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Abstract 

Background Modern land management faces unprecedented uncertainty regarding future climates, novel distur-
bance regimes, and unanticipated ecological feedbacks. Mitigating this uncertainty requires a cohesive landscape 
management strategy that utilizes multiple methods to optimize benefits while hedging risks amidst uncertain 
futures. We used a process-based landscape simulation model (LANDIS-II) to forecast forest management, growth, cli-
mate effects, and future wildfire dynamics, and we distilled results using a decision support tool allowing us to exam-
ine tradeoffs between alternative management strategies. We developed plausible future management scenarios 
based on factorial combinations of restoration-oriented thinning prescriptions, prescribed fire, and wildland fire use. 
Results were assessed continuously for a 100-year simulation period, which provided a unique assessment of tradeoffs 
and benefits among seven primary topics representing social, ecological, and economic aspects of resilience.

Results Projected climatic changes had a substantial impact on modeled wildfire activity. In the Wildfire Only scenario 
(no treatments, but including active wildfire and climate change), we observed an upwards inflection point in area 
burned around mid-century (2060) that had detrimental impacts on total landscape carbon storage. While simulated 
mechanical treatments (~ 3% area per year) reduced the incidence of high-severity fire, it did not eliminate this inflec-
tion completely. Scenarios involving wildland fire use resulted in greater reductions in high-severity fire and a more 
linear trend in cumulative area burned. Mechanical treatments were beneficial for subtopics under the economic topic 
given their positive financial return on investment, while wildland fire use scenarios were better for ecological subtop-
ics, primarily due to a greater reduction in high-severity fire. Benefits among the social subtopics were mixed, reflect-
ing the inevitability of tradeoffs in landscapes that we rely on for diverse and countervailing ecosystem services.

Conclusions This study provides evidence that optimal future scenarios will involve a mix of active and passive 
management strategies, allowing different management tactics to coexist within and among ownerships classes. Our 
results also emphasize the importance of wildfire management decisions as central to building more robust and resil-
ient future landscapes.
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Resumen 

Antecedentes El manejo moderno de tierras enfrenta incertidumbres sin precedentes relacionadas con el clima 
futuro, los nuevos cambios en los regímenes de fuegos, y retroalimentaciones ecológicas no anticipadas. El mitigar 
esta incertidumbre requiere de una aproximación al manejo de paisajes cohesivo, que utilice métodos simples para 
optimizar los beneficios, mientras se evaden riesgos sobre un futuro incierto. Usamos para ellos un modelo de simula-
ción del paisaje basado en procesos (LANDIS-II), para pronosticar el manejo del bosque, su crecimiento, los efectos del 
clima, y dinámica de futuros fuegos, y filtramos los resultados usando una herramienta de soporte de decisiones, lo 
que nos permitió examinar las retroalimentaciones entre estrategias de manejo alternativas. Desarrollamos escenarios 
plausibles de manejo futuro basados en combinaciones factoriales de prescripciones de restauración mediante raleos, 
quemas prescriptas, y el aprovechamiento de incendios naturales. Los resultados fueron determinados de manera 
continua en un período simulado de 100 años, lo cual proveyó una valoración única de retroalimentaciones y benefi-
cios entre siete tópicos primarios que representaron aspectos sociales, ecológicos y económicos de la resiliencia.

Resultados El cambio climático proyectado tuvo un impacto substancial en el modelado de la actividad de incen-
dios. En el escenario de solamente incendios (sin tratamientos, pero incluyendo los efectos de incendios y el cambio 
climático), observamos un punto de inflexión ascendente en un área que se quemaría alrededor de mediados de este 
siglo (2060), que mostró impactos detrimentales en el almacenamiento de carbono a nivel de paisaje. Cuando simu-
lamos los tratamientos mecánicos (~ 3% del área por año), si bien se redujo la incidencia de fuegos de alta severidad, 
esta inflexión no se eliminó completamente. Los escenarios que implicaron el uso de incendios naturales produjo una 
gran reducción en incendios severos y una tendencia más lineal en la acumulación del área quemada. Los tratami-
entos mecánicos fueron beneficiosos para los subtópicos que estaban bajo el tópico económico, dados sus retornos 
financieros relacionados con la inversión, mientras que el escenario de uso de los incendios naturales fue mejor para 
el subtópico ecológico, primariamente por una mayor reducción en los incendios de gran severidad. Los beneficios 
entre los subtópicos sociales fueron mixtos, reflejando la inevitabilidad de las retroalimentaciones en los paisajes de 
los que dependemos para los diversos y contrabalanceados servicios ecosistémicos.

Conclusiones Nuestros resultados proveen de evidencia de que el mejor escenario a futuro es el que implica una 
mezcla de estrategias pasivas y activas, lo que permitirá la coexistencia dentro y entre distintas clases de propiedad, y 
reconociendo la importancia de las decisiones de manejo del fuego como una actividad central en los esfuerzos para 
construir, a futuro, paisajes más robustos y resilientes.

Background
Land management in the modern era faces unprec-
edented uncertainty regarding future climatic changes, 
novel disturbance regimes, and unanticipated ecologi-
cal feedbacks (Millar et al. 2007; Millar and Stephenson 
2015; Hessburg et al. 2015, 2021; Schuurman et al. 2022). 
Wildfire poses both a challenge and a solution to these 
projected changes (Dombeck et  al. 2004; North et  al. 
2015), and building climate-adapted forest landscapes 
will require restoring active wildfire regimes and reduc-
ing the fire deficit across much of the intermountain west 
(Moritz et  al. 2014; Schoennagel et  al. 2017; Hessburg 
et al. 2019). A challenge to this is that most landscapes of 
the intermountain west comprise a mosaic of public and 
private lands, large wildland areas, and extensive devel-
opment in the wildland-urban interface (WUI). Employ-
ing a truly adaptive landscape management strategy 
requires participation across boundaries at scales large 
enough to restore a dynamic mosaic of forest and non-
forest vegetation types that contribute to the resilience 
and self-regulation of active fire landscapes (Hessburg 
et al. 2015; Larson et al. 2022; Ager et al. 2022).

Recent investments in restorative forest treatments 
(e.g., US Forest Service Wildfire Crisis Strategy; USDA 
Forest Service 2022) are a necessary and long over-
due part of the solution (Belavenutti et  al. 2021), but 
fuel treatments alone are likely insufficient to alter 
fire regimes in the wildland-dominated landscapes of 
the west (North et  al. 2015; Hessburg et  al. 2015). Fuel 
treatments can reduce fire risk and improve resilience 
within the treated area (Stephens et  al. 2012; Furniss 
et al. 2022a), but building resilient landscapes requires a 
multifaceted approach incorporating a combination of 
mechanical treatments, prescribed (Rx) fire, and wild-
land fire use (Miller 2003; van Wagtendonk 2007; North 
et al. 2012, 2015; Calkin et al. 2015; Stephens et al. 2016). 
Restoring natural wildfire regimes is a central part of the 
solution (Young and Ager 2024), as we are simply unable 
to duplicate the spatial scale and ecological complexity 
of wildfire effects (e.g., Furniss et al. 2020) with even our 
most sophisticated silvicultural tools.

Intact wildfire regimes function as a self-stabilizing 
ecological feedback process, contributing to landscape 
resilience by maintaining a shifting mosaic of forest 
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structure and age classes across the landscape (Hess-
burg et al. 2005, Berkey et al. 2021; Povak et al. 2023). 
Landscape-scale resilience is therefore an emergent 
property of complex and interconnected systems, and it 
is only evident at spatial scales greater than individual 
forest patches and temporal scales greater than individ-
ual fires (Falk et al. 2019; Hessburg et al. 2019). We can-
not fully evaluate the resilience of a landscape without 
evaluating forest succession and disturbance dynamics 
at these grander scales (tens of thousands of hectares; 
tens or hundreds of years). This is where landscape 
simulation models excel, as they facilitate simulation 
of land management, forest growth, and disturbance 
dynamics at spatio-temporal scales that are not feasible 
with field-based studies (e.g., Ager et  al. 2022; Young 
et al. 2022; Furniss et al. 2023; Povak et al. 2023).

Landscape simulation models can be used to simu-
late different management paradigms over long (10–
100 year) timescales, enabling us to evaluate feedbacks 
and unanticipated dynamics that may emerge (Loe-
hman et al. 2017; Scheller et al. 2019; Ager et al. 2020; 
Keane et al. 2022). Numerous studies have successfully 
used simulation modeling to compare the effects of dif-
ferent land management strategies, often in factorial 
arrangements, on future landscape resilience (Lou-
dermilk et al. 2014; Keane et al. 2018; Krofcheck et al. 
2019; Ager et al. 2022; Abelson et al. 2022; Young and 
Ager 2024). A common challenge that these studies 
face is in distilling the output of these complex mod-
els, as results may vary widely in both space and time. 
Decision support systems (DSSs) are often used here to 
synthesize the outputs, compare results across different 
simulated management strategies, and to make results 
more actionable for managers that are developing land-
scape adaptation strategies (Vogler et al. 2015; Abelson 
et al. 2022; Povak et al. 2020, 2022; Day et al. 2024).

In a recent study, Furniss et  al. (2023) used a spatial 
decision support model to explore tradeoffs and syner-
gies (sensu Maron and Cockfield 2008) in space, iden-
tifying areas in a large study domain in north-central 
Washington State that have the greatest potential for 
treatments to be effective. In this study, we use that 
same decision support model to explore tradeoffs in 
time over a 100-year simulation window, and we evalu-
ate factorial combinations of treatment types to evalu-
ate which alternative landscape management strategies 
optimize socio-ecological benefits. Specifically, we used 
a landscape simulation modeling approach to provide 
a time-series of landscape-level resource benefits pro-
vided by several alternative management strategies 
ranging in the frequency, intensity, and type of treat-
ments applied to the landscape.

We used this simulation model and decision support 
system to investigate several questions related to man-
agement strategies designed to improve future landscape 
health and ecosystem functioning. These guiding ques-
tions included:

1) How do climate adaptation-oriented mechanical 
treatments, Rx fire, and wildland fire use compare in 
their potential to improve landscape resilience?

2) How do these different management tactics compare 
in their potential to produce benefits among a wide 
range of social, economic, and ecological values?

3) In landscapes dominated by wildlands (as in the pre-
sent study), can thinning and Rx fire in a portion of 
the landscape stabilize future wildfire regimes across 
the landscape as a whole?

We hypothesized that future management scenarios 
involving thinning alone would perform best among 
Economic topic areas, while thinning plus Rx fire would 
perform well among Social  and Ecological topic areas. 
We expected scenarios involving wildland fire use sce-
narios to perform best among Ecological topic areas. We 
also expected that thinning plus Rx fire would produce 
significantly better results than a “no treatment” sce-
nario involving no management other than future wild-
fire activity calibrated to current levels of suppression 
effectiveness.

Methods
Study area
This study was conducted in a large landscape (4524 
 km2) on the east side of the Cascade Range in Washing-
ton State (Fig. 1). The study domain was defined by the 
hydrological boundaries of the Wenatchee and Entiat 
River sub-basins. The model was run on a landscape 
that included a 5-km outer buffer (6078  km2 total area) 
to simulate possible edge effects and immigration of 
wildfires, and this buffer was then trimmed prior to our 
analysis.

The study domain is characteristic of many mountain-
ous landscapes of the interior Pacific Northwest, with 
steep terrain, high heterogeneity in forest communities, 
and historically active fire regimes (Hessburg et al. 2019). 
Climate in this region is humid continental with warm, 
dry summers and cold, wet winters. Further details about 
the study region may be found in Furniss et al. (2022b).

Simulation modeling
We simulated forest dynamics, tree growth, regenera-
tion, and wildfire dynamics using LANDIS-II (Scheller 
et  al. 2007) with the NECN (Scheller et  al. 2011) and 
SCRPPLE extensions (Scheller et al. 2019). LANDIS-II 



Page 4 of 18Furniss et al. Fire Ecology          (2024) 20:105 

is a spatially interactive forest landscape model that 
has been widely used to simulate climate effects on 
forest ecosystems and wildfire dynamics (Flatley and 
Fulé 2016; Loudermilk et al. 2017; Flanagan et al. 2019; 
Krofcheck et  al. 2019). We coupled LANDIS-II with 
DHSVM (Wigmosta et  al. 1994), a spatial distributed 
hydrology model for mountainous terrains that we then 
used to evaluate hydrologic functioning under vari-
ous future management scenarios. Outputs from these 
models were analyzed in a decision support frame-
work that leveraged fuzzy logic to integrate numer-
ous ecological indicator metrics and evaluate positive 
and negative changes in overall ecosystem functioning 
(Reynolds et  al. 2014; Povak et  al. 2022, 2023; Furniss 
et al. 2023).

The initial vegetation layer for our LANDIS-II model 
was derived from TreeMap (Riley et al. 2021), a full-cov-
erage raster of imputed Forest Inventory and Analysis 
(FIA) plot codes that could be used to develop tree lists 
for each 90-m pixel in the landscape. Edaphic character-
istics were generated from the NRCS gSSURGO database 
(Soil Survey Staff 2020), and topographic layers were 

derived from the USGS 3D Elevation Program (Stoker 
and Miller 2022).

Wildfire ignitions were calibrated using the Fire Pro-
gram Analysis Fire-Occurrence Database (FPA-FOD; 
Short 2017), and fire size and severity were calibrated to 
observed wildfire activity in the Monitoring Trends in 
Burn Severity (MTBS) database (Eidenshink et al. 2007). 
We used this combined empirical dataset (FPA-FOD and 
MTBS) to calibrate model behavior to observed patterns 
in wildfire frequency, area burned, and patch size dis-
tributions by severity class (Furniss et  al. 2022a, b). We 
used the FPA-FOD alone to calibrate the frequency of 
small fires (< 400 ha) which are not present in the MTBS 
dataset. Simulated ignitions that did not spread produced 
fires that were 0.81  ha in size, an unavoidable conse-
quence of the grain size of our 90-m raster grid.

We ran the wildfire and harvest extensions (SCRPPLE 
and Biomass Harvest, respectively) at an annual timestep, 
while the forest succession extension (NECN) had to be 
run at a 10-year timestep due to computational limita-
tions. Each succession timestep took 3–5 h to run, so we 
used 10-year timesteps to keep each simulation within a 

Fig. 1 Location of the study domain on the east slopes of the Washington Cascades (left). The study landscape is dominated by wilderness 
and roadless areas (54%), with the remainder comprising a mix of actively managed forests, private industrial timber lands, and wildland-urban 
interface (center). Vegetation in the study domain is heterogeneous, spanning from grass and shrub-dominated vegetation types in the lowlands 
to subalpine forests and alpine vegetation at the upper elevations (right). The dominant forest types on the landscape are dry and moist 
mixed-conifer, dominated by ponderosa pine and Douglas-fir, respectively, that occur on opposing aspects throughout most of the mid-elevations. 
The thick black lines in the right panel denote the boundaries of the Wenatchee and Entiat sub-basins, while the red perimeter represents a 5-km 
buffer that was included in the simulations to control for edge effects
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reasonable runtime (~ 48 h per simulation). Changing to 
5- or 1-year timesteps would have vastly increased our 
processing time, reducing our ability to run the required 
number of scenarios and iterations of each scenario.

Regeneration was simulated using species-specific 
seed dispersal kernels and establishment probabili-
ties which are based on available light, which is in turn 
determined by vegetation structure and composition at 
each site. Seed dispersal is determined by the presence 
of mature cohorts in adjacent cells, with maximum dis-
persal distance and probability given by species-specific 
parameters. Subsequent growth and mortality is deter-
mined by additional parameters that give the range of 
optimal climatic conditions for each species. This is the 
primary way that tree growth and mortality respond to 
different climate inputs. Further details about regenera-
tion and vegetation succession may be found in published 
documentation for NECN (Scheller et al. 2011). A com-
prehensive description of our LANDIS-II model develop-
ment and calibration work, including species parameters, 
can be found in Furniss et al. (2022b).

Management scenarios
To compare the tradeoffs between alternative manage-
ment strategies, we designed six different management 
scenarios by using additive combinations of wildfire, 
mechanical harvest, Rx fire, and wildland fire use (here-
after, WFU). These eight scenarios were as follows: (1) 
Wildfire Only, (2) Wildfire + WFU, (3) Wildfire + Rx, (4) 
Wildfire + Rx fire + WFU, (5) Wildfire + Harvest, (6) Wild-
fire + WFU + Harvest, (7) Wildfire + Rx + Harvest, (8) 
Wildfire + Rx fire + WFU + Harvest. Additionally, we ran 
a No Disturbance scenario that simulated forest growth 
in the absence of wildfire and harvest, which we used to 
quantify the upper limit of biomass accumulation in the 
absence of all disturbances. All scenarios were run under 
a RCP8.5 climate change forecast (details under “Climate 
data,” below). We refer to these scenarios without the 
RCP8.5 prefix for readability.

We ran five iterations of each management scenario 
to account for variability due to stochastic timing and 
spatial extent of treatment patches and wildfires. The 
number of simulations was chosen to provide a reliable 
estimate of uncertainty while remaining computationally 
feasible, a common tradeoff among simulation modeling 
studies. We generated simulation envelopes using the 
maximum and minimum values from the five iterations 
for each metric, and we used the average value to gener-
ate a mean trend line for each management scenario.

Vegetation pathway groups (PWGs)
The LANDFIRE biophysical settings (BpS, https:// landf 
ire. gov/ bps. php) raster was used to allocate PWGs across 

the study area and to assign broad vegetation types 
(Povak et al. 2022). These data represent vegetation types 
that were likely present prior to Euro-American coloni-
zation, based on the biogeoclimatic conditions and char-
acteristic disturbance regime (Rollins 2009). We used the 
BpS group level attribute to assign each 90-m cell into the 
following categories: water, snow/ice, rock, barren, grass-
land, shrubland, hardwood/riparian, alpine meadow, dry 
or moist mixed conifer forest, and dry or moist cold coni-
fer forest conditions. The cold forest and mixed conifer 
forest BpS classes were further differentiated into dry-
mixed (DMC), moist-mixed (MMC), cold-dry (CDC), 
or cold moist (CMC) conifer forest conditions based 
on topographic position, aspect, and elevation. Further 
details about the classification heuristic may be found in 
Furniss et  al. (2023). The vegetation PWG map was not 
used to limit species composition or define successional 
trajectories. It was simply used as to create ecologically 
and biophysically similar areas (termed “ecoregions” in 
LANDIS-II) for downscaling the 4-km climate inputs. 
We defined these areas using a spatial intersection of 
vegetation PWG and HUC10-level watershed, resulting 
in 177 unique ecoregions that were used to extract area-
weighted means from the 4-km future climate surfaces 
(details in “Climate data,” below). Ecoregion assignment 
was static through time.

Management patches
We developed topographically entrained management 
patches using a 30-m digital elevation model (DEM) 
from the USGS National Elevation Data repository. 
Patches were primarily defined using a landscape topo-
graphic template as described by Hessburg et  al. (2015) 
to spatially allocate forest restoration treatments across 
the study area. This template was further subdivided by 
hydrologic divides, land ownership, and land use allo-
cation. Hydrologic divides were derived from nested 
Hydrologic Unit Codes (HUC) 10 (∼20–80,000  ha) and 
12 (∼10–40,000 ha, Seaber et al. 1987).

All raster-based input layers were resampled to 90-m 
resolution, and a minimum mapping unit (MMU) of 4 ha 
(five contiguous cells) was applied to create management 
treatment patches. All raw and derived input spatial lay-
ers were clipped to the study area. The spatial patches 
and attributes were then processed through a series of 
spatial intersections where the MMU was enforced at 
each step to best maintain the integrity of the input data.

Treatments
For scenarios involving mechanical harvest, we simu-
lated low and variable density thinning-based restoration 
treatments (Graham et al. 1999) using the Biomass Har-
vest extension (Gustafson et al. 2000). We partitioned the 

https://landfire.gov/bps.php
https://landfire.gov/bps.php
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landscape into wildlands, actively managed public lands, 
and industrial timber lands (Fig. S1, Table S1). We fur-
ther sub-divided actively managed public lands into dry 
forests and moist forests. This produced four manage-
ment zones within which we applied a single treatment 
prescription. Treatments occurred at the patch-level, 
where patches were selected at random and evaluated 
for their eligibility for treatment. If eligible, treatments 
were applied, and additional patches were selected until 
the target treatment rate (% area per year) was reached. 
Ineligible patches included patches in wildland areas 
and patches that had been recently treated (10 years for 
dry forests, 30 years for moist forests). We used random 
patch selection because there was not a way to optimize 
patch selection using an ecological basis in this version of 
the Biomass Harvest extension. Patches were developed 
by grouping pixels that shared similar ownership, topo-
graphic setting, and PWG.

In dry forests, treatments were designed to reduce sur-
face fuels, retain medium and large sized trees, and to 
shift composition toward climate- and fire-adapted spe-
cies (Hessburg et al. 2015; Stephens et al. 2013). This was 
achieved by thinning from below, removing young stems 
of all species and mature stems of shade-tolerant species. 
Slash and non-live surface fuels were reduced by 90% to 
simulate post-harvest pile and broadcast burning, but 
these simulated pile-burns were not counted when sum-
marizing annual area burned. Treatments were applied 
to adjacent patches until treatment areas were between 
20 and 100 ha to reduce wildfire risk at scales larger than 
individual patches. Target treatment area was 3% ∙  year−1 
to achieve fuel reduction efforts as quickly as possible.

The moist forest treatment was designed to increase 
heterogeneity and diversify habitat by creating small 
gaps and openings. This involved variable density thin-
ning (75% reduction) among all size classes, for immature 
trees < 120  years old, across all species present in small 
patches (< 3 ha). Harvest gap size was set at 30% of each 
forest patch. Surface fuels were reduced by 50% to simu-
late slash piling and burning. The target treatment area 
was set at 1% ∙  year−1 of available patches to maintain a 
sustainable level of biomass extraction throughout the 
simulation period.

Industrial forest lands were treated with clearcutting 
on a 35–50-year rotation to simulate the trend of moving 
toward short rotation industrial forestry in the twenty-
first century. The treatment rate was set at 4% ∙  year−1, 
and surface fuels were reduced by 50% to represent slash 
piling and burning.

Wildfire suppression and wildland fire use scenarios
We tuned the suppression levels in our Wildfire Only sce-
nario to match the fire event size and severity patch size 

distributions based on empirical fire activity from 1984 
to 2019 found in the monitoring trends in burn severity 
(MTBS, Eidenshink et al. 2007) dataset. To calibrate fre-
quency of fires smaller than 400 ha, we used the spatial 
wildfire occurrence (FPA-FOD; Short 2017) dataset. Dur-
ing this period, suppression was the default response to 
wildfire, and suppression efforts were applied to most fire 
events. As such, we applied an intermediate amount of 
suppression effort using the SCRPPLE extension to create 
a “suppression-as-usual” fire suppression scenario. Under 
this scenario, suppression was most effective under mild 
and moderate fire weather conditions, natural ignitions 
were suppressed with the same vigor as accidental igni-
tions, and suppression efforts were strongest in devel-
oped areas and in the WUI. The level of suppression in 
the model was calibrated in conjunction with the other 
fire spread parameters to produce a simulated fire regime 
consistent with observed fire activity in terms of fire fre-
quency, severity, and patch size distributions (Furniss 
et al. 2022b). This scenario should therefore be thought of 
as a “suppression-as-usual” suppression strategy, which is 
notably different from a “no action” strategy. Instead, it 
may be thought of as an intensive suppression scenario, 
with its own set of merits and consequences.

We simulated alternative future wildfire management 
scenarios by redistributing how suppression was applied, 
both geographically and temporally. We first defined 
four suppression zones on the landscape, and we applied 
variable levels of suppression depending on ignition type, 
fire weather index (FWI), and location on the landscape 
(Table S2). For management scenarios involving wildland 
fire use (WFU), we reduced suppression effort by 95% 
under mild weather conditions and 25% under moderate 
weather conditions to allow more natural wildfire igni-
tions to burn when weather conditions were not severe. 
Under extreme weather conditions, slightly more sup-
pression effort was applied (average of 10%), representing 
the increased availability of resources that could be saved 
by letting most wildfires burn with minimal intervention. 
The net effect of this redistribution was that less sup-
pression was applied overall in the WFU scenarios, while 
slightly more suppression was applied to ignitions occur-
ring under extreme weather conditions. This approach is 
consistent with other recent studies that have used the 
suppression parameters in SCRPPLE to simulate alterna-
tive future wildfire management scenarios (e.g., Abelson 
et al. 2022).

Our implementation of WFU is not necessarily rep-
resentative of wildland fire use as implemented in real-
world landscapes. Instead, it was intended to be an 
idealized form of WFU that could be possible in a future 
“post-suppression” wildfire management paradigm. The 
assumption that WFU could make suppression more 
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effective under extreme weather conditions is contingent 
upon the idea that suppression resources stay the same 
(or increase) and are deployed with lower frequency but 
greater intensity by having increased availability of sup-
pression resources that would be diverted from other 
areas throughout the region where fires were allowed to 
burn under moderate weather conditions. This assump-
tion requires wildland fire use to be the default response 
across the region. Wildland fire use has never been tested 
at such a broad scale (van Wagtendonk 2007) and doing 
so would require a paradigm shift in wildfire manage-
ment policy, culture, and legal liability (North et al. 2015).

Climate data
We generated future climate inputs using the MACAv2-
METDATA CCSM4 dataset (Abatzoglou and Brown 
2012), a spatially downscaled dataset containing daily 
climate forecasts at a 4-km resolution for the contigu-
ous United States. We developed a baseline climate sce-
nario by resampling historical climate from 1980 to 2010, 
with 3-year temporal autocorrelation (future years were 
drawn in sets of 3 re-ordered historical years) to cre-
ate a synthetic forecast representing contemporary cli-
mate normals. This baseline climate forecast was not 
intended to predict plausible future weather streams, 
rather it provided a baseline with which we could com-
pare the RCP8.5 climate forecast that we used to simu-
late the effects of climate change. We chose to use the 
RCP8.5 emissions scenario to simulate climate change as 
evidence suggests that this scenario will continue to be 
a good fit for anticipated climate changes for at least the 
next several decades (Schwalm et al. 2020).

Hydrology modeling
We used the Distributed Hydrology Soil Vegetation 
Model (DHSVM; Wigmosta et  al. 1994) to simulate 
streamflow and snowpack dynamics at a daily resolution 
for the full 100-year simulation period. By updating the 
vegetation layers in DHSVM annually, we were able to 
create dynamic vegetation inputs that responded to for-
est growth, treatments, and wildfire events in LANDIS-
II. We updated four vegetation parameters in DHSVM at 
annual intervals: canopy height, canopy fractional cover-
age, leaf area index (LAI), and vegetation type. LANDIS-
II outputs are only available every 10 years (LAI, biomass, 
and age). Thus, we used linear interpolation of the dec-
adal outputs to estimate intermediate values for each 
year. We ran DHVSM with a 90-m cell size to match the 
spatial resolution of the LANDIS-II model.

We modeled height and fractional coverage (which 
are not directly available from LANDIS-II) using gener-
alized linear mixed effects models using the lme4 pack-
age in R (Bates et al 2015). We used FIA plot data to fit 

these models, and we applied the models to LANDIS-II 
outputs to estimate canopy height and cover for DHSVM 
(Fig. S1). The canopy height model used ln(age) and 
ln(biomass) to predict individual tree height, with ran-
dom intercepts and slopes for age by species and PWG 
(R2 = 0.78). Cover height for each cell was calculated as 
the 90th percentile of individual tree height. The frac-
tional cover model used a third-order polynomial of 
stand biomass, stand age, and elevation to predict frac-
tional coverage, with random slope and intercepts for 
biomass by PWG (R2 = 0.67).

The DHSVM model was calibrated using annual mete-
orology data derived from the 1/16 degree (~ 6 × 6  km 
grid cells) Livneh dataset (Livneh et. al. 2015). Initial 
snow parameters were calibrated using empirical data 
from nearby SNOTEL stations (Trinity Snow Telem-
etry site). The model was then further calibrated using 
streamflow records (USGS gauges 12,456,500, 1,245,800) 
for the Wenatchee and Entiat sub-basins from the water 
years 1997–2003 and 1966–1971, respectively. Future cli-
mate forecasts were derived from the MACA Livneh cli-
mate dataset (Abatzoglou and Brown 2012).

Decision support system
We evaluated the performance of each management sce-
nario using a custom decision support tool (DST) designed 
to assess ecological functioning and ecosystem services 
among seven primary topic areas: Sustainable Biomass, 
Economics, Carbon Storage, Water, Wildfire, Forest 
Health, and Landscape Integrity. We selected these topics 
to represent a broad range of important ecosystem services 
that are of central importance to managers and local stake-
holders throughout the western US (Povak et al. 2023). For 
each topic area, we developed a set of 3 to 7 indicator met-
rics (e.g., C storage and fluxes for Carbon, peak snow water 
equivalent and late season flow volume for Water, etc.) that 
were used to assess the quality of ecosystem health and 
functioning (Table S3, also see Furniss et al. 2023). For each 
indicator metric, we assigned a logical premise that was 
evaluated using fuzzy logic to translate metric values into 
“strength-of-evidence” (SOE) scores, which use a − 1 to + 1 
scale to represent the degree to which each metric satis-
fies a proposition. Fuzzy logic may be thought of as simply 
a way to standardize disparate unit scales onto a − 1 to 1 
scale, in contrast to Boolean logic which only allows values 
of 0 and 1. With fuzzy logic, scores can range from − 1 to 1 
with a SOE score of + 1 indicates strong support for a prop-
osition (e.g., carbon sequestration is maximized), a score of 
0.75 indicating strong support (e.g., carbon sequestration is 
high), and a SOE score of − 1 indicates poor support for the 
same proposition (e.g., carbon sequestration is minimized). 
Importantly, we centered all SOE scores relative to the 
Wildfire Only scenario so that positive values indicated that 
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a given scenario performed better than the Wildfire Only 
scenario, while a negative score indicated that the Wildfire 
Only scenario outperformed the treatment scenario.

We grouped the primary topics into three partially over-
lapping groups (also see Table S3) representing key facets 
of resilience: Economic (Economics and Sustainable Bio-
mass), Social (Sustainable Biomass, Carbon, Water, and 
Wildfire), and Ecological (Water, Wildfire, Forest Health, 
and Landscape Integrity). When all primary topics were 
grouped together, we referred to the SOE scores as Overall 
benefits.

All metrics were initially evaluated spatially using ras-
ter outputs from LANDIS-II and DHSVM. We then used 
these spatial maps to build a spatial DST that allowed us to 
evaluate what parts of the study landscape had the great-
est potential for treatment synergy (Furniss et  al. 2023). 
To evaluate trends in ecosystem function over time, and 
to compare the effects of various alternative management 
scenarios, we built an aspatial DST by aggregating the spa-
tial SOE scores at the patch, HUC12, and PWG level. We 
summarized these scores using area-weighted averages 
of HUC12 scores to generate landscape-level scores, for 
each scenario, in each year. In contrast to the spatial DST 
that quantified potential benefits at the end of the simula-
tion, these aspatial SOE scores allowed us to evaluate how 
potential benefits changed throughout the simulation 
period, at the landscape scale.

We further evaluated SOE scores for each topic at simu-
lation year 10, 50, and 100 to distill general patterns over 
time. We plotted these scores using heatmaps, with scenar-
ios assigned to rows and topics assigned to columns. We 
built dendrograms for the scenarios to generate groupings 
of similar scenarios. We used the heatmap.2 (v3.1.3) func-
tion in R with the default clustering parameters (Warnes 
et al. 2022).

Software versions
Landscape simulations were generated with LANDIS-
II v7.0 (Scheller et al. 2007) using the NECN v6.8 (Schel-
ler et al. 2011), SCRPPLE v3.2.1 (Scheller et al. 2019), and 
Biomass Harvest v4.4 (Gustafson et  al. 2000) extensions. 
All data pre-processing, post-processing, and subsequent 
analyses were performed in R v4.1.3 (R Core Team 2020) 
using terra, whitebox, vegan, and tidyr packages.

Results
Effects of climate change on wildfire and biomass 
dynamics
In the absence of wildfire and mechanical harvesting, 
biomass accumulated over the full 100-year simulation 
period, and climate effects on projected biomass accre-
tion were negligible (Fig.  2). When we added wildfire 
disturbance, stark differences between future climate 

scenarios became evident. While area burned per year 
under the baseline climate scenario was relatively steady 
(i.e., average annual area burned was similar at the begin-
ning and the end of the simulation), there was a nota-
ble increase in area burned between under the RCP8.5 
climate scenario, particularly for moderate- and high-
severity classes (Fig. 3). Cumulative area burned diverged 
around years 2060–2070 where annual area burned 
under the RCP8.5 scenario began to increase more rap-
idly compared to area burned under the baseline climate. 
Average area burned (Wildfire Only scenario, RCP8.5 
climate) before the inflection point (2020–2060) was 
1687 ha ∙  year−1, while after the inflection (2080–2120) it 
grew to 11,237 ha ∙  year−1. Consequently, the vast major-
ity of area burned (and area burned at high severity) 
occurring during the latter half of the simulation (21% 
from 2020 to 2070 versus 79% from 2070 to 2120). This 
inflection point was evident even when the climate fore-
cast was shuffled (i.e., random ordering of years from the 
RCP8.5 climate projection; Fig. S2), indicating that the 
inflection was not caused by an underlying trend in the 
RCP8.5 climate forecast (dotted line in Fig. S2).

These increases in wildfire activity had a signifi-
cant impact on aboveground biomass in all vegetation 
types  (Fig. S3). Under the baseline climate scenario, 
potential biomass losses from wildfire did not offset for-
est growth, allowing biomass to accumulate throughout 
the simulation period (albeit at a lower rate compared to 
the No Disturbance scenario; Fig.  2). Under the RCP8.5 
scenarios, however, biomass levels in all tree-dominated 
vegetation types peaked around 2060, then declined for 
the rest of the simulation (Fig. S3). The timing of this bio-
mass decline aligns with the inflection point observed in 
moderate- and high-severity area burned (Fig.  3), sug-
gesting that direct climate effects on biomass (hence car-
bon storage) were negligible and were instead primarily 
mediated by future wildfire dynamics. The reduced bio-
mass may also be an indication of wildfire-driven type 
conversion, which would result in a persistent reduction 
in carbon storage potential even if future wildfire activ-
ity were to stabilize, but we were not able to test that 
directly.

Management impacts on ecosystem functions and services
We generated landscape-level mean SOE scores to eval-
uate potential benefits under each treatment scenario 
over the entire 100-year simulation period. Recall that 
positive values indicated that a given treatment scenario 
performed better than the Wildfire Only scenario (with 
RCP8.5), while negative values indicated a poorer than 
Wildfire Only.

Primary topic results revealed intuitive short-term 
and long-term tradeoffs between management scenarios 
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(Fig. 4). In the short term (2020–2040), scenarios involv-
ing forest thinning (green lines in Fig.  4) generally per-
formed best among Economic, Sustainable Biomass, and 
Water topics, with reduced benefits among the ecologi-
cal categories including Forest Health, Carbon Storage, 
and Landscape Integrity. Existing timber stocks were 
depleted relatively quickly in the context of ongoing wild-
fires and small available treatable area, which reduced the 
size of potential benefits for the latter part of the simula-
tions (Fig. 4).

Longer term benefits among all primary topics were 
strongly influenced by the inflection point in wildfire 
activity under the Wildfire Only scenario (under the 
RCP8.5 climate scenario). The rapid increase in area 
burned under Wildfire Only around 2060 (Fig.  3) led to 
an overall decline in benefits among most topics, and this 
decline contrasted with relative increases in the benefits 
among the other management scenarios (Fig. 4).

High interannual variability in area burned statistics, 
and a limited number of iterations of each scenario, pre-
cluded identifying significant differences among manage-
ment scenarios at an annual resolution (Fig. 4). However, 

main treatment effects were observed for cumulative 
area burned by severity class (Fig. 3). Harvest treatments 
resulted in a slight reduction in cumulative area burned 
at high severity, while WFU produced a much more sig-
nificant decrease in cumulative area burned at both mod-
erate and high severity (Fig. 3).

When Overall benefits were assessed, all treatment sce-
narios except Wildfire + Rx fire performed better than the 
Wildfire Only by the end of the simulation (Fig. 5). Eco-
nomic benefits were greatest in the scenarios involving 
harvest, but these benefits declined after available bio-
mass for harvest was depleted in the context of ongoing 
wildfires and small treatable area (~ 2050; Fig. 5). Social 
benefits were greatest for scenarios that involved Har-
vest and/or WFU, which was surprising given that these 
scenarios tended to have the lowest benefits around mid-
century. This dip was primarily driven by the depletion 
of carbon stocks associated with harvesting and elevated 
wildfire activity (Figs.  3, S2, S3). Yet as carbon and bio-
mass stores recovered and area burned under the Wildfire 
Only scenario began to rise (Fig.  3), benefits associated 
with the treatment scenarios began to increase rapidly. 

Fig. 2 Biomass accumulation per vegetation type under a No Disturbance scenario (cool colors) and the Wildfire Only scenario (warm colors). 
Each scenario was run under two climate forecasts: a baseline forecast representing late twentieth century climate (“Baseline climate”) and a more 
realistic forecast based on a RCP8.5 emission scenario (“RCP8.5”). Direct effects of climate change on biomass accumulation were minimal. Wildfire 
had a substantial impact on biomass under the baseline climate scenario (orange lines), and an even greater impact under the RCP8.5 scenario (red 
lines)
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Fig. 3 Simulated area burned by severity class under historical conditions (“Baseline climate”), future (“RCP8.5”) climate, and alternative 
management scenario (Wildfire Only = “RCP8.5 + Wildfire”). Model uncertainty is represented by the simulation envelopes (shaded regions) which 
were generated by running five iterations of each scenario. The shaded regions represent the highest and lowest values, while the solid lines 
represent mean values from the five simulation runs. Cool colors indicate scenarios with mechanical harvest treatments, while warm colors indicate 
scenarios without harvest. Darker colors indicate scenarios with wildland fire use (WFU). Differences in area burned at moderate and high severity 
were pronounced for the WFU scenarios, while harvest scenarios conferred a slight reduction in area burned at high severity

Fig. 4 Potential treatment benefits among seven primary topics for eight alternative future management scenarios. Benefits were assessed relative 
to the “no treatment” (Wildfire Only) scenario. Model uncertainty is represented by the simulation envelopes (shaded regions) which were generated 
by running five iterations of each scenario. The shaded regions represent the highest and lowest values, while the solid lines represent mean values 
from the five simulation runs
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Ecological benefits showed a similar trend, although the 
mid-century dip was not as evident (Fig. 5).

To investigate the relative influence of Harvest ver-
sus WFU treatments, we examined the reduction in 
area burned due to harvest (i.e., Wildfire Only minus 
Wildfire + Harvest; Wildfire + WFU minus Wild-
fire + WFU + Harvest). Interestingly, mechanical treat-
ments (Harvest) reduced area burned relative to the 
Wildfire Only scenario, but only if WFU was not applied. 
In the WFU scenarios, the addition of mechanical har-
vest did not have a discernable effect on area burned 
(Figs. S4 and 3).

Discussion
Scenarios involving harvest did perform best among the 
Economic categories as we expected, but the addition of 
Rx fire did not improve benefits to Social and Ecologi-
cal topics. Wildland fire use emerged as the single most 

influential management tactic, and scenarios involving 
WFU performed well among all categories because it 
was most effective at curbing the amount of future high-
severity fire. This was a surprising result, and it highlights 
the importance of wildfire as a foundational process gov-
erning the functioning and health of forest landscapes. 
We were also surprised by the variability in benefits 
across the 100-year simulation period. Even though our 
simulations applied the same management strategies 
throughout the entire simulations, future landscapes and 
the benefits they conferred were vastly different at year 
50 versus year 100. These extended timeframes carry a 
great deal of uncertainty, of course, but the point remains 
that management actions with short-term benefits can 
be inconsequential or even detrimental in the long term 
(Young and Ager 2024). This is an important perspective 
for land managers and policymakers to consider. Estimat-
ing the consequences of current actions over decadal and 

Fig. 5 Potential treatment benefits for eight alternative future management scenarios. Benefits were assessed relative to the “no treatment” 
scenario (Wildfire Only). Model uncertainty is represented by the simulation envelopes (shaded regions) which were generated by running five 
iterations of each scenario. The shaded regions represent the highest and lowest values, while the solid lines represent mean values from the five 
simulation runs
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century timescales is not easy, but it is necessary when 
managing large landscapes with the potential for feed-
backs and complex disturbance dynamics.

Future wildfire dynamics
Future wildfire dynamics and low available treatment 
area were central to the interpretation of all results of this 
simulation modeling study. The Wildfire Only manage-
ment scenario under the RCP8.5 climate change demon-
strated a positive feedback cycle that began mid-century 
(~ 2060), driving a marked increase in high-severity wild-
fire (Figs. 3, S2). Importantly, this feedback was not evi-
dent among all management scenarios, indicating that it 
was caused by something that differed between scenarios 
rather than something intrinsic to the model itself. The 
inflection point was present in the Wildfire Only scenario 
and given that our DST results were assessed in contrast 
to the Wildfire Only scenario, the impacts of these emer-
gent wildfire dynamics were pervasive.

The inflection point in future area burned was a strik-
ing result of this study. For context, average area burned 
under RCP8.5 climate before the inflection (2020–2060) 
was 1687 ha∙year−1, corresponding to represent the 60th 
percentile of area burned under the baseline climate 
scenario, which was calibrated to empirical fire activity. 
Average area burned per year after the inflection point, 
however, was 11,237  ha ∙  year−1, corresponding to the 
98th percentile of area burned under a historical climate. 
In other words, an average fire year during the later half 
of the century would represent the most severe fire year 
from the first half of the century. This demonstrates the 
potential for wildfire to create positive feedbacks that 
can have profound and lasting impacts on the structure, 
function, and resilience of large landscapes.

There are two plausible reasons for this inflection 
point. First, the climate forecast could have an inflection 
in temperature around this period, and the inflection in 
fire activity may simply be responding to that increase 
in temperature (i.e., first order effects of climate on fire 
spread rates). Second, the inflection could be due to a 
positive feedback cycle between area burned and result-
ant patterns of landscape contagion and susceptibility to 
large fire spread. Both of these explanations have support 
from empirical studies (Halofsky et al. 2011; Abatzoglou 
et  al. 2021; Povak et  al. 2024), providing some reassur-
ance that this trend was not an anomaly of our model.

We distinguished between these two explanations using 
the randomly shuffled RCP8.5 scenario. If the inflection 
point was climate driven, cumulative area burned for that 
scenario would have been linear (because we removed 
any underlying structure in the climate data by shuffling 
the years). Instead, we saw that both shuffled and non-
shuffled RCP8.5 scenarios exhibited an inflection point 

(Fig. S2), indicating a tipping point where positive feed-
backs between wildfire and surface fuels began to rapidly 
accelerate reburn frequency. This finding is consistent 
with recent empirical work that has documented increas-
ing wildfire activity due to both climate and fuels (Coop 
et al. 2020; Hagmann et al. 2021; Abatzoglou et al. 2021; 
Povak et al. 2023; Prichard et al. 2023), and it is further 
evidence for the importance of pattern and structure in 
determining the contagious potential of wildfire (Povak 
et  al. 2023). The exogenous influence of climate was 
clearly important as well, but these results indicate that 
climate alone did not account for the wildfire regime 
change that can emerge when high-severity fire initiates a 
positive feedback cycle with endogenous controls on fire 
behavior.

These dynamics are a feature, not a fault, of simula-
tion modeling approaches with dynamic fire models 
(e.g., Ager et  al. 2022; Young et  al. 2022; Prichard et  al. 
2023). As wildfire activity is determined by process-ori-
ented algorithms within a given model, fire regimes are 
allowed to evolve over the simulation period rather than 
being constrained by a pre-defined fire size distribution. 
Dynamic fire modeling allows simulated fire activity to 
respond to changes in fuels, climate, and landscape pat-
terns, capturing dynamics that are foundational to the 
emergence of wildfire regimes in real landscapes (Agee 
1998; Scholl and Taylor 2010; Hessburg et al. 2019).

Alternative management scenarios
Our Harvest treatments produced benefits in the form 
of economic returns and biomass production, but even 
these restoration-oriented thinning treatments did little 
to alter projected trends in wildfire activity. Treatments 
were primarily effective over the next several decades 
before existing biomass stores were depleted (around 
2050), after which point treatments continued but were 
less economically viable. Around this time, simulated 
wildfire activity began to increase rapidly. Despite the 
Harvest treatments reducing surface fuels, total area 
burned under the Wildfire + Harvest scenario was not 
substantially lower than the Wildfire Only scenario 
(Fig. 3).

The near-term impacts of harvest were overwhelmed 
by the self-regulation of wildfire that eventually emerged 
in the WFU scenarios (Fig.  3). Interestingly, this led to 
more similarity between the WFU scenarios compared 
to the Harvest scenarios by the end of the simulation 
period (Fig.  6). In other words, the Wildfire + Harvest 
scenario was more similar to the Wildfire Only scenario 
than it was to the Wildfire + Harvest + WFU scenario. 
Similarly, Wildfire + WFU was more similar to the Wild-
fire + WFU + Harvest than to Wildfire Only scenario 
(Fig.  6). Harvest effects were prominent early in the 
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simulation, but the effects of wildfire use eventually grew 
to dominate the scenario differences by the end of the 
century.

Wildland fire use
Wildland fire use (WFU) scenarios had profound impacts 
on wildfire activity that permeated to all other land-
scape metrics. Allowing more wildfire to burn in the 
wildlands produced benefits among the Water topic, at 
least for the first half of the century (Fig. 4). Benefits to 
other topic areas were slow to emerge, but the reduced 
amount of high-severity wildfire in the WFU scenarios 
(Fig. 3) eventually translated into greater carbon storage 
(Fig. S3), Landscape integrity (Fig. 4), and Ecological ben-
efits (Fig. 5). This finding is particularly notable because 
most of the carbon is stored in the upper elevation wil-
derness areas (~ 200  Mg   ha−1 in “Cold Moist Conifer” 
vs. ~ 100  Mg   ha−1 in “Moist Mixed Conifer”) where the 
WFU scenarios involved less suppression effort under all 
circumstances, even during extreme fire weather condi-
tions. These results underscore the importance of wild-
fire management as a primary tool in the management 
toolbox (North et  al. 2015; Barros et  al. 2018; Young 
et  al. 2022; Ager et  al. 2022), highlighting  the potential 
for managed wildfire use to alter fire regimes and miti-
gate high-severity area of future fires (e.g., Barros et  al. 
2018; Young and Ager 2024). Choosing how and when to 
suppress wildfire is the primary tactic available in large 
landscapes with substantial proportions of wilderness 

and roadless areas (Miller 2003; van Wagtendonk 2007; 
North et  al. 2012; Stephens et  al. 2016), and this study 
demonstrates that those wildfire management decisions 
can match or even exceed the impact of more active 
management tactics such as thinning and Rx fire.

Mechanical treatments
Interestingly, mechanical adaptation treatments (Har-
vest) only reduced area burned in the absence of a WFU 
suppression paradigm (Fig. S4). In the WFU scenarios, 
mechanical harvest resulted in a slight reduction in area 
burned (mean value was below 0), but this trend was not 
significantly different (simulation envelope overlapped 
0). These results suggest that while active management 
can mediate future wildfire behavior, the effects of dif-
ferent management tactics are not necessarily cumu-
lative, indicating diminishing returns in benefits. The 
same level of benefits was achieved through restora-
tion via either mechanical methods (Harvest scenarios) 
or through alternative wildfire management paradigm 
(WFU scenarios), but applying harvest and WFU as well 
did not produce additional benefits (Fig.  5). The Wild-
fire + WFU scenario was equivalent in overall benefits to 
the Wildfire + WFU + Harvest scenario, as applying har-
vest increased benefits among Economic and Sustain-
able biomass topics while reducing benefits to Carbon 
and Landscape integrity (Fig.  4). Results indicate that 
tradeoffs among management strategies are inevitable. 
Therefore, managers and policy makers must decide how 

Fig. 6 Heatmap and dendrogram showing benefits among the seven primary topics (red = strong support, blue = weak support) and clustering 
of scenarios based on dissimilarity at three timesteps (simulation year 10, 50, and 100)
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to distribute benefits, identify opportunities to manage 
for multiple resources at once, and determine when and 
where to prioritize benefits among certain topics (e.g., 
Ager et al. 2016; Povak et al. 2022; Furniss et al. 2023).

Prescribed fire
The Rx fire scenarios showed very little distinction from 
their comparison scenarios without Rx fire. This result 
was surprising, given that the rate of Rx fire was equal to 
the rate of harvest being applied (~ 5000 ha∙year−1). One 
explanation is that Rx fire was applied to the wildlands 
as well as the actively managed parts of the landscape, so 
the Rx fire treatments were more diffuse and therefore 
perhaps less impactful to overall landscape function-
ing. We scaled this annual rate to approximate the actual 
amount of Rx fire being applied in this landscape today. 
Our findings suggest that this level of Rx fire is wholly 
insufficient to alter wildfire behavior in such a large land-
scape. Rx fire is an effective management tool to reduce 
fuels at the patch-scale but generating benefits for land-
scape resilience will likely require far more Rx fire appli-
cation and/or more wildland fire use.

Wildfire, fuel reduction, and carbon storage
Mechanical fuel reduction efforts mediated wildfire 
severity (Fig. 3), but these deferred losses to wildfire were 
offset by C losses due to harvest. This resulted in similar 
levels of residual biomass between the Wildfire Only and 
Wildfire + Harvest scenarios at the end of the simulation 
period (Fig. S3). This provides an interesting comple-
ment to prior studies that have shown restoration treat-
ments (e.g., thinning + Rx fire) to be an effective way to 
increase forest C storage by mitigating future wildfire 
severity (Loudermilk et al. 2017; Young and Ager 2024). 
This potential for long-term benefits to forest C stor-
age is well-established in the literature, but achieving 
net C gains requires carbon losses due to treatments to 
be effectively offset by reduced fire-related C emissions 
and increased productivity of residual trees. The efficacy 
with which restoration treatments reduce fire severity is 
contingent upon many factors including the timing and 
location of treatments (Loudermilk et al. 2014; Krofcheck 
et  al. 2019), landscape configuration and forest condi-
tions, and dominant fire regimes. Achieving net C gains 
through restoration treatments is therefore most likely in 
areas that are vulnerable to high-severity fire (Krofcheck 
et al. 2019), forests with high densities of small trees, and 
in places that will strategically impede fire flow.

In this study, simulated thinning treatments did not 
reduce fire severity enough to offset the C losses due to 
the thinning treatments themselves (Figs. 3, 4). In other 
words, scenarios without mechanical harvest resulted 
in higher C storage potential, with the Wildfire + WFU 

scenario showing the greatest C storage at the end of the 
simulation (Fig. S3). We may have achieved net C gains 
if simulated thinning treatments had a greater impact 
on fire severity and area burned, as was evident in the 
WFU scenarios (Fig. 3). It is also possible that post-treat-
ment growth responses were not well represented in 
the model, which would have also influenced simulated 
carbon storage. Nonetheless, this result from our simu-
lations reflects a real-world challenge in mitigating wild-
fire activity using thinning treatments: wildfire is not a 
deterministic process. Many treated areas never see fire, 
and other treated areas may burn at high severity due to 
top-down influences. Treatments can effectively mitigate 
fire severity, but it is difficult to know exactly when and 
where treatments may be most likely to maximize their 
intended benefits.

Interannual variability
For both Wildfire and Water topics, interannual variabil-
ity between years was far greater than variability between 
management scenarios (Fig. S5). Differences between sce-
narios were evident when we used the Wildfire Only sce-
nario as a reference, but examining the raw SOE scores 
revealed a great deal of noise from year to year. This noise 
may be largely attributed to annual climate fluctuations, 
as both Wildfire and Water topics were very sensitive 
to the timing of precipitation and within-year tempera-
tures (via increased wildfire activity and decreased snow-
pack retention, respectively). Additionally, we were not 
able to generate simulation envelopes for the Water 
topic because we only performed a single DHSVM run 
per scenario due to computational limitations. Since 
DHSVM is a deterministic model and the climate stream 
fed into DHSVM was the same for all scenarios, all the 
scenarios tracked each other very closely (Fig. S5). The 
Wildfire topic, in contrast, was driven by wildfire activ-
ity in LANDIS-II which is stochastic and therefore pro-
duced noticeable differences between different runs of 
the same scenario (hence the wide simulation envelopes). 
For example, one iteration of Wildfire Only may have had 
a big fire year in year 10 while another iteration had a big 
fire year in year 11, leading to wide simulation envelopes 
and making differences between scenarios on a year-to-
year basis difficult to detect (Fig. 4). We were able to tease 
out differences between management scenarios by evalu-
ating cumulative area burned by severity which allowed 
differences in wildfire behavior to accumulate through 
time, highlighting the differences between scenarios that 
were evident over long enough time scales (Fig. 3).

Tradeoffs in space and time
Our simulation modeling revealed that ecosystem 
responses to future management scenarios are highly 
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dynamic, and potential benefits are unstable over time. 
Fluctuations in ecosystem functioning point to the 
importance of underlying feedbacks and destabilizing 
processes in shaping future landscapes. These second-
order landscape dynamics were evident in the inflection 
point in area burned under Wildfire Only, the rise and fall 
of available biomass under the Harvest scenarios, and the 
high Carbon scores for the WFU scenarios. These results 
emphasize the importance of adaptive land management 
strategies that periodically re-assess management tac-
tics in response to ever-changing ecological challenges. 
They also provide a way to visualize the uncertainty that 
managers and policy makers must reconcile (e.g., Miller 
2007; Lynch et  al. 2022), demonstrating how scenarios 
that appear best in the short term can yield less-desirable 
outcomes over longer time spans (e.g., Young and Ager 
2024).

Limitations and future research
Caution must be exercised when interpreting the results 
of decision support systems. The relative ranking of vari-
ous scenarios is highly sensitive to the selection of evalu-
ation metrics and the structure of the DST logic model. 
Results of the DST modeling are sensitive to the num-
ber of topics and the weight given to each of the topics 
in the final assessment. This is a strength of fuzzy logic 
models: they can be adapted to reflect stakeholder values 
and the relative importance of different topics of interest. 
It is likely that these seven topics would not carry equal 
weight if this model were to be applied in a management 
context. Equal weight was applied by using union opera-
tors in the logic model (Reynolds et  al. 2014). Accord-
ingly, the overall benefits scores associated with each 
management scenario would change to reflect the con-
cerns and values of managers and the local community. 
We used the Social, Economic, and Ecological groupings 
to get at this, as these topic groupings reflect what the 
decision support model results would look like if it were 
to include only a subset of topics.

Another difficulty in interpreting our results is that the 
fuzzy logic model translated absolute values into a rela-
tivized scale, which is necessary to be able to aggregate 
diverse units of measurement into the primary topic 
areas. However, this translation may obscure the magni-
tude of treatment effects because we set the fuzzy logic 
breakpoints to the 10th and 90th percentiles of observed 
delta values to represent the middle 80th percentile range 
of values. For the mean annual flow metric, for exam-
ple, differences in mean annual flow between scenarios 
each year were very small, yet these small differences still 
received scores ranging from − 1 to 1. This allowed us to 
evaluate differences between scenarios, but it obscured 
the fact that year-to-year variability in mean annual flow 

was far greater than the within-year variability due to 
scenario differences (Fig. S5).

This study builds upon a growing body of research lev-
eraging decision support systems to evaluate tradeoffs 
and synergies among important ecological and social val-
ues, both in space and over time, to project future land-
scape dynamics and management effects (Reynolds et al. 
2014; Abelson et  al. 2022; Maxwell et  al. 2022; Povak 
et  al. 2022; Furniss et  al. 2023). A significant advance-
ment made here is the integration of LANDIS-II with a 
distributed hydrology model (DHSVM), enabling us to 
quantify impacts of forest treatments on snowpack and 
streamflow dynamics. An important next step will be to 
make this integration more accessible, perhaps through 
the development of a new model extension, and to con-
sider ways to couple the models to improve hydrology 
dynamics (hence water availability) within LANDIS-II.

Conclusions
We found that most alternative future management sce-
narios produced discernable benefits among Economic, 
Social, and Ecological primary topic areas. These gains 
were both robust and fragile, with the Wildfire Only 
scenario having the greatest overall performance part 
way through the simulation (2040–2070), then declin-
ing as positive feedbacks in wildfire activity under this 
scenario caused a steep increase in high-severity fire. 
Simulated management actions were able to mitigate 
this high-severity fire feedback, with both mechanical 
forest treatments and wildland fire use tactics reducing 
high-severity area burned and resulting in better overall 
landscape health. Unsurprisingly, mechanical treatments 
were more beneficial for Economic categories while wild-
land fire use alone was better for some of the Ecological 
topics. Benefits for the Social topics were somewhere in 
between, reflecting the inevitability of tradeoffs among 
countervailing needs such as carbon storage and stream-
flow enhancement. These tradeoffs highlight the need for 
diverse and cohesive landscape management strategies, 
as no single management scenario will produce optimal 
results across the board.

Tradeoffs are at the very core of wicked problems; posi-
tive outcomes in some areas yield negative cascades in 
others. Disentangling these problems requires managers 
and stakeholders to identify shared values, priorities, and 
tolerable tradeoffs, and to apply a mix of methods that 
reflect the diversity of desired benefits associated with 
various management strategies. This study demonstrates 
what these future scenarios can look like, underscor-
ing the importance of both active and passive manage-
ment strategies—and wildfire management decisions in 
particular—in building more robust and resilient future 
landscapes.
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