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Abstract 

Background  Quantifying fuel moisture content accurately is critical for understanding global vegetation flammabil-
ity. While models representing changes in dead fuel moisture are relatively advanced, the mechanisms driving fluc-
tuations in live fuel moisture content (LFMC) have been difficult to capture. Living plants make up a large proportion 
of the fuel complex for wildfires, yet linking plant and combustion science to advance our understanding of wildfire 
risk has, to date, been limiting. Developing mechanistic approaches to link these two disciplines will confer greater 
understanding and capacity to model landscape fire risk in vegetated areas across the globe.

Results  Here, we present a mechanistic model that combines ecophysiology and combustion traits to determine 
LFMC. We evaluate model performance for seasonal fluctuations in LFMC for six shrubs common to the inter-
mountain west USA. Finally, we demonstrate how these measurements can be used to parameterize a physics-based 
coupled fire model (QUIC-fire) and used to assess how shrube seasonal dynamics impact modeled fire behavior 
and subsequent fuel consumption. 

We collected 860 foliage samples across 2022 and 2023 to test the performance of the mechanistic model. The 
model decomposes LFMC into leaf mass area (LMA), relative water content (RWC), surface-area-to-volume ratio (SAV), 
and the volumetric saturated water holding capacity ( κ ). We tested ten model variants using combinations of fixed 
and time-varying inputs to understand model performance using summarized inputs. The best performing model 
included time-varying LMA and RWC, and seasonally fixed inputs for SAV and κ ( r2 = 0.89 , MAE = 11.38%) across all 
shrub species. Physical and chemical model inputs from a single species across a season were then input to QUIC-fire, 
where fuel consumption changed from 2.37% early in the season (May) to 97.33% toward the end of summer in late 
August.

Conclusions  Mechanistic calculations of LFMC from the same physical and chemical variables used to parameterize 
the physics-based fire model represents a step forward in our capacity to link ecophysiology and combustion sci-
ence. These linkages will enable us to bridge decades of plant physiology and combustion science using fire models 
and simulators and it will improve our ability to interpret field measurements of LFMC across plant functional types.
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Resumen 

Antecedentes  La cuantificación de la humedad de los combustibles vegetales es crítica para entender la inflama-
bilidad de la vegetación a nivel global. Mientras que los modelos que representan cambios en la humedad del 
combustible muerto están bastante avanzados, los mecanismos que llevan a las fluctuaciones en el contenido de 
humedad de los combustibles vivos (LFMC), permanecen como difíciles de determinar. Las plantas vivas representan 
una gran proporción de los complejos de combustibles en incendios de vegetación, lo que hace que el vínculo entre 
la ciencia de las plantas y de la combustión sea limitado para avanzar en nuestro conocimiento sobre el riesgo de 
estos incendios. El desarrollo de aproximaciones mecanísticas para entrelazar estas dos disciplinas puede conferir una 
mayor comprensión y capacidad para modelar el riesgo de incendios a nivel de paisaje en áreas vegetadas de todo el 
mundo.

Resultados  Presentamos aquí un modelo mecanístico que combina la ecofisiología de las plantas y las característi-
cas de su combustión para determinar el contenido de humedad del combustible vegetal vivo (LFMC). Evaluamos la 
performance del modelo para determinar las fluctuaciones estacionales del LFMC para seis arbustos comunes de en 
la región inter-montana del oeste de los EEUU. Finalmente, demostramos cómo esas mediciones pueden ser usadas 
para parametrizar un modelo físico acoplado de fuego (QUIC-fire) y usado luego para determinar cómo la dinámica 
estacional de los arbustos impacta en el comportamiento modelado del fuego y en el subsecuente consumo del 
combustible. Colectamos 860 muestras de follaje entre 2022 y 2023 para probar la performance del modelo mecanís-
tico. El modelo descompone el LFMC en: la masa del área de la hoja (LMA), el contenido relativo de agua (RWC), la 
relación entre el área de superficie de la hoja y el volumen (SAV), y la capacidad de retención del agua volumétrica 
saturada (k). Probamos diez variantes del modelo usando combinaciones de datos de ingreso fijos y variables en el 
tiempo para entender la performance del modelo usando resúmenes de los datos de ingreso. La performance del 
mejor modelo incluyó el LAM en tiempo variable, y RWC, y datos estacionales fijos para SAV y k (r2=0.89, MAE=11.38%) 
para todas las especies de arbustos. Los datos de ingreso físicos y químicos del modelo para una especie a lo largo de 
una estación fue entonces el dato de ingreso para QUIC-fire, en el cual lel consumo del combustible cambió desde un 
2,37% al inicio de la temporada (Mayo) al 97% hacia fines del verano en agosto tardío.

Conclusiones  Los cálculos mecanísticos del LFMC de las mismas variables físicas y químicas usadas para para-
metrizar el modelo físico de fuego, representa un paso hacia adelante en nuestra capacidad para unir la ecofisiología 
con la ciencia de la combustión. Estas uniones nos permitirán reducir la brecha de décadas entre la fisiología vegetal y 
la ciencia de la combustión usando modelos de simulación en fuegos y mejorará nuestra habilidad para interpretar la 
LFMC entre plantas de distintos tipos funcionales.

Introduction
Across the globe fire is a common disturbance process 
that influences the distribution and composition of vege-
tation—including dominant tree species and understorey 
shrub communities (Pausas et al. 2017). Although fire can 
often promote ecosystem functioning (Bond and Keeley 
2005), it can negatively impact people, infrastructure and 
the environment (Kelly et al. 2020; Bowman et al. 2017). 
As wildfire activity intensifies under climate warming 
in many parts of the world, land and fire managers are 
increasingly asked to provide fire risk estimates and fore-
casts to communities (Miller and Ager 2012). However, 
to fully resolve potential fire risk, we must understand 
the physical processes that underpin fire ignition and 
behavior across landscapes, particularly for understorey 
plant communities, where fires commonly ignite and 
spread (Finney et al. 2013).

Fuel moisture content (FMC) is a key determinant of 
fire activity and is commonly monitored or modeled by 
managers to estimate landscape fire risk and potential 

fire behavior (Rothermel et al. 1986; Burgan 1979; McAr-
thur 1967). FMC describes the amount of water relative 
to oven dry weight, and it is important for fire behavior 
because some or all of the water must be removed from 
the fuel for efficient combustion to occur (Matthews et al. 
2010). Therefore, high FMC reduces fire rate of spread 
and lowers overall consumption (Masinda et  al. 2021; 
Rossa et al. 2016). Wildland fires typically burn through 
a mixture of live and dead fuels and while understanding 
FMC variability in both is important, the processes that 
govern water transport in and out of these fuels are fun-
damentally different (Jolly and Johnson 2018).

While dead fuel moisture dynamics have been stud-
ied for decades (Byram and Jemison 1943; Viney and 
Hatton 1990), studies investigating live fuels are com-
paratively recent (Viegas et  al. 2001; Wagner 1977). 
Estimating live fuel moisture content (LFMC) is chal-
lenging because both water content and dry mass change 
at daily (Balaguer-Romano et  al. 2022), seasonal (Pel-
lizzaro et  al. 2007; Nolan et  al. 2018) and inter-annual 
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scales (Vinodkumar et  al. 2021). Approaches focused 
on estimating LFMC through changes to water content 
alone, either through drought indices and meteorological 
conditions (McCaw et  al. 2018; Ruffault et  al. 2018), or 
remote sensing (Qi et al. 2012; Caccamo et al. 2012), have 
reported mixed results and while many still provide use-
ful products (e.g., Yebra et al. (2018); Keetch and Byram 
(1968)), to date we have been unable to account for all the 
factors driving variability in LFMC.

More recent live fuel dynamics work has focused on 
understanding the contribution of physiological plant 
traits in controlling fluctuations in both the water mass 
(numerator) and dry mass (denominator) of the LFMC 
equation (Pivovaroff et al. 2019; Nolan et al. 2020; Scarff 
et  al. 2021; Boving et  al. 2023). Water content fluctua-
tions have been linked to relative water content (RWC), 
which quantifies the amount of water in a sample relative 
to saturation and is a more direct metric of water stress in 
plants than LFMC. Jolly et  al. (2014) demonstrated that 
RWC is strongly related to changes in LFMC, and (Nolan 
et  al. 2020) mechanistically linked these using pressure 
volume curves derived from leaf water potential meas-
urements. Other authors have demonstrated the utility 
of normalized dry matter metrics such as leaf mass area 
(LMA), or its inverse, specific leaf area (SLA) for estimat-
ing seasonal fluctuations in LFMC for overstorey trees 
(Brown et al. 2022; Nolan et al. 2020). Griebel et al. (2023) 
report that SLA was the single most important variable 
for predicting LFMC fluctuations in Australian Eucalyp-
tus woodlands in a biophysical model that accounted for 
up to 89% of the variability in LFMC. Recently, Jolly et al. 
(2025) described a physiology-based mechanistic model 
that fully resolves LFMC from four physio-chemical vari-
ables: RWC, LMA, surface-area-to-volume ratio (SAV), 
and a species specific scalar that describes foliage volu-
metric maximum water holding capacity (κ) . The authors 
demonstrate the strong performance of this model for 
mature conifer tree foliage. However, the capacity of the 
mechanistic LFMC model to characterize seasonal fluc-
tuations in shrub foliage has not been evaluated to date.

Understanding seasonal fluctuations in LFMC is 
important for modeling fire behavior and fire risk to 
communities (Pimont et al. 2019). The inputs to the (Jolly 
et  al. 2025) mechanistic LFMC model (RWC, LMA, 
SAV and κ ) have direct relationships with flammability, 
thus including these in LFMC modeling will aid bridg-
ing the gap between plant physiology and fire behavior. 
For example, fuel dry matter (represented in the model 
through LMA) is comprised primarily of structural 
compounds, starches, sugars and crude fat. In addition 
to being important for plant function, these variables 
facilitate flaming combustion by creating pyrolyzates 
when heated and providing the solid fuel for combustion 

(Boardman et  al. 2021). The role of SAV in flammabil-
ity is well established (Brown 1970; Burton et  al. 2021), 
as fuels with higher surface area per unit mass accli-
mate more quickly to changes in temperature, and so are 
more responsive to radiative and convective heat trans-
fer (Rothermel and Anderson 1966). In turn, this can 
promote faster ignition time (Santoni et al. 2014) if fuel 
complex bulk density is sufficient. The direct relationship 
between these physio-chemical variables and combustion 
means that many fire behavior models use similar physio-
chemical inputs. High-fidelity fire spread simulators, 
such as QUIC-fire (Linn et  al. 2020), have been devel-
oped to capture complex wildland and prescribed fire 
dynamics in 3D and require a suite of inputs to describe 
fuel conditions and structure. The benefit of calculating 
LFMC mechanistically from the physio-chemical varia-
bles referenced here is that these same variables, or direct 
derivatives of, can be used in the fire behavior model as 
inputs for predicting fire behavior. Consequently, the 
characterization of fuel condition and fire spread can be 
drawn from the same set of consistent inputs. This may 
be particularly important in ecosystems with a high pro-
portion of shrubby understorey fuels, as the condition of 
these fuels partially determines whether fires that ignite 
at ground level are able to transition to crown fires (Chu-
vieco et al. 2009; Jolly 2007).

Here we present a study that aims to evaluate the per-
formance of a recently developed (Jolly et al. 2025) phys-
iology-based mechanistic LFMC model for six common 
understorey shrubs in the inter-mountain west USA. We 
demonstrate how plant physical and chemical character-
istics vary seasonally within a species, and across differ-
ent species, and how this interacts with LFMC. Finally, 
we input a season of measured data for a single species 
into QUIC-fire, a physics-based coupled fire-atmospheric 
model, to assess the impact of seasonal shrub dynamics 
on modeled fire behavior.

Methods
Study area
We collected foliage samples from six shrubs common to 
the inter-mountain west USA (Janish and Thorne 1972) 
during the 2022 and 2023 fire seasons. In 2022, Physocar-
pus malvaceus (Greene) Kuntze (mallow ninebark, PHY-
MAL) foliage was sampled intensively at weekly intervals 
between May and September. In 2023, we collected foli-
age from Amelanchier alnifolia (Nutt.) Nutt. (western 
service berry, AMEALN), Ceanothus velutinus Doug-
las ex Hook. (snowbrush, CEAVEL), Mahonia repens 
(Lindl.) G. Don (Oregon-grape, MAHREP), Spiraea betu-
lifolia Pall. (white spirea, SPIBET), Symphoricarpos albus 
(L.) S.F. Blake (common snowberry, SYMALB), and PHY-
MAL four times between June and August.
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We sampled at two locations: Blue Mountain 
National Recreation Area (PHYMAL) and TV Moun-
tain (AMEALN, CEAVEL, MAHREP, SPIBET, 
SYMALB). Blue Mountain (latitude: 46.82918, longi-
tude: − 114.11812) is approximately 10 km south-west of 
Missoula, Montana, USA, while TV Mountain (latitude: 
47.00239, longitude: −114.03398) is approximately 14 km 
to the north. The area has a warm humid continental cli-
mate (Köppen-Geiger Dfb), which is characterized by 
warm summers and cold winters (Peel et al. 2007). July is 
typically the warmest month (monthly temperature nor-
mal (T) = 20.2 °C), and December the coldest (monthly T 
normal = − 4.2 °C), with an annual precipitation normal 
of 425.7 mm (data for Missoula, MT, 1991–2020) (NOAA 
2021). The sampling areas are both open mixed stands of 
Douglas-fir (Pseudotsuga menziesii) and Ponderosa Pine 
(Pinus ponderosa) forest.

Field data collection
Foliage samples were collected in two cohorts across 2022 
and 2023. In 2022, we collected twenty-four PHYMAL 
foliage samples on a weekly basis between May and Sep-
tember. In 2023, we collected twenty foliage samples for 
all six shrub species four times between June and August. 
Across both years, field sampling was conducted in the 
morning to ensure enough time to process all samples 
on the same day, consequently, LFMC may not reflect a 
daily minima (peak flammability), but is consistent across 
the dataset. Across the two seasons, the timing of collec-
tion was targeted to the fire season in the inter-mountain 
west USA, although the months of collection differ due to 
seasonal differences in foliage green-up and senescence. 
Individual foliage samples were gathered from randomly 
selected plants within a designated 100 m × 100 m area. 
We collected the samples by cutting sun-exposed termi-
nal branches that had a bud and/or were actively flower-
ing (if applicable) and transported to the laboratory in a 
sealed plastic bag in a cooler.

Laboratory analysis
We processed the samples in the laboratory on the after-
noon of collection. Twenty-four (in 2022) or 20 (in 2023) 
individual terminal leaves were excised from the sampled 
branchlets using a razor blade and the fresh mass (FM) 
recorded to the nearest 0.1 mg. Fresh volume (FV) was 
determined using a balance density kit (Model EX224, 
Ohaus, Parsippany, NJ, USA). Each sample was patted 
dry, placed on a piece of white paper with a measurement 
reference, flattened with a piece of clear perspex and 
photographed. To estimate one-sided projected surface 
area (SA), the photographs were processed using ImageJ 
software following (Ferreira and Rasband 2012). The 

leaves were then placed into vials with the petiole of each 
leaf submerged in de-ionized water (Arndt et  al. 2015). 
Sealed vials were left to re-hydrate overnight at 4 °C. 
Twenty-four hours later, we extracted the samples, patted 
them dry with paper towel and reweighed to determine 
a turgid mass (TM). Leaves were then placed in a labeled 
muffin pan, dried in a convection oven for 48 h at 70 °C 
and re-weighed to determine the dry mass (DM).

Estimating physical and chemical characteristics
LFMC was determined using two separate equations in 
this study. The existing approach takes the fresh mass and 
dry mass and expresses it as water content as a percent of 
oven dry weight:

LFMC was then calculated following  Jolly et al. (2025). 
This equation expresses LFMC as a function of four com-
mon physiological measurements that are also included in 
some fire behavior models: relative water content (RWC), 
leaf mass area (LMA), surface-area-to-volume-ratio (SAV) 
and the maximum water holding capacity of the sample, 
labeled by the authors as kappa (κ).

RWC is a standard metric used by physiologists to 
quantify the water content of plants (González and 
González-Vilar 2001) and it describes the the amount of 
water in a sample relative to the maximum amount that 
can be held at saturation (turgid mass). It is calculated as:

Leaf mass area (LMA) represents the mass of foliage 
per unit area. Specific leaf area (SLA) is the inverse of 
LMA as is also commonly used in plant physiology stud-
ies. LMA was calculated from all-sided projected surface 
area (SA) and dry weight using the following equation:

where α is a factor to scale from one-sided projected foli-
age surface area to all-sided surface area. Scaling may be 
required, as LMA and SLA are typically calculated from 
one-sided projected surface area (Poorter et  al. 2009). 
However, all-sided surface area is a more relevant met-
ric for combustion science due to its role in heat trans-
fer, and (all-sided) surface area to volume ratio (SAV, 
also commonly expressed as SVR) is a key input to the 

(1)LFMC =

Fresh Mass − Dry Mass

Dry Mass
× 100

(2)LFMC (%) =

RWC
100

× κ

LMA× SAV
× 100

(3)RWC (%) =
Fresh Mass − Dry Mass

Turgid Mass − Dry Mass
× 100

(4)LMA (kg m−2
) =

Dry Mass

α × Surface Area
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QUIC-fire simulation model.  For the broadleaf shrubs 
in this study, α was assumed to be 2, however,  α varies 
across foliage types. To calculate surface-area-to-volume 
ratio, total surface area was divided by the fresh volume 
of the foliage following:

κ is a scaling parameter that represents the maximum 
amount of water that a sample can expand to hold at sat-
uration. It was calculated in this study as:

Modeling fire behavior using the QUIC‑fire simulator
Five weeks of data that represented the range of seasonal 
fluctuations in LMA, RWC, SAV, and κ for PHYMAL 
foliage were extracted from the full dataset and input to 
the QUIC-fire fire behavior simulator (Linn et al. 2020). 
Table 1 reports these data.

QUIC‑fire settings
QUIC-Fire is a physics-based fire behavior model 
designed to capture the complex interactions between 
fuel, atmospheric flow, and fire dynamics (Lin et  al. 
2020). In this study, QUIC-fire simulations were run with 
a 2 × 1.5 km domain, employing a vertical grid with two 
cell layers to differentiate between surface and PHYMAL 
fuel components. The initial layer of cells was param-
eterized to represent a fully cured, homogeneous grass 
model capable of reliably carrying fire. Using fuel attrib-
utes consistent with the (Scott and Burgan 2005) grass 
fuel model, the surface fuel layer was assigned a fuel load 
of 0.5 kg m2, a fuel bed depth of 0.5 m, a fuel moisture 
content of 5%, and a surface area-to-volume ratio of 4000 
m2 m−3 (Lin et  al. 2020). The second vertical cell layer, 
spanning 1–2 m, represented a homogeneous layer of 
PHYMAL fuels, incorporating SAV, LFMC and BD from 
Table 1 for each of the five time periods. Furthermore, a 

(5)SAV (m2 m−3
) =

α × Surface Area

Fresh Volume

(6)κ (kg m−2
) =

Turgid Mass − Dry Mass

Fresh Volume

westerly background wind was input at a height of 6.1 m, 
with a speed of 6 m s−1. All five QUIC-fire simulations 
employed the same surface fuels and background winds, 
differing only in the representation of shrub fuels col-
lected throughout the season. The results are reported 
as percent fuel consumption in the shrub fuel layer com-
pared to the input conditions. For further detail on the 
QUIC-fire simulator, see Lin et al. (2020).

Estimating bulk density of PHYMAL
QUIC-fire requires an estimate of total bulk density 
(BD) for burnable fuels, which includes foliage and stem 
mass for Ninebark (PHYMAL). These data are reported 
in Table  1. We estimated foliage BD using reasonable 
assumptions for mean shrub height (H), leaf area index 
(LAI) and assumed leaf angle. H was input as 1.35m fol-
lowing (Habeck 1992), LAI was assumed to be 2 follow-
ing (Keane 2008) and leaf angle assumed to be 45° for all 
foliage. LAI assesses foliage area per unit ground area as a 
flat plane, which can under-represent the total foliage area 
when the leaves are suspended at an angle. Therefore, we 
adjusted LAI for leaf angle (LAIangle) by dividing LAI by 
the inverse cosine of the assumed leaf angle, which was 
input as 0.79, equal to 45° in radians (White et al., 2000). 
Foliage BD was calculated from LAIangle using the follow-
ing equation:

Stem BD was estimated by building an allometric equa-
tion to relate stem mass to foliage mass. Ten PHYMAL 
shrubs were collected and separated into foliage and 
stem components. These were dried for 48 h at 70 °C and 
weighed. We developed a simple linear regression ( n = 10 ) 
between foliage and stem mass with the y-intercept forced 
through zero, which resulted in R2=0.96 and slope of 4.92 
(Supplementary Material Table 1). Stem mass per unit foli-
age was therefore multiplied by 4.92. Total bulk density 
(Table 1) is the sum of foliage and stem BD.

(7)Bulk density (kg m−3
) =

LMA× LAIangle

Height

Table 1  Data that were extracted from the full seasonal dataset to input to the QUIC-fire simulator. Data are presented as mean values 
of the week of collection

Date LMA (kg m−2) SAV (m2 m−3) RWC (%) LFMC (%) BD Foliage (kg 
m−3)

BD Stem (kg 
m−3)

BD Total (kg m−3)

2022-05-18 0.060 2936.8 70.1 258.2 0.134 0.659 0.792

2022-06-01 0.046 5257.7 90.9 269.4 0.102 0.504 0.607

2022-07-06 0.055 5785.4 79.2 147.2 0.121 0.597 0.718

2022-08-03 0.057 6592.6 56.4 94.5 0.127 0.625 0.752

2022-08-25 0.062 6896.8 41.8 56.4 0.137 0.676 0.814
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Data analysis
In total, we collected and processed 860 individual foli-
age samples throughout sampling campaigns in 2022 
( n = 384 ) and 2023 ( n = 476 ). The data are presented in 
two cohorts: 2023 data to assess the differences in physi-
cal and chemical characteristics across species, and 2022 
data to assess seasonal variability within one species 
(PHYMAL) and model potential fire behavior. We have 
combined the data to evaluate the performance of the 
mechanistic LFMC model, however, for these analyses, 
data collection was restricted to the same range across 
2022 and 2023, resulting in three sampling weeks from 
2022 being removed. Consequently, we assessed model 
performance using n = 792 data points.

To understand variability in model inputs across spe-
cies for LFMC, RWC, LMA, SAV, and κ , and evaluate 
the mechanistic models, we produced simple boxplots, 
and tables of median and standard deviation. We tested 
ten candidate models (Table  2) using different combi-
nations of time-varying (median per sample data) and 
fixed (seasonal median) input parameters to model 
LFMC. Correlation coefficients, mean absolute error 
(MAE) and Nash-Sutcliffe efficiency (NSE) (Nash and 
Sutcliffe 1970) for these ten models are presented. We 
plotted the best performing model using the ggplot 
package (Wickham 2016).

To understand seasonal variability of model inputs in a 
single species, and understand effects on fire behavior, we 
produced simple boxplots and input seasonal data (blue 
boxplots) to the QUIC-fire model. Foliage senescence 
meant that samples collected on 2022-09-01 were mostly 
dead, and these samples could not be re-hydrated, nor 
could the foliage be laid flat to determine a projected sur-
face area, consequently, we have removed foliage samples 
collected on 2022-09-01 (1 September 2022) from subse-
quent analyses. Data analyses were performed using the R 

statistical software, version 4.1.3 (R Core Team 2022), or 
the QUIC-fire tool.

Results
The data are presented in two cohorts: 2023 data to assess 
the differences in physical and chemical characteristics 
across species, and 2022 data to assess seasonal variabil-
ity within one species (PHYMAL) and model potential 
fire behavior.

Variation in physical and chemical characteristics 
across species
We collected 476 individual foliage samples from six 
common intermountain west shrubs throughout 2023. 

Table 2  An overview of the ten model variants tested to in this study to model live fuel moisture content, describing the time-varying 
and fixed model input parameters evaluated. The acronyms stand for: leaf mass area (LMA), relative water content (RWC), surface-area-
to-volume ratio (SAV), maximum water holding capacity ( κ)

Model type Model ID Time-variant parameters Fixed parameters

Single time varying input models Model 1 LMA RCW, SAV, κ

Model 2 RWC​ LMA, SAV, κ

Model 3 SAV LMA, RWC, κ

Model 4 κ LMA, RAC, SAV

Two time varying input models Model 5 LMA, RWC​ SAV, κ

Model 6 SAV, RWC​ LMA, κ

Model 7 RWC, κ LMA, SAV

Model 8 LMA, SAV RWC, κ

Model 9 LMA, κ RAC, SAV

Model 10 SAV, κ LMA, RWC​

Fig. 1  A boxplot depicting variability in live fuel moisture content 
(LFMC) across the six shrub species observed in this study in 2023, 
n = 476 . The box depicts the interquartile range, while the whiskers 
illustrate the top and bottom 25% of the data. The black data points 
are outliers in the dataset. The acronyms stand for PHYMAL (P. 
malvaceus), AMEALN (A. alnifolia), CEAVEL (C. velutinus), MAHREP (M. 
repens), SPIBET (S. betulifolia), SYMALB (S. albus)
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LFMC varied between species, ranging from seasonal 
median values of 115% (MAHREP) to 164% for CEAVEL 
and SYMALB (Fig.  1, Table  3). Maximum observed 
LFMC values varied to a greater extent, with the highest 
maximum LFMC observed for MAHREP (319%) and the 
lowest maximum for AMEALN (203%). The lowest mini-
mum (driest) LFMC value observed in the 2023 dataset 
was for PHYMAL foliage (63%), although is an outlier in 
the dataset and may represent senescing foliage. The next 

lowest value was for CEAVAL (86.7%), while the highest 
minimum LFMC was 132% for SYMALB foliage (Fig. 1).

Inter-specific variation in RWC and κ was low across 
shrub species, while differences in LMA and SAV were 
comparitively high. Boxplots illustrating variation in the 
physical and chemical inputs to the mechanistic LFMC 
model are depicted in Fig. 2. Median RWC values ranged 
from 82.8 % (PHYMAL) to 91.5 % (CEAVEL) (Table 3). 
Similarly, inter-specific differences in the maximum 
water holding capacity (κ) were limited, varying between 

Table 3  Variation in the inputs to the mechanistic live fuel moisture model across the six shrubs species sampled in 2023. The values 
presented are live fuel moisture content (LFMC), relative water content (RWC), leaf mass area (LMA), surface-area-to-volume ratio (SAV), 
and the maximum water holding capacity ( κ ), n = 476 . Values in parentheses are standard deviation. The acronyms stand for PHYMAL 
(P. malvaceus), AMEALN (A. alnifolia), CEAVEL (C. velutinus), MAHREP (M. repens), SPIBET (S. betulifolia), SYMALB (S. albus)

Species LFMC RWC (%) SAV LMA κ

(%) (%) (m2 m −3) (kg m 2) (kg H 2 O m −3)

AMEALN 127.8 (24.7) 85.7 (5.2) 9777.5 (1530.8) 0.035 (0.007) 531.5 (46.4)

CEAVEL 164.4 (57.8) 91.5 (2.4) 5438.6 (1208.1) 0.061 (0.021) 503.7 (74.5)

MAHREP 115.4 (76.4) 90.9 (4.4) 8271.1 (967.4) 0.05 (0.012) 537.1 (106.1)

PHYMAL 150.2 (52.6) 82.8 (7.2) 9423.4 (2148.6) 0.034 (0.006) 560.8 (81.0)

SPIBET 136.3 (24.8) 85.7 (3.5) 13531.2 (1588.1) 0.024 (0.004) 515.4 (44.3)

SYMALB 164.6 (20.0) 85.5 (3.9) 9611.4 (1104.0) 0.030 (0.005) 565.3 (60.5)

Fig. 2  Boxplots depicting variation across six common shrubs species for a relative water content (RWC), b maximum water holding capacity ( κ ), c 
leaf mass area (LMA), and d surface-area-to-volume ratio (SAV). For each panel, n = 476 . The acronyms stand for PHYMAL (P. malvaceus), AMEALN (A. 
alnifolia), CEAVEL (C. velutinus), MAHREP (M. repens), SPIBET (S. betulifolia), SYMALB (S. albus)
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species medians of 503.7 kg H 2 O m−3 (CEAVEL) and 
565.3 kg H 2 O m−3 (SYMABL), a percentage change 
of 12.2% across species. In contrast, substantial differ-
ences were observed across species for LMA and SAV. 
The highest population median LMA was for CEAVEL 
(0.061 kg m−2), and lowest for SPIBET (0.024 kg m−2), 
constituting a 154.2% difference between the lowest and 
highest median LMA values. SAV also varied substan-
tially (148.8%) between the lowest and highest species 
median values, from 5438.6 m−2 m−3 to 13531.2 m−2m−3 
for CEAVEL and SPIBET, respectively (Table  3). Plots 
depicting seasonal variation within each shrub species 
are provided in Supplementary Material (Figs. S1–S5).

Performance of the mechanistic live fuel moisture model
The model resolves all variability in LFMC when meas-
ured input data are used. To explore model performance 
using summarized inputs,  which are more realistic in a 
management context, week of collection and seasonal 
median values were then input to Eq. 2. Table 4 describes 
model performance across ten model variants. Model 5, 
which included time-varying LMA and RWC, and sea-
sonally fixed inputs for SAV and κ , was the strongest 
model. This variant explained 89% of LFMC variability, 
had the lowest mean absolute error across all variants 
(MAE = 11.38 %) and the highest fidelity to the 1:1 line 
(NSE = 0.84) (Fig.  3, Table  4). Partial dependence plots 
(Supplementary Material Fig. S6) depict the marginal 
effect of each input on modeled LFMC. RWC and κ dis-
play positive relationships, while biomass-based metrics 
(LMA and SAV) have negative relationships with mod-
eled LFMC.

Impact of seasonal variation in foliage characteristics 
on modeled fire behavior
Patterns of seasonal variation in PHYMAL foliage 
varied across the different inputs between May and 
September (Fig.  4). Within this time frame, LFMC 
(calculated using Eq.  1) ranged from a median value 
of 262% in the first week of sampling in May to 52% in 
late August. Once PHYMAL foliage started to senesce 
in September, LFMC declined to a median value of 22% 
(Fig.  4a). Seasonal dynamics of RWC diverged from 
LFMC dynamics, following a humped shape relation-
ship compared to the gradual decline of LFMC. RWC 

Table 4  Performance metrics for ten model variants of the 
mechanistic live fuel moisture model. The acronyms stand for: 
leaf mass area (LMA), relative water content (RWC), surface-area-
to-volume ratio (SAV), maximum water holding capacity ( κ)

Model ID Time-variant 
parameters

Fixed parameters r2 MAE NSE

Model 1 LMA RCW, SAV, κ 0.73 19.27 0.66

Model 2 RWC​ LMA, SAV, κ 0.30 23.58 0.22

Model 3 SAV LMA, RWC, κ 0.06 28.99 0.03

Model 4 κ LMA, RAC, SAV 0.25 30.79 0.17

Model 5 LMA, RWC​ SAV, κ 0.89 11.38 0.84

Model 6 SAV, RWC​ LMA, κ 0.26 23.97 0.20

Model 7 RWC, κ LMA, SAV 0.64 22.19 0.46

Model 8 LMA, SAV RWC, κ 0.86 14.85 0.76

Model 9 LMA, κ RAC, SAV 0.68 18.86 0.67

Model 10 SAV, κ LMA, RWC​ 0.36 27.03 0.27

Fig. 3  Observed median live fuel moisture content (x-axis) and mechanistic LFMC derived using Model 5 (Table 4) and median data inputs (y-axis). 
The shrubs are grouped by species (shape), with a trend line, r2 and NSE value printed for all data combined. The acronyms stand for PHYMAL (P. 
malvaceus), AMEALN (A. alnifolia), CEAVEL (C. velutinus), MAHREP (M. repens), SPIBET (S. betulifolia), SYMALB (S. albus)



Page 9 of 15Brown et al. Fire Ecology           (2025) 21:53 	

started at a weekly median value of 71%, increasing to 
93% in June and then declining to a season low of 43% 
later in the season (Fig.  4b). The standard deviation of 
RWC doubled throughout the season, ranging from 
6.1% in May to 12% in late August. Seasonal variability 
in the leaf mass per unit area was comparatively low. The 
lowest weekly median LMA value was observed on June 
1 (0.021 kg m −2 ), and the highest on June 23 (0.032 kg 
m −2 ). Although LMA tended to oscillate rather than 
trend in any single direction, weekly increases in LMA 
were observed in the last five weeks of monitoring 
(Fig.  4c). Substantial variation in surface area and foli-
age volume (Fig. 4d, e) resulted in an increase of 160% 
in SAV between the first week of sampling and the SAV 

peak in late August. Following the peak, SAV remained 
stable and finally declined slightly in late August. The 
maximum water holding capacity κ fluctuated within 
a relatively small envelope of variability (Fig. 4f ), rang-
ing between weekly median values of 526 to 677 kg H 2 O 
m −3.

Seasonal decline in LFMC, and increases in bulk den-
sity and SAV (Table 1) resulted in substantial increases 
in fuel consumption using the QUIC-fire fire behavior 
simulator across the season (Fig. 5, Table 5). Conditions 
in May and June resulted in limited fuel consumption 
in the shrub fuel layer, with only 2.37% and 17.68% fuel 
consumed at 1200 s following ignition (Table 5), respec-
tively. In contrast, fire carried readily in the PHYMAL 

Fig. 4  Summary data figures depicting seasonal variation in Ninebark foliage sampled in this study, including a live foliar moisture content 
(LFMC) measured on a dry weight basis, b relative water content (RWC), c maximum water holding capacity ( κ ), d leaf mass area (LMA), and e 
surface-area-to-volume ratio (SAV). The blue boxes denote the sampling weeks that correspond to the QUIC-fire model simulations, gray boxes 
were not input to the simulator. In plot a, n = 383 , for plots b–e, n = 359
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shrub fuel layer under fuel conditions throughout 
August. At t = 1200 s in the QUIC-fire simulation using 
conditions observed on 3 August and 25 August, the 
model reported 84.15% and 97.33% fuel consumption, 
respectively (Table  5). Comparatively higher rates of 
consumption are evident in Fig.  5d–e, which demon-
strates the spatial fuel consumption after 1200 s for all 
five simulations.

Discussion
This study presents a novel mechanistic model to 
determine live fuel moisture content (Eq. 2) using four 
physio-chemical variables important for plant physiol-
ogy and combustion (Jolly et  al. 2025), and evaluated 
its performance against measured LFMC for six shrubs 
common to the inter-mountain west, USA. Using 
weekly median values for leaf mass area (LMA) and rel-
ative water content (RWC), and seasonal median values 
for surface-area-to-volume ratio (SAV) and maximum 
water holding capacity ( κ ), the model explained 89% of 
observed variability in LFMC.

Separating LFMC into four physio-chemical drivers 
of variability is an important step forward in bringing 
together the disciplines of plant physiology and com-
bustion science. RWC, LMA, and SAV are well estab-
lished metrics in the plant science literature, and the 
mechanistic model presented here enables fire scien-
tists to use these data in a meaningful way to model 
combustion. Shrubs constitute a large proportion of 
available fuel in many ecosystems, and understanding 
LFMC dynamics in these systems is thus important 
for determining the fire risk that this vegetation layer 

Fig. 5  Modeled fire outputs from QUIC-fire in a May, b June, c July, d early August, and e late August. The shading on the plot indicates fuel 
consumption at 1200 s after ignition. Blue areas represent limited fuel consumption, red areas represent high fuel consumption. Fuel inputs 
to the QUIC-fire model are described in Table 1. An ignition point was initiated on the left of the plot, with a 6 m s-1 westerly wind input at 6.1. 
All simulations employed the same surface fuels and background winds, differing only in the representation of shrub fuels. Further details 
on the QUIC-Fire settings are outlined in Section 2.5.1

Table 5  Fuel consumption outputs from the QUIC-fire simulator 
model using the five fuel condition input scenarios described in 
Table 1. The data are presented as fuel consumption as a percent 
of the total fuel complex, and the average biomass consumed 
across the simulation area in absolute terms

Date Percent total consumption 
(%)

Fuel 
consumption 
(kg m−2)

2022-05-18 2.37 0.02

2022-06-01 17.68 0.11

2022-07-06 47.71 0.34

2022-08-03 84.15 0.63

2022-08-25 97.33 0.79
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poses. We have shown how mechanistic LFMC data can 
be input to a new generation of fire simulators, such as 
QUIC-fire, with important implications for modeled 
fire behavior across the season. While the geographic 
extent of our study is limited to the inter-mountain 
west USA, the mechanistic foundations of this model 
mean that it is applicable in all vegetation communities 
and plant functional types. Consequently, its use will 
enhance our understanding of, and capacity to model, 
seasonal fluctuations in live fuels and their effects on 
fire behavior and risk across the globe.

Variation in mechanistic model inputs across species 
and effects on LFMC
Our data show substantial variability in the four inputs 
to the mechanistic LFMC model across the six species 
sampled in 2023 (Fig. 2, Table 3). Inter-specific variability 
was greatest in LMA and SAV, while RWC and κ varied 
within a smaller envelope.

Leaf mass area
Leaf mass area (and its inverse, specific leaf area) 
emerged as a critical variable for predicting seasonal fluc-
tuations in shrub LFMC. Inputting time-varying weekly 
median LMA, while holding all other values to a seasonal 
constant, explained 73% of the variability in LFMC in the 
mechanistic model, and when coupled with time-varying 
RWC was the strongest performing model variant (r2 = 
0.89) (Table 4).

LMA is a common plant physiology metric with data 
available for species globally in large trait databases 
(Kattge et al. 2020), or meta reviews (e.g., Poorter et al. 
(2009)). LMA is a morphological trait that integrates 
the complex trade-offs made by plants to optimize fit-
ness for their environment (Poorter et  al. 2009), and 
has been strongly linked to LFMC and other flam-
mability metrics for both conifer- (Brown et al. 2022) 
and eucalypt-dominated forests (Griebel et  al. 2023; 
Krix and Murray 2018; Murray et al. 2013). This rela-
tionship makes sense, because dry mass per unit area 
represents a physical upper limit on the amount of 
water that could be contained within the foliage ele-
ment (Nolan et  al. 2020). Consequently, LMA and 
SLA are useful scaling parameters for modeling LFMC 
across different types of vegetation (Scarff et al. 2021), 
and have been employed by other authors to model 
LFMC across biophysical gradients at landscape scales 
(Nolan et al. 2022).

Importantly, in a fire science context, mass per unit 
area describes the amount of fuel available for combus-
tion within a vegetated area and we used this relationship 
to estimate bulk density for this study. While the range 
in LMA presented in our study is comparatively small, 

Poorter et  al. (2009) found that LMA varies more than 
100-fold in nature across species and landscapes. Con-
sequently, mechanistically linking LFMC to LMA, and 
then extracting LMA information from plant physiology 
literature, could be a useful step to modeling LFMC more 
broadly across diverse vegetated landscapes for fire sci-
ence purposes.

Relative water content
The best performing model variant included weekly 
median RWC, affirming the importance of capturing sea-
sonal drought in models for LFMC. However, RWC dis-
played a different seasonal dry-down pattern compared 
to LFMC in PHYMAL foliage (Fig.  4), highlighting that 
it is important to use intergrated models of both water 
and biomass fluctuations to model seasonal changes in 
flammability.

Relative water content is a common measure of physi-
ological water stress in plants (Weatherley 1950; Living-
ston and Brown 1912). RWC is strongly related to leaf 
water potential ( ψleaf), which is a measure of the potential 
energy of water within the foliage, and is known to influ-
ence a range of physiological processes such as stoma-
tal conduction in the leaf. RWC and ψleaf are frequently 
related in plant physiology literature using pressure vol-
ume curves (Tyree and Hammel 1972). In the context of 
modeling LFMC at landscape scales, the strong physical 
link between RWC and ψleaf is useful, because ψleaf is typi-
cally at equilibrium with soil water potential at dawn, and 
soil water potential is common product of broad scale 
land surface models (Rebel et al. 2012). Consequently, the 
depth of understanding in plant physiology literature of 
this metric, and physical relationship of RWC to LFMC, 
may facilitate mechanistic species-specific  modeling of 
LFMC at a scale relevant for fire management planning.

Surface‑area‑to‑volume ratio (SAV)
We observed dramatic changes in surface-area-to-vol-
ume ratio across the different species sampled (Fig.  2) 
and within PHYMAL across the season (Fig. 4). Despite 
these large differences, the best performing mechanis-
tic LFMC model variant required only a seasonally fixed 
SAV input, rather than a time-varying (i.e., weekly) input 
(Table  4). This could be due to the correlation between 
SAV and LMA, or it could be related to the sensitivity of 
the model to SAV changes and the strength of the RWC/
LMA ratio at predicting LFMC independent of the other 
variables. Future research capitalizing on the mechanistic 
model could investigate the sensitivity of LFMC to fluc-
tuations in these inputs (e.g., Martin-StPaul et al. (2020)).

SAV is a commonly measured physiological plant trait 
that is strongly correlated to photosynthetic rate, and 
the trade-offs that organisms make for light capture and 



Page 12 of 15Brown et al. Fire Ecology           (2025) 21:53 

water retention (Roderick et al. 2000). SAV has long been 
recognized as an indicator of fuel flammability (Brown 
1970). The rate of heat transfer is directly proportional 
to the surface area of an object, thus foliage with higher 
surface area per unit volume will acclimate more quickly 
to changes in boundary conditions. In the context of 
combustion science, this means that foliage with high 
SAV will heat faster and reach ignition temperature more 
quickly (Schwilk 2015).

Our experiment was designed to capture inter-specific 
differences across species, and intra-specific differences 
throughout the season in a single shrub. Consequently, 
our study did not assess differences in SAV related to 
vegetation growing in different environmental con-
ditions across spatial scales. Leaf thickness typically 
increases with elevation and aridity, thus SAV decreases 
along these gradients (Roderick et  al. 2000). Although 
we recorded substantial variability in SAV, the small geo-
graphic range of our experiment suggests a much greater 
range of SAV may exist at landscape scales (Li et al. 2020). 
Larger scale datasets (e.g., Kattge et al. (2020)) would be 
useful for scaling the mechanistic model across broader 
landscapes and species assemblages.

Maximum water holding capacity (kappa, κ)
In testing the performance of the mechanistic model, the 
results demonstrate that a median κ value per species is 
sufficient for capturing seasonal fluctuations in LFMC 
(Table 4). This input has been shown to be an important 
metric in capturing differences in water holding capacity 
for new and old foliage (Jolly et  al. 2025). In our study, 
all foliage sampled was expected to be from the year of 
sampling, potentially making κ a less important vari-
able. However, to scale the LFMC model across shrubs, 
particularly between deciduous evergreen species, the 
importance of this variable is likely to increase.

Overall, the benefit of a mechanistic model is that we 
can decompose LFMC into components that are physi-
ologically relevant for both moisture fluctuations and 
fire behavior, and separately model these inputs across 
species, space, and time. The discipline of pyro-eco-
physiology, and the novel mechanistic live fuel moisture 
model presented here, provides a framework to integrate 
established knowledge and data across plant science 
disciplines into the combustion science literature. For 
example, the same inputs can be used to understand fluc-
tuations in LFMC in the mechanistic model, and input 
to high-fidelity fire behavior models such as QUIC-fire, 
overall enhancing our capacity to understand changes 
in fuel condition across landscapes, and the impacts of 
those changes on potential fire activity.

Scaling live fuel moisture content from leaf to landscape 
scales
We have presented a mechanistic model validated at a fine 
scale using individual foliage elements, however, fire man-
agement decisions are typically made at much larger land-
scape scales. Increasingly, remote sensing is being used 
operationally to model seasonal fluctuations in LFMC at 
scales relevant to fire management decision-making, using 
multi-spectral (Yebra et  al. 2018) or synthetic aperture 
radar (Rao et  al. 2020) sensors. However, remote sens-
ing approaches can at times struggle to capture dynamics 
under the canopy, or differentiate between different types 
of vegetation. Ultimately, a hybrid approach capitalizing 
on the scale of remote sensing and vegetation or species 
specific parameters such as SAV, κ , and LMA described 
in this research may generate the best balance for land 
and fire managers. Other approaches to upscaling the 
mechanistic LFMC model could include process-based 
ecosystem models such as FATES (Koven et al. 2020) or 
LPJ-GUESS (Smith et al. 2001), among others. Such mod-
els often include LMA or SLA to describe foliage, which 
could be directly related to the model described here. 
Alternatively, RWC could be related to leaf water poten-
tial through pressure-volume curves. These ecosystem 
models also commonly include a fire activity simulator, 
which may benefit from a mechanistic implementation 
of LFMC to determine vegetation flammability, and like 
the QUIC-fire simulator  implemented here, could model 
flammability from an internally consistent suite of inputs.

Effects of seasonal changes in foliage using QUIC‑fire 
simulator
Seasonal changes in RWC, LMA (input as bulk density), 
and SAV (Table 1) translated into substantial increases to 
fuel consumption using the QUIC-fire simulator (Fig. 5). 
Percent total fuel consumption increased from 2.37 to 
97.33% between early May and late August (Table  5), 
with the the largest increase in modeled consumption 
occurring between July and early August. This aligns with 
a typical fire season in the inter-mountain west, USA 
(Riley and Loehman 2016), and the point at which sea-
sonal RWC fluctuations transitioned from a mid-season 
plateau to a sharp decline prior to foliage senescence 
Fig. 4b), with corresponding reduction in LFMC (Fig. 4a). 
The substantial increase in modeled consumption sug-
gests a threshold may exist between these inputs and fire 
behavior, which has also been suggested by other authors 
(Nolan et al. 2016).

Our application of QUIC-fire presents an increase 
in functionality since its original implementation, with 
model code adapted to allow SAV to vary throughout the 
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different simulations. Most fire behavior models either do 
not explicitly include an SAV input value or do not allow 
it to vary dynamically. For example, while the (Rothermel 
1972) model allows SAV to vary across different types of 
fuel classes, all live fuels are prescribed an SAV value of 
1500 ft−2ft−3 . Although capturing time-varying SAV did 
not increase the performance of the mechanistic LFMC 
model substantially (Table 4), capturing inter- and intra-
specific variability in this metric is important for mod-
eling fire behavior. Given the magnitude of variability in 
SAV across species and season (Table 3, Fig. 4d, e), and 
its physical relationship to combustion, varying this value 
within the QUIC-fire simulator represents an advance-
ment in our capacity to model fire behavior at this scale. 
Given this is the first application of variable SAV within 
the QUIC-fire simulator, there are a range of opportuni-
ties to test the sensitivity of this model to SAV variability 
across species, space and time.

In addition to strong seasonal increases in rate and 
absolute fuel consumption, our method, and the mech-
anistic live fuel moisture model presented here, dem-
onstrates the potential for future users of these types of 
simulators to input data from a consistent suite of inputs 
that are physiologically relevant for the fuels that are 
burning. Most fire behavior models require an input of 
LFMC, while many also need physical parameters of SAV, 
particle density, or fuel loading. The benefit of calculating 
LFMC from the same data is that inputs for both LFMC 
and fire behavior models can be internally consistent and 
balanced. As we have shown, these data can also be com-
bined to generate necessary fire behavior model inputs. 
For example, LMA and simple leaf area index (LAI) data 
can be used to generate fuel loading, while particle den-
sity is simply the product of SAV and LMA.

Conclusion
Our research demonstrates that a novel, physically-based 
live fuel moisture model successfully predicts LFMC 
across different shrub species common to the inter-
mountain west, USA. While this work was based in a 
single ecosystem, the mechanistic nature of this model 
means it can be applied in any vegetated ecosystem to 
enhance our understanding of inter- and intra-specific 
variation in LFMC. We have demonstrated how three 
of the model inputs (RWC, LMA, and SAV), which are 
commonly measured eco-physiological characteristics, 
can be input to a physical-based fire simulator in an 
internally consistent manner, to model potential changes 
in fire behavior across a season. This modeling approach 
represents a step forward in our capacity to link plant 
and fire science disciplines, and its mechanistic approach 
means it can be used to model shrub flammability across 
global ecosystems.
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