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Anthropogenic climate change has
reduced drought recovery probabilities
across the western US

Check for updates

Emily L. Williams 1 , John T. Abatzoglou 1,2, Katherine C. Hegewisch1 & A. Park Williams 3

During drought, resource managers want to know when the drought will end to make informed
management decisions. However, as anthropogenic climate change has intensified drought
conditions, we hypothesize it has affected drought recovery. Here, we leverage monthly self-
calibrating Palmer Drought Severity Index data across the western US derived from observations and
climatemodels, andquantify theprobability of drought recovery following severe drought.We find that
the probability of drought recovery is ~25–50% lower in recent decades (2000–2021) than in the
historical record (1901–1980), with at least one-third of the reduced recovery probability attributable to
anthropogenic climate change. Climate model ensembles show reduced recovery probabilities in the
contemporary era (2000–2040), primarily due to increased evaporative demand in non-wintermonths,
resulting in an additional 1–4 months for droughts to recover compared with the historical record.
These findings suggest climate change is slowing drought recovery, with ramifications for water
management decisions and drought planning.

In the midst of a drought, resource managers, media, and the public often
want to know when the drought will end1–4. Long-duration droughts take a
toll on ecosystems (e.g. refs. 5,6) and reduce flows in watersheds (e.g.
refs. 4,7) and municipal water supplies (e.g. ref. 8). Thus, water resource
managers seek information on how long a drought will likely last—or the
probability of drought recovery by a certain date—in order to make better
management decisions, including when to tighten and relax water
restrictions.

This question emerged for California in 2022 as the state faced its third
consecutive hot and dry year, placing ~90% of the state in extreme to
exceptional drought that September, according to the US DroughtMonitor
(USDM)9. Due to the compounded water deficits from multiple drought
years, municipal and state agencies prepared to issue large water allocation
cuts to agriculture if conditions did not improve10, while Coalinga, Cali-
fornia received a $1.2 million award from the state for an emergency water
transfer as the city approached day zero water11. However, the 2023 water
year brought record breaking precipitation which led to drought recovery:
by summer 2023, the state was drought-free, according to the UDSM, and
water use restrictions were lifted.

As there are many types of drought (e.g. hydrologic, ecological, etc.)12,
there are also a range of definitions of drought recovery1,2,13. Broadly,
however, drought recovery reflects an abatement of moisture deficits, and

thus requires receiving adequate moisture to satisfy current water demand
plus a surplus of moisture to recover from the previous deficit1,2,14. It is
therefore dependent on drought severity and on subsequentmeteorological
conditions (e.g. precipitation and atmospheric evaporative demand). The
more severe the initial drought, the more surplus moisture is needed to
recover2. Elevated temperatures inmonths following the initial drought can
increase atmospheric evaporative demand, leading to even further water
deficits1,3. Conversely, surplus moisture, often a product of above average
precipitation, can lead to drought recovery1,15.

Efforts to assess the anticipated longevity of drought, and measures to
cope with drought impacts, aim to determine the probability of drought
recovery (PDR) by a certain time. These efforts consider how drought
indicators (e.g., streamflow, soil moisture, drought indices) may evolve in
subsequent months. Seasonal drought and hydrologic forecasts that
incorporate initial conditions and climate forecasts have skill at up to 12-
month lead-times in the western US, which can inform PDR2,12,16,17. Like-
wise, forecast skill has been demonstrated for efforts that leverage historic
analogs such as ensemble streamflow prediction16–18 or analogs based on
historical soil moisture19. However, reliance on historical analogs assumes
hydrometeorological stationarity—which may be increasingly unreliable
due to anthropogenic climate change (hereafter referred to as ‘climate
change’)18,20,21.
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Much of the southwestern US has experienced exceptional and per-
sistent drought for the past two decades, due to a combination of natural
variability and climate change. The western US is broadly characterized by
cool, wetwinterswith significant interannual variability in precipitation and
hot, dry summers with high atmospheric evaporative demand (Supple-
mentary Fig. 1). Though much of the recent observed reduction in pre-
cipitation is likely due to natural variability22, climate change has increased
atmospheric evaporative demand in the hot, dry seasons across the western
US3,6,23,24, and has thus increased the frequency with which hot conditions
co-occur with dry conditions25,26. Studies have attributed the observed rapid
intensification of drought onset (‘flash droughts’) and increased overall
severity of droughts in this region to climate change23,24,27.Other studieshave
employed models which suggest both projected increases in frequency and
duration of droughts due to climate change, which is in part dependent on
the initial severity of drought28,29. Yet, to the best of our knowledge, no study
has yet examined whether and how climate change has affected observed
PDR once in drought.

Here, we quantify how observed PDR has changed across the western
US and attribute howmuch of that change is due to climate change. To do

so, we calculate PDR using the self-calibrating Palmer Drought Severity
Index (scPDSI)30,31, a widely-used drought indicator whose calculation is
based on reference evapotranspiration (ETo) and precipitation. We calcu-
late PDR for five macroscale basins (HUC2 watersheds) across the western
US: the Upper and Lower Colorado Basins (UCB, LCB), the Great Basin
(GB), the Pacific Northwest (PNW), and California (CA) (Fig. 1). We use a
multiple-lines-of-evidence approach, leveraging observational scPDSI data
(1901–2023; Fig. 1), an experimental approach that initializes each month
with severe drought conditions and applies observational data to examine
potential drought recovery, and scPDSI calculated from 23 models parti-
cipating in theCoupledModel Intercomparison Project Phase 6 (CMIP6)32.
The observational and experimental data also include counterfactual
scPDSI estimates which omit anthropogenic trends in background mean
climate (as defined by the CMIP6 multi-model mean during 1901–2023),
which allow us to isolate how climate change has contributed to observed
changes. Recovery was defined as non-drought conditions (scPDSI ≥30th
percentile) occurring in each of the 24months immediately following severe
drought (scPDSI ≤10th percentile) (USDM; Fig. 1), and PDR for each
month calculated as the percentage of recoveries across the time period of

Fig. 1 | Map of the study region, encompassing five watersheds defined using
2-digit Hydrologic Unit Codes (HUC2), and distribution of observational
scPDSI values for each watershed. The five watersheds are the Upper Colorado
Basin (UCB,HUC2 14), the Lower Colorado Basin (LCB,HUC2 15), theGreat Basin
(GB, HUC2 16), the Pacific Northwest (PNW, HUC2 17), and the California Basin
(CA, HUC2 18). Bias-corrected distribution of observational scPDSI values are

shown for the historical (gray, 1901–1980) and recent (red, 2000–2023) time peri-
ods, aswell as the counterfactual for the recent time period, with thefirst order trends
attributable to climate change removed (blue). Drought and drought recovery
definitions are shown for each region in the boxplots as horizontal brown and blue
lines, respectively.
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interest19. We calculated PDR for each dataset for different time periods,
climate scenarios, and seasons. A detailed description of the approaches can
be found in Materials and Methods.

Results
Drought recovery is less likely in part due to climate change
We find that drought recovery was slower over the past two decades than
in previous decades across much of the western US (Fig. 2). Historically
(1901–1980), PDR 18 months after severe drought was 44–65% across
the five regions in the observational data (top row), with the highest PDR
in UCB and LCB and the lowest PDR in PNW (Fig. 2). Note, the low
historical PDR in PNW reflects the exceptional and persistent drought
experienced by the region in the 1920s–1930s (Fig. 3). Hence, there is
little detectable change in PNW in the recent time period (2000–2021) as
a product of internal variability. However, PDRwas significantly lower in
month 18 across the other regions during 2000–2021 (PDR = 30–47%)
compared to 1901–1980 (PDR = 56–65%) using the observational data.
Indeed, in both the observational and experimental data, PDR is
~25–50% lower in the recent period in California and the three south-
western basins (LCB, UCB, and GB). Notably, as the experimental traces
are initialized to the same drought magnitude, these results suggest
the observed decreases in PDR are not related to the initial severity
of drought.

Counterfactual simulations that exclude the first-order influence of
climate change suggest the reduced PDR is partially due to climate change
(Fig. 2, top and middle row). In southwestern basins, one-third to all of the
observed decreases in PDR in month 18 are explained by anthropogenic
climate trends. Indeed, the largest water deficit anomalies (ETo minus
precipitation) in the counterfactual are found for the southwestern regions,
and are largely due to heightened ETo from climate change (Supplementary
Fig. 2). For PNW and CA, while the climate change contribution is statis-
tically significant for portions of the experimental traces, the contribution
is lower.

Drought recovery calculated directly from climate model simulations
shows qualitatively similar results as observations: models simulate that
PDR is statistically significantly reduced in recent decades relative to much
of the 20th century for some regions (Fig. 2, bottom row).When accounting
for uncertainty across the 23 models, we find statistically significant
reductions inPDR forLCB,PNW, andCA.However, unlike the attributable
differences in observational and experimental data, the largest modeled
reductions inPDRwere inPNWandCA. Inmonth18,models suggest PDR
is 17% (±6%) lower inPNWand13% (±5%) lower inCA, yet ~0–10% lower
for Southwest regions. As with the experimental traces (Fig. 2, middle row),
supplementary analysis indicates that the recent reductions in PDR in the
model-based data are independent from initial depth of drought and largely
insensitive to the specific PDSI thresholds used (Supplementary Fig. 3).

Over the past century, PDR18months following severe drought shows
evidence of both significant multidecadal variability in observations as well
as a more recent trend toward reduced drought recovery, with all regions
having low PDR post-2000 (Fig. 3). Observational and experimental data
capture this variability, with low PDR during historical protracted droughts
(e.g. PNW in ~1930) as well as high PDR during historical wet periods (e.g.
LCB ~ 1980). However, this high multidecadal variability in PDR from
observations limits our ability to detect trends.

Instead, the climatemodel-basedmean PDR estimates depict a decline
in PDR for all regions in recent decades. For eachmodel, we estimate aTime
of Emergence (ToE) of when the signal of climate change emerges from
internal variability. Themedian, model-based ToE is earliest for CA, PNW,
and LCB, ranging from 1980 to 1995, before the recent time period
(2000–2021) in Fig. 2 (ToE range of estimates across models in Supple-
mentary Fig. 5). Note that while PNW experiences a median ToE in 1980
using model-based data, it does not have observational emergence. Con-
versely, the median ToE estimate for UCB is 2010. Therefore, in recreating
Fig. 2 using a window centered on 2020 (2000–2040), which reflects con-
temporary conditions, a statistically significant climate signal emerges for
this region (Supplementary Fig. 4).

Fig. 2 | Probability of drought recovery (PDR) using observational data (top),
experimental data (middle), and model-based data (bottom). Drought recovery
defined as scPDSI >30th percentile for 1901–1980; horizontal gray line indicates
unconditional probability based drought recovery definition. Probabilities refer to
drought recovery in months following drought. For the observational and model-
based data, recovery is calculated for all dates in which the region was in drought
(scPDSI <10th). For the observational and experimental panels, stars indicate sta-
tistically significant differences (p < 0.05) between the observed and counterfactual

traces (red, McNemar’s test) and the historical (1901–1980) and recent (2000–2021)
traces (black, t-test). The bottom panels depict themulti-modelmean PDR estimate.
Statistically significant differences between the historical and recent traces are
indicated by the presence of black stars, and are defined as the multi-model-mean
recent trace falling outside of the 95% CI of the means for the historical trace. Note,
all regions in model-based panels show significant reductions when defining
2000–2040 as the contemporary period (Supplementary Fig. 4).
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DecreasedPDR isdrivenby increasingETo innon-wintermonths
In each region, modeled PDR has slowed in non-winter months with cli-
mate change, largely due to increases in ETo (Fig. 4, experimental results in
Supplementary Table 2). For all regions except GB, at least three-quarters of
models suggest slowing recovery in spring (AMJ) and/or summer (JAS)
months. For example, for CA, the median change in model-based PDR

during summer in the contemporary period (2000–2040) was ~1.5 per-
centage points slower permonth compared to the historical period (or ~4.5
percentage points slower across the season, Fig. 4). The models depict
strong, statistically significant increases inETo in thenon-wintermonths for
all regions (Supplementary Fig. 6), which is the main contributor to the
decrease in the simple water balance (P-ETo) shown in Fig. 4. As PDSI is a

Fig. 4 | Boxplots depict the monthly change in PDR anomaly between the his-
torical (1900–1980) and contemporary (2000–2040) traces (Δ(PDR anomaly) /
Δ(month)).Monthly values are binned by season (JFM, AMJ, JAS, OND). The
upper and lower bounds of the box depict the interquartile range from the 23 CMIP6
models. Negative values mean that historical drought recovery probabilities

increased faster month-to-month than they do in the contemporary period. The
p-value refers to statistical significance in the difference between winter and sum-
mer. The brown boxplots depict the P-ETo climatological anomaly acrossmodels for
the contemporary time period.

Fig. 3 | Time series of PDR 18 months after severe drought conditions are met.
Probabilities are shown using a sliding 21-year window updated every 5 years
centered on the date of interest (e.g. 1950 uses 1940–1960). Drought and recovery are
defined as scPDSI <10th percentile and >30th percentile, respectively, based on
1900–1980. Horizontal gray line shows the multi-model-mean PDR for 1900–1980.
For the observational data (brown), only windowswith sufficient number of drought

instances (n ≥ 15) are included. PDR from experiments using observational data are
shown in green, while PDR from CMIP6 models are shown in black. The black line
and gray ribbon show the multi-model mean and 95% CI of the multi-model mean,
respectively. The red line and ribbon indicate the median time of emergence (ToE)
based on climate model output.
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water balance model that accounts for both precipitation and ETo, our
results thus suggest that the slowing PDR in non-winter months is largely
forced by anthropogenic increases in ETo.

Modeled changes in drought recovery vary between winter and sum-
mer months for PNW and CA, with statistically significant differences
betweenwarm and cool season values (Fig. 4). For these regions, over half of
the models suggest that climate change corresponds to faster recovery in
wintermonths, withmedian PDR increases of 0.1-1.4 percentage points per
month compared to the historical time period, due to increased precipita-
tion (Supplementary Fig. 6).

It now takes longer to recover from drought
Finally, we demonstrate that it now takes on average ~1–4months longer to
recover in UCB, LCB, PNW, and CA, using model-based data (Fig. 5). The
models suggest that under historical climate (1901–1980), it took around
one year following severe drought to recover, whereas under contemporary
climate (2000–2040) it takes on average 13–16 months (Fig. 5). The
lengthened recovery time is significant for all regions (t-test p-value < 0.05)
exceptGB,with15–21 of 23models showing longer times to recovery.Note,
the model-based estimates show no significant change for GB due to
modeled winter gains largely offsetting modeled non-winter losses. How-
ever, the experimental results (Supplementary Fig. 7) suggest lengthened
recovery time for GB due to climate change.

Discussion
Together, the observational, experimental, and model-based data indicate
that drought recovery across the westernUS is less likely today compared to
the historical time period, and further suggest that climate change accounts
for someof that change (Figs. 2 and3). The remaining change is likely due to
internal variability22,23 or potential biases in CMIP6 modeling related to
land-surface feedbacks in arid location and seasons33. Notably, this result is
relatively insensitive to our choice of threshold used for drought and
drought recovery definitions as well as the severity of initial drought

conditions (Fig. 2, Supplementary Fig. 3). This decrease in recovery prob-
ability translates to slower recovery, and thus longer drought duration, with
the model-based data suggesting it now takes an additional ~1–4 months
due to climate change to recover (Fig. 5).

Our results indicate that human-caused climate change has slowed
drought recovery during non-winter months, via increasing ETo (Fig. 4).
These findings are consistent with studies that have found that in the
western US, the largest increases in ETo have occurred during the warm
season, which exacerbates drought24,34,35. Notably, while these increases in
ETo have reduced PDR, over the southwestern basins, they have occurred
against a backdrop of anomalously low precipitation over the past two
decades, largely due to natural variability, which likely accounts for the
remaining observed reduction in PDR22. However, for coastal basins, cli-
mate model output suggests that slight increases in winter precipitation
(Supplementary Fig. 6) lead to improved probability of recovery in winter
(Fig. 4); similarly, for winter, the experimental data show smaller reductions
in compared to other seasons, and in some cases modest gains (Supple-
mentary Table 2). While there is substantial uncertainty in how climate
change has affected precipitation in the westernUS36, models suggest future
intensification ofwinter precipitation overmuch of thewesternUS, and this
increased interannual variability in precipitation may somewhat favor
drought recovery in winter (e.g. refs. 37–39). Yet, our model-based PDR
results suggest that suchwinter gains currently fail—andwill continue to fail
—to offset the ETo-driven non-winter losses (Fig. 3). These seasonal pat-
terns are important from a management perspective12,39,40. In the case of a
winter drought, recovery canbe expected to be harder over the following dry
season than it used to be, thereby lengthening time to recovery through the
dry season.

Our multiple-lines-of-evidence approach allowed for addressing sev-
eral challenges presented by using observational data alone (e.g. refs. 41,42).
First, in using both observational and model-based data, we accounted for
uncertainty stemming from the limitations presented by each type of data.
Furthermore, the experimental data and the model-based data addressed

Fig. 5 | Number of months to reach drought recovery for the historical
(1901–1980) and contemporary (2000–2040) time periods, using model-
based data. For each simulation, themedian number of months to recovery for each

drought was taken from which multi-model medians were derived. If recovery did
not occur within a 24-month period, the value was assigned as 25. Boxplots depict
interquartile range across the 23 CMIP6 models.

https://doi.org/10.1038/s43247-024-01640-z Article

Communications Earth & Environment |           (2024) 5:546 5

www.nature.com/commsenv


the challenge of small sample sizes presented by the observational data, and
allowed for assessing the effect of severity of drought on PDR (Supple-
mentary Fig. 3). While the experimental data shifts the magnitude of
drought recovery probabilities up, the rate of month-to-month change in
recovery probabilities is unaffected2. Moreover, the model-based data
allowed both for examining inter-model uncertainty via calculatingPDR for
each model, and for identifying the climate change signal in PDR when
taking the multi-model mean (e.g., Figs. 2–4).

This approach thus allowed for differentiating unique patterns in
changing recovery probabilities between the southwestern and coastal
regions. The climate signal is present in the observational and experimental
data for the southwestern regions, but the signal isweaker for coastal regions
(Fig. 2). Indeed, as foundbyother studies7,21,23,24, these results suggest that the
mean shifts in temperature and ETo are having the strongest persistent
impacts over the Colorado Basins. Conversely, for the Great Basin, the lack
of a signal in themodel-baseddata is consistentwith studies that have found
a later ToE for in soil moisture as a drought indicator for the Great Basin21,
particularly when simulating directly fromGCMs24. However, the presence
of a strong signal for coastal areas in model-based data may reflect a com-
bination of high internal variability present for the coastal regions and
anthropogenically forced changes in variability43. Coastal regions may be
more affected by this due to the higher observed interannual precipitation
variability. For California, much of the winter precipitation comes in the
form of atmospheric rivers with high interannual variability that have been
associatedwith endingdrought events15.Additionally, a strong tendencyhas
been demonstrated for high-frequency interannual variability in winter
precipitation in the Sierra Nevada and much of California44, which would
facilitate drought recovery in certain years.

While our results find that climate change has affected drought
recovery when defined using scPDSI, there are numerous drought indica-
tors that have different climate sensitivities and memories, suggesting that
our results may differ for other metrics. For instance, scPDSI accounts for
changes in precipitation and ETo, yet does not capture changes in hydro-
climatic variables such as snowpack, which is an important part of the
western US’s hydrology3. Studies have demonstrated that increased tem-
peratures from climate change have reduced springtime snowpack, due to a
shift in rain versus snow and due to early melt45, which leads to lower soil
moisture in the warm summer months. Thus, it is likely that this analysis
offers conservative estimates of reductions in drought recovery probability
due to climate change. Yet, we still find a substantial slowing of recovery,
leading to longer-lasting droughts with slower recovery times.

This slowing recovery has tangible negative impacts: on reduced water
flows across the western US, including stressing the already over-allocated
Colorado Basin3,7,40, and leading to deficits in ecosystems, such as poor
forage on rangelands6,46 and forest mortality47. Moreover, slowing drought
recoverymeans that the riskofday zerowaterwill increase absent changes in
water management, making the experience of Coalinga, CA a more com-
mon occurrence. This highlights the need for increased water resiliency,
involving placing less demand on water during drought, such as through
water conservation and adaptive agricultural systems48, and broader scale
water adaptations, such as managed aquifer recharge to smooth effects
across wet and dry times39. The models suggest that as warming continues
fromclimate change, drought recoveryprobabilitieswill decline furtherover
the coming decades (Supplementary Fig. 4), increasing the need for drought
planning efforts to factor in longer duration droughts and adaptation
approaches to reduce detrimental drought impacts on society and the
environment.

Materials & methods
Data
Monthly gridded (0.25° resolution) observational precipitation (pr), mini-
mum and maximum temperature (Tmin, Tmax), wind speed, actual vapor
pressure, and downward shortwave radiation for 1901–2023 were
retrieved23, with forcing datasets updated through 2023. Specific humidity
(SH) was then derived from these data. Additionally, general circulation

model (GCM) data were retrieved in order to increase the sample size and
account for the effect of climate change on changing variability.Monthly pr,
Tmin, Tmax, wind speed, SH, and downward shortwave radiation were
retrieved from 23 different climate models participating in CMIP6 across a
total of 130 ensemblemembers for historical (1850–2014) and future (SSP2-
45) forcing experiments (hereafter referred to as ‘model-based’ data)
(Supplementary Table 1)32. These data were used to calculate monthly
observational andmodel-basedETo following theASCEPenman-Monteith
approach49, and subsequently observational andmodel-based scPDSI (using
1950–2016 as the reference period).

The counterfactual observational datawere then created by subtracting
the GCM-based multi-model mean trends in pr, average temperature (tas),
windspeed, SH, and shortwave radiation from the observational fields,
thereby capturing average conditions in a world without anthropogenic
climate change. We use multi-model means for the purpose of developing
counterfactuals, as such models largely mute internal variability as simu-
latedbymodels but leave behind an estimate of trends due to anthropogenic
forcing. Notably, the counterfactual only removes first-order changes in
monthly averages from each climate variable and does not account for
anthropogenic influences on higher-frequency climate variability. As such,
the counterfactual preserves the variability of the observational record. The
counterfactual scPDSI data were calibrated using the observational data
(rather than counterfactual data).

Processing data
Spatially-averaged monthly time series of scPDSI, tas, pr, and ETo were
calculated for each of the five 2-digit hydrologic unit code (HUC2) regions:
theUpper Colorado Basin (HUC14), the Lower Colorado Basin (HUC 15),
the Great Basin (HUC 16), the Pacific Northwest Basin (HUC 17), and the
CaliforniaBasin (HUC18) (Fig. 1). For themodel-baseddata, datawerefirst
resampled to 0.1 degree using bilinear interpolation before taking
spatial means.

Models were then examined to determine if any model culling was
needed. This involved examining climatological biases in tas, pr, and ETo
relative to observational data (Supplementary Fig. 1) as well as trends in
these variables during 1901–2022 (Supplementary Fig. 8). Based on these
examinations, no models were removed.

Creating the experimental data
The experimental dataset was created by initializing each month with
scPDSI =−4 and running independent scPDSI calculations for the sub-
sequent 24 months using the spatial mean of the observed and counter-
factual ETo and precipitation data for each basin. This additionally required
initializing soilmoisture to the2ndpercentile of eachmonthlydata given the
theoretical construct of scPDSI where the 2nd percentile of data yields a
value of −4. This approach not only increased the sample size of drought
observations to provide a more statistically robust sample but also controls
for drought magnitude.

Calculating drought recovery
Drought and drought recovery were defined as falling below the 10th per-
centile and arriving above the 30th percentile, respectively, for each month
based on the 1901–1980 baseline data. These definitions follow the US
Drought Monitor (USDM) percentile breaks: under the 10th percentile
corresponds to severe (D2) to exceptional (D4) drought, while over the 30th
percentile corresponds to no drought. Therefore, historical analogs were
defined as historical droughts (scPDSI <10th percentile). For the observa-
tional and experimental data, the scPDSI value corresponding to drought
was selected based on the observational data, and the same dates corre-
sponding to drought were selected for the counterfactual experiment.
Furthermore, for the experimental data, the definitions were used from the
observational data. Finally, to assess uncertainty associated with choice of
thresholds, PDR for model-based data was additionally calculated for two
alternate thresholds for drought and recovery definitions (Supplemen-
tary Fig. 3).
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Drought recoverymay be defined in a number of ways. For example, it
may be defined as reaching non-drought conditions in any previousmonth,
regardless of whether subsequentmonths are drought-free. However, in the
case of a limited sample size, this approach risks a single month of recovery
dominating the probability curve, whereby all subsequent months are
redefined as ‘recovered’. Therefore, for this study, drought recovery was
defined as arriving in non-drought conditions in the month of interest (e.g.
for PDR in month 18, recovery in, not by, month 18). To calculate the
probability of drought recovery (PDR) in a specific month (mt), the data
were subset to all dates in drought (m0), and for the subsequent 24 months
(mt), we tabulated whether conditions were still in drought (scPDSI
<drought recovery definition) or out of drought (scPDSI >= drought
recovery definition). Rawprobabilitieswere then calculated by summing the
binaries and then dividing that sum by the total number of drought
instances. Therefore, PDRwas calculated for the full period of recordminus
the final 24 months.

PDR was calculated separately for observational data, counterfactual
data, and each GCM ensemble member. For GCMs containing more than
one ensemble member, we calculate PDR as the mean drought recovery
from individual ensembles. Finally, we calculate a multi-model mean PDR
as an evenly weighted average of probabilities across the 23 models.

PDR was estimated for different time periods: historical (1901–1980),
recent (2000–2021) (two years before the end of the historical data to cal-
culate m1…m18), and, for the model-based data, contemporary
(2000–2040). The contemporary time period is centered on 2020, and
provides modeled anthropogenic forcing that more closely resembles cur-
rent conditions.

Several tests were used to determine statistical significance. To test for
significant differences between the observed and counterfactual traces from
the observational data, McNemar’s test was run. McNemar’s test is used for
paired categorical data. As the observed and counterfactual traces are, by
design, paired, this test identifies significant differences between the binaries
of recovered and not recovered. To compare the historical and recent traces
for the observational and experimental data, a t-test was run on the dis-
tribution of scPDSI values for eachmonth following drought. For both tests,
a p-value threshold of <0.05 was used to indicate statistical significance.
Finally, to test for significance between the historical and recent traces using
the model-based data, the 95% confidence interval (CI) was calculated by
bootstrapping the PDR values across the 23 models, and significance was
defined as when the mean PDR in the recent trace falls outside of the CI of
the historical traces for each model. Uncertainty related to the percent
change in PDR is calculated as the percent change in multi-model-mean
recent trace from the lower and upper bounds of the CI of the
historical trace.

To calculate how PDR has changed over time, PDR was calculated for
moving 21-year windows every 5 years (Fig. 3). For the model-based data,
PDR for month 18 was first calculated for each simulation. Then for each
model, the mean was taken across the corresponding simulation-specific
PDR estimates. Using these model-mean PDR estimates, the time of
emergence (ToE) was calculated for each model as when PDR first falls
below, and then consistently (through 2050) remains below, the average
PDR from 1900 (1880–1920) to 1980 (1960–2000). The multi-model ToE
was then calculated as the median across the 23 ToE estimates.

To calculate the seasonal divergences, for each model, PDR was
calculated for each season (JFM, AMJ, JAS, OND) for the historical
(1901–1980) and contemporary (2000–2040) time periods. The historical
PDR was then subtracted from the contemporary PDR, yielding the
monthly attributable difference in PDR. Next, the attributable difference
in each month was subtracted from the subsequent month, yielding an
estimate of rate of change in attributable differences. These rate of change
estimates were then subset into seasons, and the mean value for each
season for each model depicted in the boxplots. To determine statistical
significance in seasonal differences, a Welch one-way ANOVA test was
run comparing cool season (Oct-Mar) and warm season (Apr-Sep)

values. Finally, the precipitation and ETo anomalies were derived by
subtracting climatological values for the contemporary from the histor-
ical time periods.

To determine the number of months for recovery, scPDSI values were
tabulated for the 24months after initial drought conditions weremet. If the
recovery did not occur in the 24-month period, the valuewas assigned as 25.
For the experimental data, the median number of months to recovery for
each time period (historical and contemporary) was taken. For the model-
based data, the median number of months to recovery was taken for each
simulation, and then the median for each model taken.

Data availability
The data used for this study are freely accessible. The climate model
ensembles may be accessed at https://esgf-node.llnl.gov/projects/cmip6.
The observational data through 2021 is available from https://doi.org/10.
25921/8pt9-hz08. HUC2watershed boundaries were downloaded from the
National MapDownloader (https://apps.nationalmap.gov/downloader/#/).
Processed data created for this study may be accessed from Dryad (https://
doi.org/10.5061/dryad.pk0p2ngxp)50.
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