patterns of drivers and threshold effects that contribute
the most to wildfires.
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understanding nonlinear wildfire response mechanisms and provides a
theoretical basis for formulating tailored policies for fire suppression, land
management, and climate change adaptation.

Methods
Remote sensing-based burned area dataset
We used the European Space Agency (ESA) FireCCI51 dataset and the
Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1
dataset to construct amonthly time series of burned areas from2001 to 2022
(Supplementary Table 3). The FireCCI51 dataset integrates the standard
MODISBAproduct into a 0.25°monthly gridded dataset and offers pre-fire
land cover categories for the burned pixels49,50. Since the FireCCI51 dataset
was only updated to 2020, we extended the BA time series to 2022 via
methodologies similar to those used by the dataset producers. We per-
formed this extension on theGoogle Earth Engine platformusing the 500m
MCD64A1 dataset from 2021–202251 and the latest-updated land cover

category of 2020 from the Land Cover CCI project52. Notably, although BA
hashigh spatiotemporal consistencybetween theMCD64A1andFireCCI51
datasets53, our extended method may underestimate BA in both years. This
is because FireCCI51 uses an updated BA detection algorithm that is more
sensitive to small fires, thus reducing BA underestimation50. However, since
multiyear average BA was ultimately used for analysis, the potential impact
of this discrepancy on our results is relatively limited. The original BA
dataset excluded unburnable areas, such as water, bare land, urban, and
permanent ice and snow-covered areas, and we further excluded BA in
croplands. This exclusion was driven by the substantial underestimation of
cropland BA, attributed to high commission and omission errors (49% and
63%) in moderate-resolution satellite detection for crop fires54.

Historical observation datasets
Climate datasets were obtained from the ERA5 reanalysis dataset of the
European Center forMedium-RangeWeather Forecasts (ECMWF), which

Fig. 5 | Future changes in BA during the fire seasons under four socio-climatic
scenarios. Compared with the annual mean BA of the historical period
(2001–2022), a–f show the spatial distributions of changes in BA under the SSP1-2.6
and SSP5-8.5 scenarios in 2030–2050, 2051–2070, and 2071–2100. Similar spatial

distribution patterns were observed under the SSP2-4.5 and SSP3-7.0 scenarios,
as shown in Supplementary Fig. 11. Panels g–i and j–l illustrate the increment
(labeled with million km2) and rate of change (%) in the future BA at the
ecoregion scale.
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range from 2000 to 2022 and have a 0.25° spatial resolution55. We selected
2m air temperature and total precipitation to measure heat and moisture
conditions and combined themwith 2mdewpoint temperature to calculate
the atmospheric vapor pressure deficit (VPD) from the ERA5 dataset56. A
public averaged monthly fire weather index (FWI) dataset from 2002 to
2020, developed from the ERA5 reanalysis dataset, was also employed to
obtain a climatic indicator characterizing potential fire risk57. We extended
this dataset to 2022by calculatingmonthlyFWIusing themethodsprovided
by dataset producers, the ERA5 hourly dataset, and the Canadian Fire
Weather Index System.

We also used other MODIS products, including annual net primary
production, the 8-day leaf area index (LAI), and annual plant functional
type (PFT)58–60. The first two datasets, ranging from 2001 to 2022, were
resampled to 0.25° spatial resolution to estimate vegetation productivity,
and the LAI dataset was further averaged by timestamp to create amonthly

time series. We defined the rate of land cover change (LCC) as the pro-
portion of pixels showing changes in PFT within a 0.25° grid cell between
adjacent years. A 0.25° LCC dataset from 2002 to 2021 was subsequently
constructed to quantify the magnitude of land cover change, in which the
LCC of 2022was substituted with the LCC of 2021, as the latest PFT dataset
was only updated to 2021. Population and gross domestic product datasets
were used to characterize socioeconomic development and the intensity of
human activity. A population datasetwith a 1-km spatial resolution ranging
from 2000 to 2022 was obtained from the LandScan program61. We also
used a global 1-kmgridded revised real gross domestic product from2001 to
2019 and extended this dataset to 202262. Specifically, we developed a simple
linear regressionmodel using available time series data at the pixel scale and
interpolated GDP values from 2020 to 2022 based on themodel parameters
obtained. Both datasets were aggregated over a 0.25 grid to match the
resolutions of the other spatial datasets.

Fig. 6 | Future changes in the contribution of threshold effects under socio-
climatic scenarios during three periods. a–f Spatial distribution of the changes in
the contribution of threshold effects (%, percentage points). Similar spatial dis-
tribution patterns were observed under the SSP2-4.5 and SSP3-7.0 scenarios, as

shown in Supplementary Fig. 12. g Bootstrap slopes of the simple linear regres-
sion between changes in BA and changes in the contribution of threshold effects
in each ecoregion.
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An ecoregion map with climate zones from the Food and Agriculture
Organization of the United Nations was also incorporated (Supplementary
Table 3). Our study area included 14 ecoregions north of 30°N, excluding
tropical ecoregions (Fig. 7a): polar (Polar), boreal mountain system
(BRMS), boreal tundra woodland (BRTW), boreal coniferous forest
(BRCF), temperate mountain system (TPMS), temperate desert (TPDT),
temperate steppe (TPST), temperate continental forest (TPCF), temperate
oceanic forest (TPOF), subtropical mountain system (STMS), subtropical
desert (STDT), subtropical steppe (STST), subtropical dry forest (STDF),
and subtropical humid forest (STHF).

Future simulation datasets under socio-climatic scenarios
The future simulation dataset includes nine sub-datasets, each offering the
same types of base variables as the historical dataset (Supplementary
Table 3). We chose six general circulation models (GCMs) from the Cou-
pled Model Intercomparison Project Phase 6 (CMIP6)63. These models
provide monthly future simulation datasets of temperature, dewpoint
temperature, total precipitation, seasonal average FWI, the leaf area index,
and net primary production from 1960 to 2100 under four shared socio-
economic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) (Sup-
plementary Fig. 14; Supplementary Table 4). Supplementary Note 2
provides detailed information on the selection and validation of these
GCMs. In addition, we incorporated three public datasets that offer simu-
lation datasets of population, gross domestic product, and plant functional
types from 2015 to 2100 under shared socioeconomic pathways64–66. Since

the spatial resolutions of these future simulation datasets vary
(100–250 km), we aggregated them to a uniform 0.25° spatial resolution.
The same pretreatment methods as those used for the historical datasets
were applied to create future simulation datasets.

Extracting wildfire drivers and creating modeling datasets
The seasonality and duration of wildfires vary across regions due to the
spatial heterogeneity of climatic and human factors. We defined the fire
season (FS) as the briefest adjacent calendar months (intervals of less than
three months) within a fire year that encompasses more than 80% of the
BA67. We also defined the preseason (PFS) as the 3 to 14months before the
onset of the fire season, considering that antecedent climate can influence
subsequent wildfires with lag effects of up to two years14,68. A two-month
buffer before the onset of the fire season was set to avoid confusion between
the preseason and fire season climates that directly affect flammability. We
ultimately calculated the multiyear average BA for each of the 12 calendar
months from 2001 to 2022 to identify the fire year and fire-pronemonths at
the pixel scale, thereby extracting a broad and stable fire season for each grid
cell (Supplementary Fig. 13a–b). We assumed that the fire season would
remain constant in the future. This assumption reduces the influence of fire
season variability on BA projections and comparisons, thereby facilitating
the identification of threshold effects in wildfire changes.

We used the BA during fire season (BA_FS) as the target variable.
Mean temperature (Tem_FS), total precipitation (Pre_FS), averagemonthly
FWI (FWI_FS), and vapor pressure deficit (VPD_FS) were each aggregated

Fig. 7 | Workflow for identifying threshold effects with an introduction to
threshold regression models. a Ecoregions of northern mid- and high latitudes.
bWorkflow for identifying nonlinear relationships, thresholds, and threshold
effects. cCandidate threshold regressionmodels, where e is the threshold parameter,

x is the predictor with threshold effects, and z is a vector of additional predictors. Any
parameters in this panel are hypothetical representations of the threshold regression
model and are not related to the initial values.
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as seasonal explanatory variables to characterize the climatic conditions
during the fire season. Preseason climate impacts on wildfires were gauged
using preseason temperature (Tem_PFS) and preseason precipitation
(Pre_PFS), which were defined as the sum of monthly average temperature
exceeding 5 °C and total precipitation during the preseason, respectively.
Here, 5 °C is the minimum temperature required for most plants to accu-
mulate nutrients. The average leaf area index in thefire season (LAI_FS) and
annual total net primary production (NPP) served as proxies for vegetation
productivity controlling fuel loading and allocation. Anthropogenic con-
trols included population (Pop), gross domestic product (GDP), and the
land cover change rate (LCC) to quantify socioeconomic and human fac-
tors, and they were log-transformed to mitigate skewness and reduce the
data range. The annual time series of these indicators were then extracted to
calculate multiyear averages. We converted historical multiyear averages
(2001–2022) to a modeling dataset and randomly divided it into training,
validation, and testing sets at a ratio of 6:2:2. Additionally, we created twelve
future simulation datasets for three periods (2030–2050, 2051–2070, and
2071–2100) under four future scenarios simultaneously.

Identifying and analyzing the threshold effects of wildfire drivers
The nonlinear threshold relationships between wildfires and drivers were
explored using threshold regression models, which incorporate a threshold
parameter (e) and segmented regression models to interpret
nonlinearity44,69.Wemerged the training and validation set to fit themodels
and assessed model performance using the testing set. The samples
extracted from the gridded data exhibited spatial autocorrelation, violating
the independence assumption for statistical modeling. Thus, we applied
bootstrap and stratified sampling to mitigate spatial autocorrelation.
Moreover, model comparison and selection relied on the Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC).

We first modeled the bivariate relationship between BA_FS and each
wildfire driverwithin each ecoregion using a linearmodel (LM), generalized
linear model (GLM), and generalized additive model (GAM) to identify
linear or nonlinear relationships (Fig. 7a, b). A threshold may exist in the
nonlinear relationships only if nonlinear regressions (GLMandGAM)were
the “optimal model” with the lowest AIC and BIC values. Second, we
selected the best-fitting threshold regression model with the lowest AIC or
BIC values from seven candidate continuous two-phase threshold regres-
sionmodels to parameterize the nonlinear threshold relationships (Fig. 7c).
Third, this final threshold regressionmodelwas fit to obtain the estimates of
the threshold with 95% confidence intervals and the slopes before and after
thresholds by performing 1000 bootstrap samplings. Here, threshold (e) is
defined as the position on the x-axis, where the nonlinear relationship
between wildfire (y-axis) and the driver (x-axis) abruptly shifts. The
threshold effect (TE) is defined as the overall change in slope after the driver
crosses this threshold. A positive value indicates that wildfire changes are
enhanced after the driver exceeds the threshold (enhancing effect), while a
negative value suggests a weakened wildfire change (weakening effect).
Finally, bootstrap slopes before and after the threshold were compared with
an unpaired two-sided Mann‒Whitney U test (p<0:05) to ensure the
validity of the identified threshold andquantify the strength anddirectionof
threshold effects.

We analyzed the spatial patterns of thresholds across ecoregions by
examining correlations between different thresholds of wildfire drivers and
linking these patterns to environmental gradients. Specifically, Pearson’s
correlation coefficients were calculated to examine the relationships
between thresholds (or threshold effects) of different drivers at the ecoregion
scale. Significant correlations indicated that these thresholds (or their
threshold effects) exhibited analogous spatial patterns across ecoregions.
We calculated the averages of Tem_FS, Pre_FS, NPP, and GDP to create
gradients of heat, moisture, vegetation productivity, and socioeconomic
development, which serve as proxies for differences in geographic contexts
across ecoregions. We then analyzed the spatial covariation patterns of
different thresholds along gradients when significant correlations were
identified. The latitudinal profiles of the thresholds were also illustrated to

reveal their latitudinal change patterns. Similarly, the spatial patterns of
threshold effects were analyzed using the same methods.

Quantifying the contributions of drivers and threshold effects on
wildfires
The extreme gradient boosting (XGBoost)model was employed to quantify
the impacts of multifactors and their threshold effects on wildfires70.
Inspired by threshold regression modeling, we created two new features,
ðx � eÞþ and ðx � eÞ�, for the corresponding driver, when a significant
threshold relationship was identified in an ecoregion. They measure
threshold effects following the formula from the selected threshold regres-
sion models (Fig. 7c). Consequently, a total of 33 features (independent
variables) and BA_FS (dependent variable) were used for multivariable
modeling.We trained an initial XGBoostmodel on the training set andfine-
tuned its hyperparameters via Bayesian optimization on the validation set.
The effectiveness and robustness of the optimized XGBoost model were
assessedusing rootmean squarederror (RMSE)ona testing set. TheShapley
additive explanation value (SHAP) was employed to estimate the con-
tributions of wildfire drivers and threshold effects in the XGBoost model.
SHAP values interpret machine learning outcomes by measuring each
feature’s or sample’s contribution to the predictions71. The contribution of
threshold effects was determined by the absolute SHAP value of the dif-
ference between ðx � eÞþ and ðx � eÞ�. The strongest explanatory variable
and key threshold effects across ecoregions were also identified to analyze
their spatial heterogeneity. The source data, codes, and core outputs to
implement the model were publicly accessible in Figshare72.

Projecting changes in wildfires and threshold effects under
climate change
The future BA of the fire season during three periods (2030–2050,
2051–2070, and 2071–2100) were projected using the validated XGBoost
model under four socio-climatic scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0,
and SSP5-8.5). Due to the limitations of fire seasons obtained from remote-
sensing data, we only projected the future BA on the land areas (or pixels)
wherewildfires occurred in thepast.We thenquantifiedBAchanges relative
to the historical period (2001–2022) at both the ecoregion scale and the pixel
scale to reveal the change characteristics of future wildfires in the context of
climate change. Changes in the contributions of wildfire drivers and their
threshold effects were also estimated using the SHAP value. To understand
how changes in the contribution of threshold effects contribute to future
wildfire changes, we further calculated the slope of a simple linear regression
model betweenBA changes and contribution changes in threshold effects at
the pixel scale for each ecoregion. Here, bootstrap sampling was used to
reduce the influence of spatial autocorrelation on correlations by randomly
selecting 500 sparse samples from each ecoregion, thereby estimating their
slopes and significance after 100 iterations.

Data availability
FireCCI51 and ESA CCI-LC datasets were obtained from the European
Space Agency’s Climate Change Initiative (https://climate.esa.int/en/
projects/). MODIS products, including MCD64A (burned areas),
MYD17A3HGF (Net Primary Production), MOD15A2H (Leaf Area
Index), and MCD12Q1 (Plant Functional Types), were obtained from the
National Aeronautics and Space Administration (NASA) (https://search.
earthdata.nasa.gov/search). Historical climate data were derived from the
ERA5 reanalysis datasets of the European Center for Medium-Range
Weather Forecasts (ECMWF) (https://cds.climate.copernicus.eu/datasets).
Global ecological zones were provided by the Food and Agriculture Orga-
nization (https://www.fao.org/forest-resources-assessment/remote-
sensing/). Population data were obtained from the LandScan Program of
Oak Ridge National Laboratory (https://landscan.ornl.gov/). Global gross
domestic product dataset (https://doi.org/10.6084/m9.figshare.17004523.
v1) and future global population distributions dataset (https://doi.org/10.
6084/m9.figshare.19609356.v3) are available from Figshare. CMIP6 model
outputs are available via the Earth SystemGrid Foundation (ESGF) (https://
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aims2.llnl.gov/search/cmip6/). Global fire weather indices (https://doi.org/
10.5281/zenodo.3626193), future gross domestic product (https://doi.org/
10.5281/zenodo.7898409), and future global plant functional type (https://
doi.org/10.5281/zenodo.4584775) are publicly available from Zenodo. All
datasets and their details are listed in the Supplementary information
(Supplementary Table 3).

Code availability
All analysis was conducted in R version 4.2. Open-source R packages are
listed in the supplementary information (Supplementary Table 5). The
source data and codes that support the findings of this study are available in
Figshare (https://doi.org/10.6084/m9.figshare.28171160).
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