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Abstract

Background Timely information on wildfire burn severity is critical to assess and mitigate potential post-fire impacts
on soils, vegetation, and hillslope stability. Tracking individual fire spread and intensity using satellite active fire data
provides a pathway to near real-time (NRT) information. Here, we generated a large database (n=2177) of wildfire
events in the western United States (U.S.) between 2012 and 2021 using active fire detections from the Visible Infrared
Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Fire
Events Data Suite (FEDS) algorithm to track large fire growth every 12 h. We integrated fire tracking data with final fire
perimeters and burn severity data from the Monitoring Trends in Burn Severity (MTBS) program to evaluate the rela-
tionship between burn severity and fire behavior metrics derived from the fire tracking approach, including the rate
of fire spread and average fire radiative power (FRP) of fire detections for each 12-h growth increment.

Results When stratified by vegetation type, FRP and rate of spread metrics were positively correlated with classified
burn severity for each 12-h growth increment, highlighting the potential to rapidly identify areas of high and low
severity burning. In forests, integrated measures of FRP over the fire lifetime captured persistent flaming and smolder-
ing that compensated for initial differences between AM (01:30) and PM (13:30) fire detections. Predictive modeling
of these relationships based on multiple fire behavior indicators and vegetation type from the LANDFIRE program
yielded an accuracy of 78% for the separation of unburned/low and moderate/high burn severity classes.

Conclusions These results demonstrate the ability to capture within-fire differences in burn severity using NRT
indicators from fire tracking to assist with emergency management and disaster preparedness for post-fire hazards,
such as landslides, debris flows, or changes in stream flow and water quality. As VIIRS data are available within min-
utes of each satellite overpass in the U.S,, rapid estimates of burn severity based on fire tracking can be made days
or weeks before a large wildfire is fully contained.
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Resumen

Antecedentes La informacion oportuna sobre la severidad de los incendios es critica para determinar y mitigar
los potenciales impactos post-fuego sobre los suelos, la vegetacién, y la estabilidad de las laderas de montafa. El
seguimiento de la velocidad de propagacion de cada incendio activo usando datos de satélites, provee de una

via rdpida para obtener informacién en tiempo real (NRT). En este trabajo, generamos una gran base de datos de

*Correspondence:

Elijah Orland

elijah.orland@nasa.gov; eliorland@att.net

Full list of author information is available at the end of the article

. ©The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
@ SPrlnger O pe n permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
— original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42408-025-00407-x&domain=pdf
http://orcid.org/0000-0001-8347-3951

Orland et al. Fire Ecology (2025) 21:55 Page 2 of 18

eventos de incendios (1=2.177) en el oeste de los EEUU entre 2012y 2021, usando detecciones activas del sensor de
imagenes radiométricas infrarrojas (VIIRS) del satélite Suomi National Polar-Orbiting Partnership (SNPP), y de un algo-
ritmo de un conjunto de datos de eventos de incendios (FEDS). Esto permite, cada 12 horas, rastrear el crecimiento
de grandes incendios. Integramos los datos de rastreo de estos incendios con los perimetros finales del fuego y con
las detecciones cada 12 horas sobre la severidad de estos incendios basados en el programa de monitoreo de las ten-
dencias en severidad de las quemas (MTBS), para evaluar la relacion entre la severidad de los incendios y las métricas
de comportamiento del fuego derivadas de la aproximacion del rastreo, incluyendo la tasa de propagacién del fuego,
y el promedio del poder radiante del fuego (FRP) de las detecciones para cada 12 h de incremento en el crecimiento
del fuego.

Resultados Cuando fueron estratificados por tipo de vegetacion, el FRP y las métricas de propagacion fueron positi-
vamente correlacionadas con la clasificacion de la severidad del fuego cada 12 h de incremento en el crecimiento del
incendio, subrayando el potencial para identificar rdpidamente dreas de alta y baja severidad del fuego. En bosques,
las medidas integradas de FRP sobre la duracién del incendio capturaron llamas y material en combustién de manera
permanente, que compensaron las diferencias iniciales de deteccion entre la 01:30 AM y las 13:30 PM. El modelo pre-
dictivo de esas relaciones basadas en indicadores multiples de comportamiento del fuego y tipos de vegetacién del
programa LANDFIRE, tuvieron una exactitud del 78% para la separacion de clases de severidad de “no quemado/baja’,
y ‘moderado/alta intensidad”.

Conclusiones Estos resultados muestran la habilidad para capturar las diferencias de severidad entre fuegos usando
indicadores del rastreo de NRT y poder asistir con el manejo de la emergencia y la preparacion del desastre y los
peligros del post fuego como los deslizamientos de laderas, el flujo de residuos, o cambios en el flujo de las corrientes
de los arroyos y la calidad del agua. Dado que los datos de VIIRS estén disponibles dentro de pocos minutos luego

de que el satélite haya sobrevolado los EEUU, las estimaciones rapidas de la severidad basadas en el rastreo del fuego

puede hacerse muchos dias 0 semanas antes de que un gran incendio sea totalmente contenido.

Background

Wildfires have substantial and interconnected impacts
on vegetation, soils, and hydrology (Bowman et al. 2009)
that vary as a function of burn extent and intensity (e.g.,
Adams 2013; Coop et al. 2019; Schwilk & Ackerly 2001).
Fuel consumption and fire-induced vegetation mortal-
ity alter biogeochemical cycles and contribute to green-
house gas emissions (e.g., Crutzen & Andreae 1990;
Hao & Liu 1994; Kasischke et al. 1995; Seiler & Crutzen
1980; Van Der Werf et al. 2003, 2017). Post-fire changes
in vegetation structure and composition also change sur-
face albedo (Randerson et al. 2006), reduce the infiltra-
tion capacity of burned soils (Debano 2000; Letey 2001),
trigger soil nutrient and chemical losses (Alexakis et al.
2021; Chen et al. 2010; Neff et al. 2005; Rovira et al.
2012), and increase the available sediment for mobiliza-
tion downslope (Florsheim et al. 1991, 2016; Gabet 2003;
Lamb et al. 2011, 2013). Combined, these impacts lead
to longitudinal changes to the hydrologic cycle, includ-
ing reductions in evapotranspiration (Ahmad et al. 2024;
Bond-Lamberty et al. 2009; Kang et al. 2006; Roche et al.
2018) an increase in overland flow (Scott et al. 1998; Vega
& Diaz-Fierros Viqueira 1987; Wells 1981) and greater
risk of catastrophic debris flows (Cannon 2001; Can-
non & DeGraff 2009; Kean et al. 2011; Lancaster et al.
2021). As wildfires in the western United States and other
fire-prone regions become more frequent and intense

(Abatzoglou & Williams 2016; Cunningham et al. 2024;
Mueller et al. 2020; Westerling et al. 2006), the expedited
delivery of burn severity data is crucial for assessing fire
effects and for allocating resources to manage post-fire
hazards.

One common approach to assess burn severity relies
on pre-fire and post-fire satellite imagery to estimate the
differenced or "delta" normalized burn ratio (ANBR)-a
metric sensitive to the loss of live vegetation cover and
soil exposure following burning (Eidenshink et al. 2007;
Key & Benson 2006). As such, mapped dNBR within a
burn scar based on Landsat or Sentinel-2 imagery is a
common input for classifying burn severity, as used in
standard products from the Monitoring Trends in Burn
Severity (MTBS) or Burned Area Emergency Response
(BAER) programs. These same image sources can also be
used to derive alternative indices such as the Relativized
dNBR (RANBR) (Miller & Thode 2007) or the Relativ-
ized Burn Ratio (RBR) (Parks et al. 2014). Remote sens-
ing-based metrics of burn severity vary in their ability to
accurately represent field conditions, as index suitability
changes based on fuel type and intended use case (Ept-
ing et al. 2005; Miller & Thode 2007; Morgan et al. 2014;
Parks et al. 2014; Picotte & Robertson 2011; Whitman
etal. 2018).

One of the key limitations of using remote sensing-
based indices for assessing burn severity is the need
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for post-fire imagery, given that image acquisition dur-
ing or immediately following a wildfire may be delayed
by clouds, smoke, or satellite revisit time. This time
gap between the burn date and assessment date intro-
duces uncertainty in the estimate of burn severity and
delays the use of these data for situational awareness in
response to a fire event. For groups tasked with emer-
gency response—such as BAER teams in the United
States—uncertainties tied to the availability of cloud-free
imagery represent a barrier for responsive planning and
management based on delays in mapping efforts to iden-
tify areas of elevated risk requiring immediate assess-
ment and/or treatment. Additionally, longitudinal fire
impacts such as delayed tree mortality may only become
visible during the following growing season; for capturing
these effects, “extended” MTBS assessments traditionally
rely on imagery acquired 1 year after the fire to provide
a more thorough picture of vegetation response (Key &
Benson 2006; Eidenshink et al. 2007). Given these limita-
tions, there is an opportunity to develop near real-time
(NRT) approaches that draw on complementary satellite
information to assist with burn severity assessments dur-
ing and immediately following a large fire event prior to
the availability of standard MTBS and BAER products.
One pathway for anticipating estimates of burn sever-
ity is to leverage pre-fire information. For example, using
a combination of airborne light detection and ranging
(lidar) and satellite-based land surface albedo measure-
ments, Ferndndez-Guisuraga et al. (2021) examined
the link between pre-fire vegetation structure and burn
severity, highlighting the correlations between canopy
height and volume with Composite Burn Index (CBI) and
dNBR values. Similarly, Staley et al. (2018) linked histori-
cal distributions of dNBR values with existing vegetation
type (EVT) classifications derived from LANDFIRE prod-
ucts (Rollins 2009). Using machine learning or related
methods, many data-driven studies also demonstrate the
important control of elevation on burn severity (Dillon
et al. 2011; Estes et al. 2017; Holden et al. 2009; Wu et al.
2013). Finally, fire spread simulations (e.g., Finney 2006;
Finney et al. 2011; Linn et al. 2002, 2020; Mell et al. 2007)
have also been used to model fire behavior and serve as
“scenario-based” assessments prior to burning. To date,
these approaches have not incorporated active fire infor-
mation made available in NRT to account for diurnal or
day-to-day variability in fire behavior or intensity.
Satellite active fire detections provide information on
the location and intensity of fire activity, and data are typ-
ically available within minutes to hours after each satellite
overpass. For example, the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors on NASA’s Terra
and Aqua satellites have already provided over 20 years
of active fire detections at 1-km resolution (Giglio et al.

Page 30f 18

2016) and daily burned area estimates at 500-m resolu-
tion (Giglio 2018). The wealth of MODIS active fire and
burned area data has spurred a range of approaches to
delineate individual fire events, both on regional and
global scales (Andela et al. 2019; Archibald & Roy 2009;
Balch et al. 2013, 2020; Hantson et al. 2015; Lizundia-
Loiola et al. 2020; Loboda & Csiszar 2007; Scaduto et al.
2020; Veraverbeke et al. 2014). However, many of these
products rely on datasets not available in NRT, and thus
are most appropriately used for retrospective analy-
sis. Improvements in spatial resolution, sensitivity, and
geolocation accuracy of active fire detections from the
Visible Infrared Imaging Radiometer Suite (VIIRS) sen-
sors (Schroeder et al. 2014) support new approaches
to track individual fire events every 12 h (Andela et al.
2022; Chen et al. 2022). Recent work by Chen et al.
(2022) introduced the Fire Events Data Suite (FEDS), an
approach to use NRT active fire observations from the
Suomi-NPP VIIRS sensor to iteratively track and recon-
struct fire progression in 12-h intervals for the state of
California from 2012 to 2020. The resulting FEDS data
provide unprecedented insight into the variability in fire
spread rate and intensity of large wildfires, thus promot-
ing a framework to explore the relationships between fire
behavior and burn severity.

In this study, we applied the FEDS algorithm to create
a dataset of individual fire events for the Western U.S.
from 2012 to 2021, aiming to systematically investigate
the relationship between active fire characteristics and
burn severity. We evaluated the potential for using mul-
tiple metrics of fire behavior derived in NRT from FEDS,
exploring the tradeoffs between accuracy and latency for
rapid assessments of burn severity. As wildfires in the
U.S. can burn for weeks or months, these NRT indicators
may fill an unmet need by providing timely updates on
burn severity. Such information is crucial for situational
awareness and responsive action both during and imme-
diately after wildfire events.

Methods

Fire tracking

We used the FEDS algorithm (Chen et al. 2022) to
generate 12-hourly fire progression data for the west-
ern U.S. from 2012 to 2021. The FEDS algorithm uses
VIIRS 375-m active fire detections (Schroeder et al.
2014) to track individual fire progression at 12-h inter-
vals that correspond to the cadence of VIIRS over-
passes for a given area, with daily overpasses occurring
at approximately 01:30 and 13:30 local time. Active fires
are detected as thermal anomalies by the VIIRS sensor,
where each 375-m active fire pixel indicates likely flaming
or smoldering fire activity. Theoretical detection limits
for sub-pixel burning in the VIIRS 375-m data product
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are reported to be as fine as 5-m? with this thresh-
old varying as a function of day/night thermal contrast
between fires and background conditions at the time of
overpass, as well as the level of smoke or cloud obscura-
tion (Schroeder et al. 2014). VIIRS active fire detection
data contain supplementary information such as confi-
dence flags, infrared brightness temperatures, and esti-
mated fire radiative power (FRP) in megawatts (MW),
representing the rate of energy output for that pixel at the
time of observation. FRP can be directly linked to the rate
of biomass combustion (Wooster et al. 2005) and there-
fore is used as a snapshot indicator of fire intensity and
emissions at the time of satellite overpass.

To reconstruct the progression of historical fires, we
used archived 375-m VNP14IMGML active fire location
data to track the progression of all fires in the western
U.S. from 2012 to 2021. The resulting dataset provides
temporally consistent observations of fire spread in dis-
crete 12-h periods across the study domain. Addition-
ally, FEDS data capture multiple properties relevant
to tracking active fire behavior, such as FRP, fire spread
rate, and fire line length. As the FEDS algorithm was
developed with a focus on tracking wildfires in Califor-
nia (Chen et al. 2022), the algorithm’s application to the
larger domain of the western U.S. in this study included
minor improvements in the efficiency of the underlying
clustering and merging components of the workflow to
meet the increased computational demand. Additionally,
fire tracking for the western U.S. region used projected
coordinate systems (e.g., the US National Atlas Equal
Area system, EPSG:9311) in contrast to the World Geo-
detic System (WGS) 84 geographic coordinate system
(EPSG: 4326) used in Chen et al. (2022). See Data Avail-
ability for more information on data and code access.
Because the FEDS algorithm relies on the preprocessed
VIIRS-based data products outlined in Schroeder et al.
(2014) and Schroeder & Giglio (2016), the same limita-
tions discussed therein apply. This includes the possibility
of false positive detections from static source hot spots
and false negatives due to cloud or smoke cover.

In this analysis, we included all FEDS fire objects that
intersected MTBS perimeters designated as wildfires
with matching ignition dates within 10 days. Because
MTBS includes all fires >1000 acres in the western U.S.,
smaller fires in the FEDS database were excluded from
this study. We computed the intersection-over-union
(IOU) for all matches to allow additional filtering based
on a quantitative representation of their spatial agree-
ment. In total, the final dataset contains 2177 matched
wildfires in the western U.S. between 2012 and 2021, rep-
resenting a total fire-affected area of over 166,722 km? as
mapped by the FEDS algorithm (Fig. 1).
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Calculation of fire spread rate, intensity, and persistence
We analyzed fire spread based on the individual “incre-
ments” of fire growth during each 12-h interval (Fig. 2).
Individual increments of fire growth were delineated by
taking the geometric difference between fire perimeters
derived at time ¢ and those derived 12 h later. Each indi-
vidual area of fire growth was assigned a unique index
such that multiple segments of fire spread (each with
different directions and locations on the fire perimeter)
during the same 12-h period were tracked separately. We
refer to these areas as “spread increments” or “growth
increments,” whose rate of growth can be expressed in
units of km?/12-h. Each increment is categorized based
on the timing of initial detection: increments marked as
“PM” were constructed using active fire detections first
observed at 13:30 local time. These increments include
instantaneous measures of PM fire behavior (e.g., FRP)
but nonetheless represent morning fire growth between
01:30 (the preceding overpass) and 13:30 (the current
overpass) (Fig. 2). Similarly, growth increments linked to
the AM overpass (01:30) mark afternoon fire growth.

To record information on fire intensity, we performed a
spatial join between all spread increments and all VIIRS
detections recorded for that fire. Notably, we recorded all
pixels detected within each spread increment, including
fire detections from the initial period of fire spread and
any persistent burning detected within each increment
over the lifetime of the fire. This approach provided mul-
tiple metrics of fire intensity and fire persistence (dura-
tion). For each increment of growth, we calculated the
mean, maximum, and area normalized total FRP. Fire
persistence was estimated using two metrics: (1) the
number of unique 12-h periods with one or more VIIRS
active fire detections within a given spread increment;
and (2) the time difference between the first and last
active fire detections, measured in hours.

For comparison with MTBS burn severity data, we
performed zonal statistics between individual spread
increments and classified MTBS pixels, recording the
median MTBS pixel class within each polygon. MTBS
severity classes in this analysis range from low/unburned
(1), low (2), moderate (3), and high (4) severity; classes
not pertaining to these groups, such as those represent-
ing enhanced regrowth (5) or no data (0), were excluded.
Comparisons with MTBS data included both initial
assessments focused on immediate fire impacts in low
biomass systems, such as grasslands or small shrublands,
as well as extended assessments using remote sensing
imagery 1 year after the fire to capture delayed ecosys-
tem effects in high biomass environments like dense
shrublands or forests (Key & Benson 2006; Eidenshink
et al. 2007). We analyzed the combined dataset using
both assessment types and separately evaluated the
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Fig. 1 Western U.S. wildfires from 2012 to 2021 included in the analysis (n=2177), colored by the number of 12 h spread increments in each fire
(total n=56,700)
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Fig. 2 Example of the differencing method used to isolate individual areas of fire spread based on the 2021 Sugar Fire in California. a FEDS
perimeter on the afternoon of July 9™, 2021 (13:30). b The FEDS perimeter 12 h later at 01:30. ¢ The geometric difference between these two
perimeters highlighting areas of fire spread in that 12 h period, referred to in this work as fire growth or spread increments. Red shading in panel b
denotes active fire detections during the 01:30 overpass, and areas of individual fire spread represent all growth that occurred between t, and t,
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influence of initial versus extended assessment data on
the relationships between fire behavior and burn sever-
ity. We used the LANDFIRE data products (Rollins 2009)
matched to the appropriate fire year to estimate the most
common existing vegetation type (EVT) prior to each fire
to stratify the analysis of fire behavior and burn severity
by vegetation type.

Finally, to ensure proper agreement between FEDS and
MTBS products, we computed the overlap between each
12-h growth increment and the corresponding MTBS
fire perimeter. Only increments with at least 50% overlap
with MTBS were included in the analysis. This thresh-
old retained 84% of the total spread increment dataset
(n=47,098), demonstrating broad agreement between
FEDS and MTBS despite more than an order of magni-
tude difference in the spatial resolution of their source
data (375-m vs 30-m, respectively).

Predictive modeling of vegetation burn severity
We developed two models to explore the potential to
predict final MTBS burn severity class using FEDS
data, where we tested different versions of the decision
tree-based ensemble model, XGBoost (Chen & Gues-
trin 2016)—a model with recent applications in stud-
ies related to burn severity and remote sensing (e.g., He
et al. 2024; Seydi et al. 2024). The first (multiclass) model
predicted the median MTBS class within each incre-
ment of growth, and the second (binary) model provided
the probability that the median MTBS class within each
increment was moderate/high severity (1) or not (0).
Each model was trained via a grid search, varying
the decision tree count from 25 to 1000 and tree depth
from 1 to 5. This strategy was chosen to achieve reason-
able performance while being sensitive to overfitting and
diminishing returns of continued model training. Input
features included growth increment spread rate, the
number of unique detection periods, the most commonly
occurring LANDFIRE EVT value, designation of initial
AM or PM observation, and FRP characteristics sum-
marized as the mean, maximum, and area-normalized
total (sum) on both the day of initial spread and over the
lifetime of the fire. LANDFIRE EVT data included the
four-digit EVT code, in addition to the simplified “EVT_
LF” and “EVT_PHYS” variables. Lastly, the ecoregion
in which the fire occurred—as defined by Olson et al.
(2001)—was included to provide a secondary, regional
representation of ecological context. For each classifica-
tion scheme (multiclass or binary), we compared models
with three different sets of input variables: (1) a model
with EVT and ecoregion characteristics only; (2) a model
with active fire characteristics only; and (3) a model with
the combination of all characteristics.
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Similar to the area-based filtering threshold used for
the data analysis, model training data included spread
increments with at least 50% overlap with MTBS perim-
eters from fires occurring between 2012 and 2020
(n=39,460, across 1949 wildfires) with testing occurring
on fires in 2021 (7=9000, across 221 wildfires). Evalua-
tion metrics included accuracy, precision, recall, f1-score,
and the area under the curve (AUC, binary only). No
overlap criteria were applied to the testing data to simu-
late NRT application, consistent with higher expected
uncertainty regarding up-to-date reference perimeter
data availability at the time of satellite acquisition.

Results

Active fire properties and burn severity

At the event level, filtered and matched FEDS fires
between 2012 and 2021 (#=2177, Fig. 1) in the western
U.S. primarily burned conifer forests (76%), with smaller
contributions from areas dominated by shrublands (14%)
and grasslands (3.3%). Within each dominant vegeta-
tion type, median MTBS class values and FRP for each
12-h growth increment were positively correlated (Fig. 3,
Table 1). In spread increments dominated by conifer
forests, median total FRP per unit area (MW/km?) was
28% higher in areas designated as high burn severity (4)
as compared to moderate severity (3) (Fig. 3a). This dif-
ference was even greater when comparing the distribu-
tion of mean FRP values for each increment, where FRP
in high severity spread increments was 41% higher than
in moderate severity increments (Fig. 3b). Overall, distri-
butions of both the mean and area-normalized total FRP
values for conifer spread increments were statistically
different when comparing neighboring severity classes
(Mann—Whitney U test, two-sided, p<0.01).

Shrubland and grassland dominated fire growth incre-
ments exhibited similar relationships between FRP and
MTBS burn severity (Fig. 3a—b, Table 1). For both veg-
etation types, the stepwise positive relationship between
mean FRP and burn severity was more consistent than
for area normalized total FRP. Shrublands had the highest
mean FRP per burn severity class of the three vegetation
types, consistent with evidence for hotter fires in shrub
ecosystems based on fuel characteristics (e.g., Burger &
Bond 2015; De Luis et al. 2004; Keeley et al. 1999). Mean
FRP was not statistically different between high and mod-
erate MTBS classes in shrublands or grasslands. Small
sample sizes for high burn severity increments in grass-
lands and shrublands may partially contribute to this
finding (see Table 1); heterogeneity in vegetation cover
may also lead to less consistent relationships between
FRP and burn severity in grasslands. Notably, metrics of
total FRP exhibited greater differences across class cat-
egories when grouped into unburned/low (1 and 2) and
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moderate/high (3 and 4) severity classes, illustrating the
potential to tailor NRT metrics to support specific infor-
mation needs for emergency response.

Higher MTBS severity consistently corresponded to
faster spread rates for conifer and shrubland vegetation
types from unburned/low (0) to moderate (3) sever-
ity (Fig. 3c). For shrubland-dominant increments, those
classified at high (4) severity (n=39) were not considered
statistically different from moderate severity (n=1206).
Differences between sample sizes likely affect these
results. For conifers, median spread rates were margin-
ally slower at high severity (0.74 km?/12 h) vs moderate
severity (0.88 km?/12 h), and these differences were sta-
tistically different. For grassland environments, rates of
spread increased between the unburned/low (1) and low
(2) severity classes, and differences between the moder-
ate (3) and low (2) categories were not statistically differ-
ent. Median spread rates declined by 71%—the highest
among all classes—between moderate and high severity
categories. In addition to the limited sample size in the
highest severity class (n=12), the 12-h revisit time of the
VIIRS sensor may not be sufficient to capture the fast-
moving nature of grassland fires.

Differences in fire behavior by vegetation type under-
score the value of fire tracking for assessing ecological
impacts of fire activity (Fig. 4). For example, shrubland
and grassland fires spread faster than fires in conifer-
dominated landscapes (Fig. 4a). The median values of
VIIRS-based spread rates for grassland and shrubland
classes were 53% and 106% higher, respectively, than for

fire spread increments in conifers. Conifer-dominated
growth increments burned longer than those dominated
by other vegetation types, with median fire persistence
of five 12-h periods (Fig. 4b). Fire persistence was also
more variable in conifer forests, measured as the hours
between the first and last active fire pixel within each
increment (Fig. 4c), where the median duration was 96
h (interquartile range: 168 h) compared to 12 h in both
shrubland and grassland spread increments (interquar-
tile range: 60 h). As such, more persistent fire activity in
conifer environments boosted total FRP per unit area,
consistent with the expected influence of elevated fuel
loading, fuelbed depth, and fuel particle heat content in
forested ecosystems on fire behavior (Rothermel 1972).
The influence of initial versus extended MTBS assess-
ment type on the relationship between burn severity
and metrics of fire behavior varied by vegetation type.
Estimated burn severity for conifer increments was
largely sourced from extended assessments (n=30,345
of 35,740, or 85%). As a result, the relationships between
burn severity and fire behavior metrics were compa-
rable between extended assessments (Fig. S1) and the
combined data shown in Fig. 3. For conifer increments
with initial assessment data, the overall patterns remain
unchanged, but the distributions of mean FRP and fire
spread rate were higher across all severity classes than in
the combined dataset (Fig. S2). By contrast, most MTBS
data for shrubland and grassland growth increments were
drawn from initial assessments (58% and 60%, respec-
tively). For shrublands, the overall relationships were
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Whiskers represent the 5th and 95th percentiles, and outliers are not shown

consistent between initial assessment data and the com-
bined dataset, but with a clearer separation of median
fire intensity and higher spread rates by initial assessment
class. Initial assessment data for grasslands also pro-
vided greater separability by burn severity class for mean
FRP and cumulative FRP metrics. Remaining shrubland
and grassland data sourced from extended assessments
exhibited higher intensity measures and lower spread
rates than those shown in (Fig. S1).

Diurnal behavior
The 12-h cadence of the VIIRS observations further
allows for the comparison of differences in fire behav-
ior metrics between nighttime and daytime overpasses,
including differences in spread rate and intensity across
severity classes. MTBS burn severity class distributions
separated by AM/PM overpass designation were statisti-
cally different from one another (p<0.01), where spread
increments tied to PM VIIRS active fire detections exhib-
ited higher severity classes overall. Indeed, when limiting
normalized total FRP values to only the time of the initial
VIIRS overpass, intensity values were consistently higher
for initial PM observations than initial AM observa-
tions across all vegetation types and burn severity classes
(Fig. 5a—c). Observed differences between AM and PM
VIIRS overpasses are consistent with the expected diur-
nal cycle of fire intensity, with more intense burning dur-
ing afternoon hours due to higher temperatures, lower
relative humidity, and often higher wind speeds (Andela
et al. 2015; Giglio 2007).

Integrating over the lifetime of each fire event resulted
in more even estimates of FRP (Fig. 5d—f). Consider-
ing the full lifetime of the fire, the ratio of PM/AM

cumulative FRP aggregated across all increments varied
by a factor of approximately two or less in conifer sys-
tems, with higher observed ratios in shrubland (approxi-
mately 2—4x%) and grassland (approximately 3X, excluding
outliers) ecosystems (Table 2). For conifers, high severity
increments were relatively evenly distributed across both
periods of morning and afternoon growth, highlighting
the influence of fire persistence on burn severity, where
longer duration burning leads to more complete fuel
consumption in higher fuel load systems. Conversely,
the time of initial fire spread may have a stronger influ-
ence on burn severity in shrubland and grassland ecosys-
tems—especially those considered for initial assessments
only.

We also observed diurnal variation in spread rates, with
larger afternoon spread across nearly all burn severity
classes (Fig. 6a—c). In conifer forests, elevated afternoon
fire spread rates are consistent with expected behavior
and supported by the strong differences in the initial AM
and PM FRP measurements. For example, higher PM
(13:30) FRP values track daily meteorological conditions
(e.g., higher temperatures and lower humidity) amena-
ble to greater afternoon (13:30 to 01:30) fire spread. Fur-
thermore, the increasing ratio between afternoon and
morning spread rates across MTBS classes in conifer
environments points to the contributions of diurnal vari-
ability in behavior on burn severity, where higher burn
severity classes are observed to coincide with periods of
increasingly faster afternoon spread (Fig. 6d). For shrub-
lands burned at moderate severity, afternoon spread rates
were about one and a half times as fast as morning spread
rates (Fig. 6e), before dropping to below 1xat the high-
est severity class. This subsequent decrease may be the
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Table 2 Ratio of median Initial and Cumulative FRP for PM

(13:30) and AM (01:30) spread increments for each vegetation
type and burn severity class. The full distributions for initial and

cumulative FRP by overpass time are shown in Fig. 5

Vegetation type MTBS class PM:AM FRP ratio
Initial Cumulative
Conifer Low/unburned (1) 6.8 23
Low (2) 56 16
Moderate (3) 73 16
High (4) 126 18
Shrubland Low/unburned (1) 64 25
Low (2) 7.1 3.1
Moderate (3) 8.7 2.1
High (4) 16.2 3.7
Grassland Low/unburned (1) 82 22
Low (2) 6.2 35
Moderate (3) 9.9 28
High (4) 3.7 11.2

result of small sample size (n=39). By contrast, after-
noon and morning fire spread rates were more compa-
rable in grasslands between low and moderate severity
classes (Fig. 6f), while spread rates at the highest severity
class were over twice as fast during the afternoon. This
pattern suggests that fire intensity may be a stronger con-
trol on burn severity between low and moderate classes
in grassland environments, and where the limited sample
size at high severity (n=12) makes further interpretation
difficult.

Burn severity prediction via supervised machine learning

Metrics of fire behavior from FEDS tracking contrib-
uted to successful predictions of MTBS burn sever-
ity (Table 3). For both multiclass and binary prediction,
models that combined vegetation and active fire data
showed improved performance over models that con-
sidered these categories of variables separately. Multi-
class accuracy reached a maximum of 67% considering
both variable categories, 64% considering vegetation
data only, and 65% considering active fire metrics only.



Orland et al. Fire Ecology (2025) 21:55 Page 11 of 18

a) Conifer b) Shrubland c) Grassland
& 1015 10' :[ 10" 4
=2 i il
g [ g e ] o=
2win i [ H will &1 wid &
- H i i e iy o 2
g i i =5
s 11T ! [l
V101 1071 4 1071 4 =
Low/  Low Moderate High Low/  Low Moderate High Low/  Low Moderate High
Unburned Unburned Unburned
[] Moming Growth [ 1 Afternoon Growth
d) Conifer e) Shrubland
2.0. .................................................. 2_0. ..................................................
=3
5%
o 0
(VRV}
§ 2
£
X
b=
<

Low/  Low Moderate High Low/  Low Moderate High Low/  Low Moderate High
Unburned Unburned Unburned
MTBS Burn Severity Class

Fig. 6 a—c Increment rate of spread delineated by vegetation type, burn severity class, and diurnal period in which growth occurred. d—f Ratio
between median afternoon growth values and median morning growth values separated by vegetation type and burn severity class

Table 3 Results from the best performing multiclass and binary models, both of which used all variable input types. Details on tree
count and depth are also provided

Output type: median MTBS value Precision Recall F-1 score Sample size per class
Multiclass prediction Unburned/low (1) 049 0.05 0.09 870
gﬁﬁihz jgo Low (2) 07 088 078 5723
Moderate (3) 0.52 043 047 2,109
High (4) 0.21 0.02 0.04 298
Accuracy 67% Total sample size
Total area correctly predicted 16,101 km” (69%) 9000
Binary prediction Unburned/low (1/2) 0.83 0.88 0.86 6593
TDrggihﬂ % Moderate/high (3/4) 061 05 055 2407
Accuracy 78% Total sample size
AUC 0.69 9000
Total area correctly predicted 17,944 km? (76%)

Similarly, binary class accuracies were even higher at 78%
(AUC=0.69), 74% (AUC=0.59), and 76% (AUC=0.63)
for these same categories of values, respectively.
Although overall model accuracies were similar in each
scenario, including active fire information specifically

improved model performance for moderate/high sever-
ity classification (3 or 4), which peaked with the combi-
nation of vegetation, ecoregion, and active fire data. The
optimally performing models also varied by vegetation
type. For instance, binary AUC results were highest for
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conifer spread increments (0.69), lower for shrublands
(0.56), and lowest for grasslands (0.52), where an imbal-
ance in the training data between low and high severity
may lower AUC values in shrublands and grasslands.
An analysis using models that only included active fire
information at the initial satellite overpass time showed
reduced performance for conifers (AUC=0.65), but com-
parable performance for shrubland (AUC=0.55) and
grassland (AUC=0.50) environments.

The best performing multiclass and binary models cor-
rectly classified 69% and 76% of the total 23,461 km? of
fire-affected area in the testing dataset, respectively. For
the approximately 18,000 km? of correctly predicted
results from the binary model, the median time between
the first and last detection was 72 h, allowing for timely
estimates of burn severity for growth increments in a
larger fire before fire containment. For systems with
lower fuel loads, “day of” active fire detections may pro-
vide sufficient information to deliver model estimates
within hours of initial detection. Figure 7 highlights
model results for the Dixie and Sugar fires—a long-last-
ing wildfire complex with a large high severity compo-
nent, which burned in northern California from July to
October in 2021. The binary class model correctly clas-
sified 74% of the total burned area mapped by MTBS,
with a median period of 84 h (3.5 days) between the first
and last detections within each FEDS-tracked increment

of fire growth. These results illustrate the potential to
deliver initial predictions of burn severity in NRT.

Discussion

Linkages between metrics of fire behavior and burn
severity

Near real-time metrics of fire intensity and behavior
from satellite-based fire tracking were strongly correlated
with post-fire burn severity for large fire events in the
western U.S. between 2012 and 2021. The relationships
between FRP and burn severity varied by vegetation type
and overpass time, demonstrating the ability of the VIIRS
sensor and FEDS algorithm to capture Key differences
in fire behavior that alter burn severity over 12-h incre-
ments of fire growth. These results highlight the potential
to refine and extend this approach to provide situational
awareness before a large fire is contained or suppressed,
where NRT indicators of burn severity derived from
metrics of fire behavior can complement traditional
approaches that rely on changes in surface reflectance
(e.g., ANBR).

Specifically, our results demonstrate that higher FRP
values were consistently associated with higher MTBS
severity classifications. While these relationships were
strongest for fires in conifer forests, these broad pat-
terns were also evident in shrublands and grasslands.
Our findings build upon previous work using active fire
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observations from MODIS or geostationary sensors to
investigate the relationships between fire intensity and
biomass consumption (Li et al. 2018) or burn severity
(Chatzopoulos-Vouzoglanis et al. 2024; Heward et al.
2013; Ponomarev et al. 2023), with our work drawing
upon the higher spatial resolution of VIIRS-based fire
tracking methods to establish quantitative relationships
between fire intensity and MTBS severity designations
for individual growth increments. The relationships
between fire intensity and burn severity were also con-
sistent across multiple assessment timeframes, demon-
strating linkages between both immediate and delayed
effects. Results from both assessment types further
contextualize the range of expected fire behavior for
a given vegetation type across varied ecosystems. For
instance, sparse conifer forests may only have an initial
MTBS assessment designed to capture immediate fire
impacts, yet active fire observations indicating persis-
tent and/or high-intensity burning may indicate elevated
risk for secondary effects such as delayed tree mortality.
This information may assist land managers with deci-
sions conventionally aided by extended assessment data,
including targeting the removal of dead woody fuels or
prioritizing locations for reseeding if the environment
displays low seed source connectivity.

Our study also provides a quantitative assessment of
the relationships among fire spread, fire persistence, and
burn severity across three major vegetation types. Over-
all, fire spread rate and burn severity were positively cor-
related across cover types, except in spread increments
classified at the highest severity level. The additional
consideration of fuel load may help explain deviations
from this pattern. For instance, fire growth increments
in conifer forests burned several times longer than in
shrubland or grassland ecosystems, and our results sug-
gest that integrated measures of FRP over several VIIRS
overpasses were more consistent predictors of high burn
severity in these systems. These findings are in line with
observations by Birch et al. (2014) in Northern Rocky
Mountain forests that daily burned area growth was only
weakly correlated with high burn severity. Hantson et al.
(2022) nonetheless found that the rate of spread derived
using VIIRS active fire detections indeed had positive
correlations with both FRP and tree mortality in Califor-
nia. Differences in forest type, measures of severity, and
fire tracking methods may contribute to the inconsist-
ent conclusions between studies, as well as how tailoring
FEDS tracking approaches to individual regions can pro-
vide enhanced predictions of burn severity that account
for the complexities within specific environments. Future
work to investigate the role of spread rate is additionally
needed to resolve the potential confounding effects of
observed differences in morning and afternoon growth
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in this study. As such, continued investigations into both
the drivers and impacts of high intensity fire growth may
assist practitioners with key decisions related to fireline
suppression, evacuation planning, and related response
efforts on emergency timelines.

The predictive power and utility of NRT tracking

The results in this study highlight the potential for NRT
fire tracking to provide rapid assessments of burn sever-
ity within hours after each satellite overpass. Models that
included behavior metrics were more accurate than those
that considered vegetation alone, with an overall accuracy
of 78% for the binary separation of moderate/high and
unburned/low severity classes for 221 wildfires in 2021.
Machine learning model results using exclusively NRT
metrics and pre-fire vegetation data were consistent pre-
dictors of burn severity in lower fuel load systems, dem-
onstrating the ability to provide decision support in these
ecosystems within hours of initial detection. By contrast,
cumulative measures of FRP were important modifiers
of burn severity in conifer forests measured over succes-
sive VIIRS overpass periods, highlighting the potential
benefits from an approach that iteratively updates sever-
ity estimates as new information is received. Our results
from the Dixie and Sugar fires (Fig. 7) demonstrate the
applicability of these methods for incidents which lasted
for several months, where model predictions can provide
provisional information on burn severity for situational
awareness until higher resolution burn severity datasets
become available. The use of empirical predictive models
based on pre- and active fire data can serve as an addi-
tional tool for assessing fire impacts, where the cadence
of NRT data availability can complement other modeling
approaches (Anderson 1982; Scott & Burgan 2005; Staley
et al. 2018; Wells et al. 2023).

Continued refinement and adoption of NRT fire tracking
may additionally assist partner agencies with their opera-
tional and planning goals, where iterative product develop-
ment can be tailored to meet individual stakeholder needs.
For instance, the expedited delivery and analysis of FEDS
data supports priority areas within the United States For-
est and Rangelands National Strategy (2014), such as those
focused on assessing fire intensity during an event and
measuring response efforts based on observed fire behav-
ior. Indicators of burn severity from NRT fire tracking may
also support selective non-intervention strategies that
allow for monitored, low-intensity fire spread to reduce
fuel loads, while identifying rapid and/or high-inten-
sity growth which may necessitate more interventional
responses. Similarly, U.S. Forest Service Wildfire Cri-
sis Implementation Plan (2022) emphasizes the need for
continued fuels treatments across multiple jurisdictional
boundaries, as well as the importance of reforestation
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efforts within burn scars. For each of these goals, FEDS
NRT tracking data and derived indicators of burn sever-
ity may contribute information across the fire lifecycle.
For example, pre-fire fuel treatments could target areas
adjacent to low-intensity burning, providing greater spa-
tial continuity of reduced fuel loads. Active fire tracking
may also support BAER teams with mapping anticipated
ecological impacts linked to soil burn severity. Given that
extended MTBS severity assessments are typically deliv-
ered 1 year following a fire event, burn severity indicators
from NRT fire tracking may also contribute early guid-
ance for targeting logging and reseeding efforts in the
post-fire environment. Finally, direct integration of FEDS
data with U.S. Forest Service Potential Operation Deline-
ations (POD) boundaries (Calkin et al. 2021; O’Connor
et al. 2017; Thompson et al. 2022) may further inform the
success of future suppression efforts, where records of fire
behavior can provide greater context for evaluations of
prior suppression outcomes (e.g., Young et al. 2024).

Future directions

Beyond the initial demonstration in this study, there are
several possible pathways to further improve modeled
burn severity based on indicators derived from fire track-
ing data. The inclusion of additional information on topog-
raphy, fuels, and fire weather during each 12-h growth
increment may improve modeled burn severity, particu-
larly in mountainous regions or during weather extremes
that modify relationships between fire behavior and sever-
ity. Additional active fire information, either from current
or future satellite and airborne systems, could also improve
the representation of fire spread, persistence, and intensity
needed to capture fine-scale heterogeneity in burn sever-
ity (Liu et al. 2024). Similarly, evidence for increasing fire
intensity during overnight hours (Balch et al. 2022; Luo
et al. 2024) supports continued investigations into night-
time FRP and fire persistence as potential drivers of higher
fire severity in future events.

Satellite-based fire tracking may also support the devel-
opment and evaluation of other NRT metrics of burn
severity, including categorical or continuous metrics
related to soil burn severity. Future work to integrate
fire persistence, total FRP, active fire line characteristics
(Chen et al. 2022), and measured soil impacts could pro-
vide a pathway to expand upon previous studies of soil
burn severity in laboratory or small-scale settings. For
instance, surface burning induces soil water repellency,
but repellency can also be destroyed beyond a criti-
cal intensity—duration heating threshold (Debano 2000;
Doerr et al. 2004; Letey 2001). With a path laid out by
prior laboratory studies (e.g., Robichaud & Hungerford
2000), continued work to couple field measurements
with total wildfire energy output and fire persistence via
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remote sensing may provide further insight regarding
the heterogeneity of soil impacts from wildfires—includ-
ing the related risk of post-fire hydrologic hazards such
as flash flooding or debris flows, as well as longitudinal
impacts to water quality from eroded sediment and ash.
Current and future satellite lidar and radar observations
may also provide complementary information on changes
in vegetation structure and moisture to refine estimates
of fine-scale variability in vegetation and soil burn sever-
ity within large fire events to complement metrics from
sub-daily fire tracking such as FEDS.

Finally, growing awareness of the importance of fire
behavior may motivate the consideration of additional
NRT estimates of fire impacts not regularly considered by
national mapping programs such as MTBS or BAER. For
example, recent work by Balch et al. (2024) linked rapid fire
spread to a higher number of damaged structures. Faster
fires pose unique threats to communities and firefight-
ers, and traditional spectral indices for burn severity (e.g.,
dNBR and NDVI) may not be suitable to characterize infra-
structure damages in the wildland urban interface. Thus,
NRT metrics of fire behavior provide an additional line of
evidence to support the rapid assessment of fire impacts in
both human-dominated and natural landscapes.

Uncertainties in fire detection

VIIRS active fire detections provide NRT information to
assess individual fire behavior and estimate burn sever-
ity, yet the 12-h cadence of VIIRS observations may not
capture critical burning times. For instance, the diurnal
cycle of fire activity in the western U.S. typically peaks in
the mid to late afternoon, with a decay in energy during
the nighttime (Giglio 2007; Mu et al. 2011). Wiggins et al.
(2020) additionally found significant variations in diurnal
cycle activity across multiple fires and land cover types.
As a result, VIIRS overpass times in the early afternoon
and early morning hours may not capture critical peri-
ods of fire intensity needed to characterize burn sever-
ity. Similarly, growth increments between the VIIRS
overpass times mix daytime and nighttime fire spread.
Along with the growing recognition of the impacts of
climate change on the diurnal cycle of fire activity (e.g.,
Balch et al. 2022; Luo et al. 2024), fire tracking based on
VIIRS overpass times may not be sufficient for capturing
distinct differences in daytime and nighttime behavior.
New fire tracking and analysis efforts from geostationary
satellites (e.g., Li et al. 2022; Liu et al. 2024) may provide
a basis for estimating variability in fire intensity between
VIIRS overpasses, along with data from future missions
such as WildFireSat (Johnston et al. 2020). Finally, sev-
eral additional factors may also influence satellite-based
FRP, such as the presence of clouds or dense smoke cover,
daily changes in pixel resolution related to view angle, or
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spurious detections. Future work to correct the atmos-
pheric attenuation of fire energy—as well as considering
the VIIRS sensors on the NOAA20 and NOAA21 satel-
lites for more consistent observations—may help clarify
the underlying relationships between fire intensity and
burn severity and advance approaches to leverage NRT
data for operational uses.

Conclusions

We ran the FEDS algorithm (Chen et al. 2022) across the
western U.S. to compare fire behavior and burn severity
for all large fires from 2012 to 2021. Our findings con-
firm consistent positive relationships between satellite-
derived estimates of FRP and categorical assessments of
burn severity. Additional metrics of fire spread and fire
persistence capture differences in fire behavior that mod-
ify burn severity for the dominant land cover types in the
western U.S. The capability to run the FEDS algorithm in
NRT underscores the possibility to estimate burn severity
for each 12-h growth increment within hours after each
satellite overpass. Therefore, we anticipate that the result-
ing data streams can contribute to situational awareness
about the impacts of an ongoing fire, including how low
intensity burning may assist with resource management
objectives and planning of future fuels treatments. In col-
laboration with operational partners, there are opportu-
nities to tailor and improve this modeling approach based
on the integration of additional fire detection informa-
tion from VIIRS or other airborne or satellite sensors, as
well as ancillary data to target specific NRT information
needs. This same approach to link fire behavior and fire
impacts could also provide a path to estimate soil burn
severity or other post-fire measures, where NRT data
could complement existing products in the western U.S.
or other regions with mapped severity data.

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/542408-025-00407-x.

Supplemental Figure S1. FEDS properties delineated by dominant vegeta-
tion type and MTBS burn severity class for extended assessments only.

a) Area normalized cumulative FRP measurements, per increment, over
the lifetime of the fire. b) Mean increment FRP values over the lifetime of
the fire. ©) 12-h spread rate as measured by the increment’s area. Markers
indicate median values across all assessment types. For further compari-
son, refer to Fig. 3.

Supplemental Figure S2. FEDS properties delineated by dominant
vegetation type and MTBS burn severity class for initial assessments only.
a) Area normalized cumulative FRP measurements, per increment, over
the lifetime of the fire. b) Mean increment FRP values over the lifetime of
the fire. ©) 12-h spread rate as measured by the increment’s area. Markers
indicate median values across all assessment types. For further compari-
son, refer to Fig. 3
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