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Rare and highly destructive wildfires drive
human migration in the U.S.

Kathryn McConnell 1,2 , Elizabeth Fussell 1,3, Jack DeWaard 4,5,
Stephan Whitaker 6, Katherine J. Curtis 7, Lise St. Denis 8,
Jennifer Balch 8 & Kobie Price9

The scale of wildfire impacts to the built environment is growing andwill likely
continue under rising average global temperatures. We investigate whether
and at what destruction threshold wildfires have influenced human mobility
patterns by examining the migration effects of the most destructive wildfires
in the contiguous U.S. between 1999 and 2020. We find that only the most
extreme wildfires (258+ structures destroyed) influenced migration patterns.
In contrast, the majority of wildfires examined were less destructive and did
not cause significant changes to out- or in-migration. These findings suggest
that, for the past two decades, the influence of wildfire on populationmobility
was rare and operated primarily through destruction of the built environment.

In recent decades, wildfire destruction of the built environment has
grown dramatically, posing a growing threat to human settlements
across the U.S.1,2. This trend is driven in part by changes in wildfire
patterns,with records showing increases in total acresburned, number
of large fires, and length of fire weather season3–6. Models project that,
under climate change, the potential for very large fires will increase in
the coming decades7. Concurrent to the rise in wildfire frequency and
severity, the number of people living in high fire risk regions has
increased, with substantial population and housing growth in areas in
close proximity to or intermixed with wildlands2,8. Consequently, an
increasing number of dwellings and their residents are exposed to
wildfires.

The growing scale of wildfire destruction to buildings has the
potential to impact human mobility patterns, yet little is known about
the relationship between wildfire destruction and human migration.
Wildfire-related mobility is notably absent in systematic reviews of
environmental migration literature9–12, a gap highlighted by the Inter-
governmental Panel on Climate Change13.

Previous studies of other environmental hazards indicate that
climate-migration relationships vary widely in their direction and
magnitude, differing between hazard types, as well as by the geo-
graphic, social, and economic contexts of affected populations9,11–13.

While in some studies, weather and climate extremes are associated
with heightened out-migration, in others, hazards cause minimal
impact and relative immobility14–16. Given this heterogeneity of hazard-
mobility relationships, researchers working in this field do not expect
consistent or simple “push” effects, in which residents necessarily
move away from hazardous places9. Instead, environmental migration
scholarship investigates a range of different migration and non-
migration responses to environmental change, with special attention
to distinct hazards and the thresholds at which migratory effects
occur11,12.

Within existing environmental migration research, the most
relevant studies for comparison to wildfire are those that examine
sudden-onset hazards, such as floods, tsunamis, and hurricanes.
Compared to the stronger migratory effects of slow-onset environ-
mental changes such as drought or precipitation anomalies, sudden-
onset events aremoreoften found tohave null or even negative effects
onmigration. Prior researchhas suggested that this relative immobility
results from financial liquidity constraints, as household wealth is
destroyed by the event, constraining funds needed to move10–12,17.
Some describe those experiencing this formof involuntary immobility
as “trapped populations”18. While certain households and populations
may have more limited capability to migrate, others may be able to
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move but desire to remain in place. Such voluntary immobility in the
face of intensifying environmental hazards can be due to a range of
factors, such as the strength of place-embedded social and economic
networks, the draw of local environmental amenities, and residents’
ability to mitigate localized hazard exposure19–21.

In the context of wildfire, immobility dynamics may play out in a
number of ways. Recent research has linked rising housing costs in
urban cores of California to the expansion of less costly housing
development in exurban and rural wildfire-prone places22. This trend
suggests that some residents of fire-prone places may have limited
ability to move away from hazards due to regional housing afford-
ability constraints. Other researchers have emphasized the pull of
environmental amenities, drawing residents to voluntarily live in fire-
prone places8,20. This research indicates that immobility may be a
prevalent response to wildfire, and one that should be given equal
attention as environmentally-linked mobility14.

While immobility is often documented in response to sudden-onset
hazards, select studies on very extreme events—such as Hurricane
Katrina in the U.S. Gulf Coast, Hurricane Maria in Puerto Rico, and the
Indian Ocean Tsunami in Indonesia—have also illustrated clear patterns
of heightened post-disaster out-migration, or, displacement23–26. Col-
lectively, these findings illustrate that sudden-onset environmental
shocks may cause a continuum of migratory effects, ranging from
immobility to large-scale out-migration. Such variability speaks to the
importance of investigating the impacts of hazards across a spectrumof
severity levels, ranging from the most extreme events to those less
severe but more common hazards.

Scholars have recently begun studying wildfire-related mobility,
for instance through investigation of migration intentions related to
wildfire and wildfire smoke27,28 and household decisions to remain in
place after wildfire29. Several quantitative studies have documented
patterns of temporary evacuation after major wildfires and long-term
migration following subsets of disaster-level fires. These studies report
heterogeneous effects across different events, in some cases doc-
umenting minimal changes to migration patterns, while in others
showing heightened out-migration and reduced in-migration20,30–32.

To provide greater insight and more generalizable knowledge of
wildfire-mobility dynamics, we investigate patterns of out- and in-
migration following highly destructive wildfires that occurred in the
contiguous U.S. over more than two decades. Building on Hoffman et
al.’s distinction between direct and indirect environmental migration
drivers12, our study tests two hypotheses on the relationship between
wildfires and human mobility, positing that wildfires influence migra-
tion patterns through two broad pathways: (1) through direct damage
to the built environment, and (2) through indirect mechanisms other
than impacts to the built environment.

In the first proposed pathway, wildfires drive migration through
their effects on the built environment, whereby destroyed structures
result in out-migration via housing and other infrastructure loss. We
define “structures” broadly to include residential, commercial, out-
building, and mixed-use buildings33. We interpret heightened out-
migration following highly destructive wildfires as evidence of
damage-driven migration effects, akin to hazard-driven displacement.
Our data show that thenumber of structures destroyedperwildfirehas
a long right skew, in which a small number of fires caused an outsized
proportion of damage33. Given this distribution, we anticipate that
wildfire effects on migration via the built environment would likely be
non-linear, wherein as the number of structures destroyed grows, the
number of out-migrantswill increase at an increasing rate as local areas
are unable to accommodate residents whose residences were
destroyed. Such non-linear effects have been documented in the cases
of extreme temperature variations34 and rainfall17, among others. Thus,
our first hypothesis is that damage-driven out-migration will be
greatest in areas experiencing high levels of fire-related destruction in
the event period.

In the second proposed pathway of wildfire-driven mobility, we
hypothesize that wildfire may influence migration indirectly through
a range of other mechanisms that are distinct from direct displace-
ment via structure loss. These indirect mechanisms can be broadly
characterized as changes in residential preferences of where to live
and/or residents’ capabilities to realize these preferences12,21,35. For
instance, residential preferences may be influenced by wildfire-
related changes to natural amenities, air quality, local economic
conditions, and perceptions of future fire risk and potential losses.
Residents’ mobility capabilities may also change, for instance
through impacts to household finances or reduced access to home-
owner’s insurance19. While we are unable to parse individuals’
migration motives with our data, we broadly test for the presence of
indirect wildfire effects by examining migratory responses to wild-
fires in places experiencing lesser impacts to the built environment
and at later time periods relative to the event.

If indirect mechanisms are driving wildfire-related migration, we
would expect to observe the following changes. First, out-migration will
increase in areas that experience lower levels of wildfire destruction, in
particular following events in which too few structures are destroyed to
directly displace a large number of residents. Second, out-migration will
be elevated in burned areas during the temporal period beyond the
disaster event, for example several years afterward. In this period,
structure loss is unlikely to be themotivation, but other changes caused
by the fire may influence residential preferences and/or capabilities,
resulting in migration. Third, in-migration to fire-affected places will
decline as potential in-migrants seek to avoid the fire-affected destina-
tion. Any of these changes would support the hypothesis that indirect
mechanisms based on changes in residential preferences and/or mobi-
lity capabilities drive wildfire-related migration.

The null hypothesis to the direct and indirect hypotheses of
wildfire-induced mobility is, conversely, immobility: migration flows
into and out of fire-affected areas will not change in response to
wildfire events. Immobility is informed by residents’ desires to remain
in place or to move, their capabilities to realize those aspirations14,16,19,
and protections, such as home hardening or firefighting resources,
that allow people to remain in place. As such, immobility in the face of
wildfire destruction could reflect voluntary immobility of residents’
desire to remain living in fire-prone places, but alsomay reflect certain
populations being involuntarily “trapped,” or, without sufficient cap-
ability or resources to move away16. Observing immobility would be in
line with prior studies of comparable sudden-onset hazards11,12,17, and
would correspond with the expectation of housing affordability con-
straints on out-migration22 as well as environmental amenity pulls to
remain in fire-affected places8,20. The null hypothesis, therefore, is that
no change in out- or in-migration will be observed in wildfire-affected
areas relative to neighboring, unaffected areas.

In this work, we analyze the migration effects of the top 10% most
destructive wildfires in the contiguous U.S. (N= 519) between 1999 and
2020. We construct a temporally and spatially harmonized dataset that
combines data on wildfire-related structure loss with data on migration
at the census tract scale, which are the most comparable spatial unit to
neighborhoods36. The structure loss data are from the U.S. National
Incident Command System/Incident Status Summary Forms (hereafter
“ICS”)33, linked to two sets of wildfire spatial burn footprints37,38. Toge-
ther, these data offer one of the most comprehensive and detailed data
sources of wildfires and their impacts within the U.S. Themigration data
are based on the Federal Reserve Bank of New York/Equifax Consumer
Credit Panel (CCP) and estimate the number of credit-visible residents
whose address changes tracts between two adjacent quarters. The CCP
is an anonymous random sample from the Equifax credit files which can
be used to calculate quarterly estimates of the probability of in-
migration to and out-migration from census tracts39,40. These data allow
us to investigate the effects of wildfire destruction on humanmigration,
stratified by level of fire severity.
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Results
Extreme, outlying wildfire events drive the majority of
structure loss
The majority of wildfires ignited between 1999 and 2020 caused no
damage to the built environment (N = 29,216, 84.4% of all incidents),
with a relatively small proportion destroying one or more structures
(N = 5406, 15.6%) (Fig. 1c). Within this subset of “destructive wildfires,”
levels of destruction were non-linear across events; a small number of
wildfires destroyed a disproportionately large portion of all structures
(Fig. 1a). During the period examined, the top ten most destructive
fires caused 39.5% of all wildfire-related structure loss, and the single
largest event, the 2018 Camp Fire, was responsible for 17.2% of all
wildfire structure loss over more than two decades. We focus our
analysis on the top decile of most destructive wildfires, further strati-
fying this subset of events by severity (Fig. 1b).

Wildfire structure loss drives increased out-migration only at
highest severity levels
Our results indicate that, in the rare cases in which wildfires influenced
migration, they did so through our first hypothesized pathway: direct
impacts to the built environment (Table 1, Fig. 2). Wildfires were only
associated with heightened out-migration in tracts that experienced

the highest levels of structure loss, indicating that wildfire effects on
migration were non-linear and only observed beyond a certain
destruction severity threshold. Furthermore, migratory effects were
primarily constrained to the first year following the event, and, inmost
cases, did not extend beyond this initial time period.

Our analysis presents results for the full decile ofmost destructive
wildfires (N = 519), as well as for three subsets of these events stratified
by destruction severity: the less destructive portion of the decile
(N = 463), the more destructive portion of the decile (N = 55), and the
most destructive event, the Camp Fire (N = 1). Each subset of wildfires
is presented in its own row in Table 1. To address the potential for
spatial spillover and ensure the robustness of our findings, we report
regression coefficients derived from comparison to three distinct sets
of control groups. Each set of controls was selected from a different
distance away from the burned tracts (0–5 miles, 5–25 miles, and
25–50 miles, shown in Fig. 2c) to reflect both heterogeneity in and
uncertainty about the extent of spatial spillover.

When analyzing the full top decile of destructive wildfires
(between 14 and 18,804 structures destroyed per event), we observed
significant and positive out-migration effects during the event quarter
when using the 5-mile and 50-mile control sets (Table 1, columns A and
C). This migratory effect became larger in magnitude during the first

Fig. 1 | A relatively small proportion of wildfires cause widespread structure
loss. a Boxplots show the distribution of annual structure damage per destructive
wildfire among all wildfires reported by the ICS dataset in the U.S. between 1999
and 2020 that destroyed 1 ormore structures (N = 5406). The left whisker indicates
the minimum value to the 25th percentile, the right whisker indicates the 75th
percentile to the maximum value, the left side of the box indicates the 25th per-
centile, the right sideof thebox indicates the 75th percentile, and the linewithin the
box indicates the median. Red dots indicate extreme events that destroyed more
structures thanmaximum values. The dotted blue line indicates a global median of
structure damage across all years (2 structures destroyed). While the majority of
destructivewildfires affected a relatively small numberof structures (90% impacted
fewer than 14), a small number of events had an outsized contribution to the total
number of structures destroyed. b Figure shows the probability distribution of
structures destroyed per wildfire event among the top decile of most destructive
wildfires that include spatial details the ICS dataset in the contiguous U.S. from
1999 to 2020 (N = 529). Within this top decile of wildfires (those that destroyed

between 14 to 18,804 structures), the count of structures destroyed per event is
highly right skewed. The figure shows how we stratified events for subsequent
analysis into the less destructive portion of the decile distribution (green line),
more destructive portion of the decile distribution (gold line), and the single most
destructive event in the distribution, the Camp Fire (red point). We also analyzed
the full decile of events (blue line). c Map shows the geographic distribution of
wildfires with destruction levels and points of origin reported in the ICS dataset
from 1999 to 2020 in the contiguous U.S. (N = 32,296). Each point on the map
represents awildfirepoint of origin,where the color indicates level of structure loss
caused by the fire. Blue dots indicate fires that causedno structure loss; yellow dots
indicate the majority of destructive wildfires (90%) that destroyed 1–13 structures;
and red dots indicate the most destructive wildfires (top 10%), which destroyed
between 14 and 18,804 structures. We focused our analysis on the latter group,
analyzing only the most destructive wildfires. Sources: Wildfire data are from the
U.S. National Incident Management System/Incident Command System33 and state
boundaries are from the U.S. Census Bureau.

Article https://doi.org/10.1038/s41467-024-50630-4

Nature Communications |         (2024) 15:6631 3



Ta
b
le

1
|C

o
ef
fi
ci
en

ts
fo
r
th
e
ef
fe
ct
s
o
f
w
ild

fi
re

d
es

tr
uc

ti
o
n
o
n
m
ig
ra
ti
o
n
p
ro
b
ab

ili
ty

W
ild

fi
re

su
b
se

t
Ti
m
e
p
er
io
d

O
ut
-m

ig
ra
ti
o
n
p
ro
b
ab

ili
ty

In
-m

ig
ra
ti
o
n
p
ro
b
ab

ili
ty

(A
)
0
–
5
-m

ile
co

n
tr
o
ls

(B
)
5
-2
5-
m
ile

co
n
tr
o
ls

(C
)
25

–
5
0
-m

ile
co

n
tr
o
ls

(D
)
0
–
5
-m

ile
co

n
tr
o
ls

(E
)
5
–
25

-m
ile

co
n
tr
o
ls

(F
)
25

–
5
0
-m

ile
co

n
tr
o
ls

Fu
ll
d
ec

ile
of

m
os

t
d
es

tr
uc

tiv
e
w
ild

fi
re
s
(1
4
–
18
,8
0
4
st
ru
c-

tu
re
s
d
es

tr
oy

ed
,n

=
51
9
ev

en
ts
)

Ev
en

t
q
ua

rt
er

0
.0
0
34

*
(0
.0
0
15
)

p
=
0
.0
23

8
0
.0
0
18

(0
.0
0
14
)

p
=
0
.2
0
8
4

0
.0
0
34

*
(0
.0
0
14
)

p
=
0
.0
14
8

−0
.0
0
0
4
(0
.0
0
17
)

p
=
0
.8
20

9
−0

.0
0
0
6
(0
.0
0
16
)

p
=
0
.7
0
25

−0
.0
0
0
1
(0
.0
0
16
)

p
=
0
.9
6
4
3

Fi
rs
t
ye

ar
p
os

t-
ev

en
t

0
.0
0
4
8
**
*
(0
.0
0
10

)
p
=
0
.0
0
0
0

0
.0
0
4
5*
**

(0
.0
0
10

)
p
=
0
.0
0
0
0

0
.0
0
4
4
**
*
(0
.0
0
10

)
p
=
0
.0
0
0
0

0
.0
0
23

(0
.0
0
16
)

p
=
0
.1
51
9

0
.0
0
23

(0
.0
0
13
)

p
=
0
.0
8
19

0
.0
0
20

(0
.0
0
14
)

p
=
0
.1
51
2

S
ec

on
d
ye

ar
p
os

t-
ev

en
t

0
.0
0
0
4
(0
.0
0
12
)

p
=
0
.7
15
8

0
.0
0
12

(0
.0
0
0
9
)

p
=
0
.1
59

6
0
.0
0
11

(0
.0
0
0
8
)

p
=
0
.1
8
28

0
.0
0
0
9
(0
.0
0
13
)

p
=
0
.4
73

8
0
.0
0
10

(0
.0
0
14
)

p
=
0
.4
79

6
0
.0
0
10

(0
.0
0
14
)

p
=
0
.4
55

2

Le
ss

d
es

tr
uc

tiv
e
p
or
tio

n
of

w
ild

fi
re

d
is
tr
ib
ut
io
n
(1
4
–
25

7
st
ru
ct
ur
es

d
es

tr
oy

ed
,N

=
4
6
3
ev

en
ts
)

Ev
en

t
q
ua

rt
er

−0
.0
0
15

(0
.0
0
22

)
p
=
0
.4
9
0
8

−0
.0
0
4
4
*
(0
.0
0
21
)

p
=
0
.0
31
7

−0
.0
0
19

(0
.0
0
18
)

p
=
0
.2
9
24

−0
.0
0
13

(0
.0
0
22

)
p
=
0
.5
58

5
−0

.0
0
24

(0
.0
0
23

)
p
=
0
.2
8
77

−0
.0
0
0
4
(0
.0
0
20

)
p
=
0
.8
59

6

Fi
rs
t
ye

ar
p
os

t-
ev

en
t

0
.0
0
0
3
(0
.0
0
13
)

p
=
0
.8
28

8
0
.0
0
14

(0
.0
0
13
)

p
=
0
.3
0
12

0
.0
0
0
2
(0
.0
0
12
)

p
=
0
.8
70

0
−0

.0
0
0
6
(0
.0
0
21
)

p
=
0
.7
6
0
7

0
.0
0
13

(0
.0
0
22

)
p
=
0
.5
6
8
6

−0
.0
0
10

(0
.0
0
20

)
p
=
0
.6
32

1

S
ec

on
d
ye

ar
p
os

t-
ev

en
t

0
.0
0
0
4
(0
.0
0
17
)

p
=
0
.7
8
6
1

0
.0
0
22

(0
.0
0
14
)

p
=
0
.1
24

5
−0

.0
0
0
1
(0
.0
0
16
)

p
=
0
.9
51
3

−0
.0
0
13

(0
.0
0
29

)
p
=
0
.6
4
9
2

−0
.0
0
0
0
(0
.0
0
30

)
p
=
0
.9
9
8
4

−0
.0
0
0
1
(0
.0
0
25

)
p
=
0
.9
6
32

M
or
e
d
es

tr
uc

tiv
e
p
or
tio

n
of

w
ild

fi
re

d
is
tr
ib
u
tio

n
(2
58

–
70

10
st
ru
ct
ur
es

d
es

tr
oy

ed
,N

=
55

ev
en

ts
)

Ev
en

t
q
ua

rt
er

0
.0
0
30

(0
.0
0
22

)
p
=
0
.1
72

7
0
.0
0
31

(0
.0
0
20

)
p
=
0
.1
32

0
0
.0
0
4
1*

(0
.0
0
19
)

p
=
0
.0
32

4
−0

.0
0
10

(0
.0
0
26

)
p
=
0
.7
0
38

0
.0
0
16

(0
.0
0
21
)

p
=
0
.4
4
52

−0
.0
0
11

(0
.0
0
20

)
p
=
0
.5
6
77

Fi
rs
t
ye

ar
p
os

t-
ev

en
t

0
.0
0
4
7*
**

(0
.0
0
13
)

p
=
0
.0
0
0
4

0
.0
0
26

(0
.0
0
14
)

p
=
0
.0
6
8
4

0
.0
0
4
1*
**

(0
.0
0
10

)
p
=
0
.0
0
0
1

0
.0
0
24

(0
.0
0
21
)

p
=
0
.2
4
4
7

−0
.0
0
0
4
(0
.0
0
15
)

p
=
0
.7
8
0
6

0
.0
0
0
2
(0
.0
0
15
)

p
=
0
.8
74

7

S
ec

on
d
ye

ar
p
os

t-
ev

en
t

0
.0
0
14

(0
.0
0
11
)

p
=
0
.2
0
30

−0
.0
0
0
6
(0
.0
0
14
)

p
=
0
.6
4
73

0
.0
0
0
6
(0
.0
0
0
9
)

p
=
0
.5
14
9

0
.0
0
16

(0
.0
0
18
)

p
=
0
.3
8
8
9

0
.0
0
16

(0
.0
0
16
)

p
=
0
.3
10

7
−0

.0
0
0
2
(0
.0
0
12
)

p
=
0
.8
70

8

M
os

t
d
es

tr
uc

tiv
e
ev

en
t
in

w
ild

fi
re

d
is
tr
ib
ut
io
n,

20
18

C
am

p
Fi
re

(1
8
,8
0
4
st
ru
ct
ur
es

d
es

tr
o
ye

d
,N

=
1
ev

en
t)

Ev
en

t
q
ua

rt
er

0
.0
53

5*
*
(0
.0
18
8
)

p
=
0
.0
0
6
5

0
.0
6
9
3*
**

(0
.0
19
0
)

p
=
0
.0
0
0
7

0
.0
6
9
4
**
*
(0
.0
17
9
)

p
=
0
.0
0
0
3

0
.0
0
6
0
(0
.0
0
8
9
)

p
=
0
.4
9
9
8

0
.0
0
6
0
(0
.0
0
79

)
p
=
0
.4
52

7
0
.0
29

5*
*
(0
.0
0
9
7)

p
=
0
.0
0
38

Fi
rs
t
ye

ar
p
os

t-
ev

en
t

0
.0
6
8
0
**
*
(0
.0
19
1)

p
=
0
.0
0
0
9

0
.0
8
33

**
*
(0
.0
20

8
)

p
=
0
.0
0
0
3

0
.0
8
28

**
*
(0
.0
18
2)

p
=
0
.0
0
0
0

0
.0
13
1
(0
.0
0
74

)
p
=
0
.0
8
30

0
.0
16
9
*
(0
.0
0
8
2)

p
=
0
.0
4
59

0
.0
17
9
**

(0
.0
0
6
5)

p
=
0
.0
0
78

S
ec

on
d
ye

ar
p
os

t-
ev

en
t

0
.0
19
1*

(0
.0
0
8
8
)

p
=
0
.0
35

3
0
.0
25

8
*
(0
.0
0
9
8
)

p
=
0
.0
11
7

0
.0
16
2
(0
.0
0
8
1)

p
=
0
.0
51
9

0
.0
10

3*
(0
.0
0
4
9
)

p
=
0
.0
4
0
5

0
.0
11
9
*
(0
.0
0
4
9
)

p
=
0
.0
19
7

0
.0
0
6
0
(0
.0
0
52

)
p
=
0
.2
54

9

**
*p

<
0
.0
0
21
;∗

∗ p
<
0
.0
1;

∗ p
<
0
.0
5.

**
*
in
d
ic
at
es

B
on

fe
rr
on

i-a
d
ju
st
ed

p
va

lu
e
th
re
sh

ol
d
.T
ab

le
re
p
or
ts
th
e
in
te
ra
ct
io
n
te
rm

s
(T
em

p
or
al
Pe

ri
od

*T
re
at
m
en

t)
fr
om

d
iff
er
en

ce
-in

-d
iff
er
en

ce
s
m
od

el
s,
w
hi
ch

us
e
w
ei
g
ht
s
d
er
iv
ed

fr
om

co
ar
se

ne
d
ex

ac
tm

at
ch

in
g
.T
w
o-
si
d
ed

p
-v
al
ue

s
ar
e
re
p
or
te
d
an

d
ro
un

d
ed

to
th
e
fo
ur
th

d
ec

im
al

p
la
ce

.R
ob

us
ts

ta
nd

ar
d
er
ro
rs

ar
e
cl
us

te
re
d
at

th
e
ce

ns
us

tr
ac

tl
ev

el
an

d
sh

ow
n
in

p
ar
en

th
es

es
.F

ul
lr
eg

re
ss
io
n
re
su

lt
s
re
p
or
te
d
in

S
up

p
le
m
en

ta
ry

In
fo
rm

at
io
n
Ta

b
le
s
S
.I.
1–
S
.I.
4
.S

ou
rc
es

:F
ed

er
al

R
es

er
ve

B
an

k
of

N
ew

Yo
rk
/E
q
ui
fa
x
C
on

su
m
er

C
re
d
it
Pa

ne
la

nd
U
.S
.N

at
io
na

lI
nc

id
en

t
M
an

ag
em

en
t
S
ys
te
m
/I
nc

id
en

t
C
om

m
an

d
S
ys
te
m

33
.

Article https://doi.org/10.1038/s41467-024-50630-4

Nature Communications |         (2024) 15:6631 4



year after the event, with estimates ranging from 0.0048 when using
the 5-mile control set and 0.0044 when using the 50-mile control set
(Table 1, columns A-C). Put differently, burned tracts experienced 4–5
additionalmovers per thousand residents, on average, in the year after
the fire compared to unburned tracts.

We subsequently analyzed different components of the full decile
and observed that wildfires in the less destructive portion of the decile
(between 14 and 257 structures destroyed) caused almost no sig-
nificant changes to out-migration probability. There was only a slight
decrease in out-migration probability in the event quarter when using
the 25-mile control set (Table 1, column B), however this effect was not
evidentwhenusing either alternative control set. The lackofmigratory
effects among events with lower levels of structure loss and during any
disaster or post-disaster time period means that, absent high levels of
structure loss, we did not observe population-level migration changes
that would indicate wildfires spurred changing residential preferences
or capabilities and, subsequently, migration decisions.

When we next examined wildfires in themore destructive portion
of thedecile (between 258and 7010 structures destroyed), amigratory
effect associated with structure loss was clearly evident. Among the
more destructive portion of the top decile, there were four additional
out-migrants per thousand residents, on average, during the event
quarter, however this effect was only observed when using the 50-mile
control set (Table 1, columnC). The effectwasmorepronounced in the
first year following the event, where we observed five and four addi-
tional out-migrants per thousand residents when using the 5-mile
and 50-mile control sets respectively (Table 1, columns A and C). We
did not observe any significant differences in out-migration the second
year following the event, indicating that, during this period, migration

trends returned to a similar trajectory as their neighboring control
tracts.

Turning to the fourth subset, which includes the single most
destructive fire, we saw that the out-migration effect of the Camp Fire
(18,804 structures destroyed) was larger in magnitude and longer in
temporal duration than any other subset of destructive wildfires. This
suggests that bothmigrationdriven directly by structure loss aswell as
indirect wildfire-related migration both occurred. During the event
quarter,models indicate that burned tracts experienced between fifty-
three and sixty-nine additional out-migrants per thousand residents
compared to unburned control tracts (Table 1, columns A-C). This
substantial increase in out-migration immediately following the event
indicates that the large scale of the Camp Fire’s destruction led to
initial displacement through structure loss.

Following the event period, the migratory effect grew in magni-
tude during the first post-fire year, where burned tracts experienced
between 68 and 83 additional out-migrants per thousand residents per
quarter compared to unburned control tracts. This translates to a
more than threefold increase in the magnitude of out-migration
probability among burned tracts from the two years prior to the fire to
the first year following the event quarter. Compared to the more
destructive portionof the topdecile (between 258 and 7010 structures
destroyed), the migratory effect of the Camp Fire during the first year
after the event was between fourteen and twenty times as large. Unlike
any other subset of destructive wildfires, models indicate that the
CampFire’s out-migration effect was still significant in the second year
after the event. Burned tracts experienced between nineteen and 26
additional out-migrants per thousand residents when using the 5- and
25-mile control sets respectively (Table 1, column A and C). This

Fig. 2 | Out-migration effects of wildfire structure loss are observed only fol-
lowing the most destructive events. a Figures show evolving, unweighted out-
migration probabilities (left) and in-migration probabilities (right) among three
subsets of destructivewildfires: (1) full top deciledistribution (14–18,804 structures
destroyed, N = 519 wildfires), (2) less destructive portion of the top decile
(14–257 structures destroyed, N = 463 wildfires), and (3) more destructive portion
of the top decile (258–7010 structures destroyed, N = 55 wildfires). Control tract
migration probabilities are shown in blue, purple, and green. Vertical dashed line
indicates the quarter in which the wildfire occurred. b Figures show evolving,
unweighted out-migration probabilities (left) and in-migration probabilities (right)
before and after the 2018 Camp Fire. Control tract migration probabilities are

shown inblue, purple, and green. Vertical dashed line indicates thequarter inwhich
the wildfire occurred. c For each wildfire event, we selected three rings of control
tracts for each cluster of burned tracts (shown in red). Figure shows control
selection for the 2000 CerroGrande Fire in NewMexico. The buffer from the outer
edge of burned tracts to 5miles away is shown in blue; the buffer from 5 to 25miles
is shown in purple; and the buffer between 25 and 50miles away from the edge of
treated tracts is shown in green (left). These buffers are then intersected with
spatially overlapping tracts (right). Sources: Migration data are from the Federal
Reserve Bank of New York/Equifax Consumer Credit Panel, wildfire data are from
the U.S. National Incident Management System/Incident Command System33, and
tract boundaries are from the U.S. Census Bureau.
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elevated out-migration trend in the two full years following the Camp
Fire provides evidence supporting our hypothesis of indirect wildfire
effects on migration, which we theorize are driven by changing resi-
dential preferences and capabilities, rather than destruction of the
built environment. After the initial spike in out-migration driven by
rapid structure loss, residents continued to leave the area.

Wildfire structure loss has minimal impact on in-
migration trends
Finally, we examined trends in in-migration, hypothesizing that indir-
ect effects of wildfires will result in reduced in-migration during and
after the event period, as potential in-migrants avoid fire-affected
places. Across the full top decile, less destructive, and more destruc-
tive portions of the top decile, there were no significant differences in
post-fire in-migration among burned tracts relative to any set of con-
trol tracts (Table 1, columns D–F). It was only following the Camp Fire
that we observed a significant increase in in-migration probability,
starting during the event quarter,where therewere an additional 30 in-
migrants per thousand residents relative to the 50-mile control set
(Table 1, column F). This positive effect on in-migration continued
during the first year when using both the 25-mile and 50-mile control
sets, and again during the second year, when using the 5- and 25-mile
control sets (Table 1, columns D-F). We interpret this increase in in-
migration as evidence of what is known as “recovery migration,”
wherein returning and new residents arrive in a disaster-affected area
following an initial displacement event41,42.

When examining parallel trend plots for Camp Fire in-migration
(Fig. 2b), we observed some evidence of spatial spillovers in the
nearest set of control tracts, those between zero and five miles from
burned tracts. As the red line indicating mean in-migration probability
in burned tracts rises and remains elevated during the event and post-
event quarters, so too does the mean in-migration probability for the
5-mile ring, which is shown in blue. The two trends evolve along very
similar trajectories, whereas in-migration among 25-mile and 50-mile
control tracts remains relatively flat in the post-year period. This spa-
tial spillover is reflected in the non-significance of coefficients for the
5-mile ring comparison in the event and post-event year interaction
terms (Table 1). Given how large the effect of theCampFirewas onout-
migration, it is possible that this in-migration spillover reflects resi-
dents leaving the immediately burned area and moving into nearby
tracts.

Discussion
Despite the robust growth of climate migration research over the past
decade11,12, wildfires remain understudied in this field13. Existing
research on the effects of comparable sudden-onset hazards indicates
that a spectrum of different migratory responses are possible. On one
hand, many past studies have shown that such events result in relative
immobility11,12,17. However, on the other hand, studies focused on
extremely destructive hurricanes and tsunamis have documented
heightened out-migration and subsequent recovery migration23–26,41,42.
Our analysis of wildfires across a range of destruction levels reflects
this heterogeneity of effects observed in prior literature, illustrating
the prevalence of severity thresholds at which wildfires influence
migration in the U.S. We show that immobility was the most common
response to destructive wildfires, however, for the smaller number of
highly destructive fires, we observed increased out-migration.

Our study draws on wildfire data that document exact wildfire
structure loss counts33, allowing us to stratify our analysis by severity
level and to subsequently test for different types of wildfire-related
migration. We paired these data with migration estimates from the
Federal Reserve Bank of New York/Equifax Consumer Credit Panel,
which has been minimally used for migration research but offers
improved spatial resolution over traditional migration data. Together,
these data sources make possible analysis at the census tract scale,

which approximates neighborhoods, offering a level of spatial granu-
larity that has not been previously possible in most multi-decadal
environmental migration studies. By analyzing a large number of
events, our analysis further provides generalizable findings on an
understudied hazard within environmental migration scholarship.

We investigated the 519 most destructive wildfires in the con-
tiguous U.S. between 1999 and 2020, examining direct and indirect
pathways of wildfire-driven impacts on human migration. We first
tested for migration effects through direct damage to the built envir-
onment, wherein heightened out-migration occurs following high
levels of structure loss. Second, we examined whether wildfires influ-
enced migration indirectly, through mechanisms apart from structure
loss. Through this pathway, residential preferences to remain in place
or migrate as well as residents’ capabilities to realize such preferences
may change as a result of a fire, in turn affecting population-level
migration trends.

Our findings support our first hypothesis, that wildfires affect
migration patterns non-linearly at high levels of structure loss, as
housing and other infrastructure are destroyed, and residents subse-
quently relocate. We found that only a small portion of destructive
wildfires caused amigratory response, and such rare events influenced
mobility primarily through destruction to the built environment. Even
among the top ten percent of the most destructive wildfires in the
contiguous U.S., it was only themost extreme among these events that
caused an increase in out-migration. This was reflected in significant
wildfire effects on out-migration among wildfires in the most
destructive portion of the top decile (258–7010 structures destroyed),
and the largest magnitude of out-migration effects observed after the
singlemost destructive event, the 2018CampFire.Migration following
highly destructive events is in keeping with prior research that has
documented direct displacement following extreme sudden-onset
disasters23–26 and non-linear relationships between migration and
hazard severity17,34. It is also in linewith emerging literature onwildfire-
related mobility, which has documented temporary population dis-
placement following two highly destructive events, the Mendocino
Complex and Woolsey Fires in California30. However, our research
design ultimately does not allow us to distinguish between residents
moving away because their own dwellings were destroyed, because
their local environment experienced high levels of destruction, or a
combination of both. These possible pathways should be investigated
in future research with qualitative methods focused on migration
decision-making.

We further hypothesized that, separate fromdirect destruction to
structures, wildfire impacts on the biophysical, economic, and social
dynamics of a place would influence residents’ desires to remain living
there and/or their ability to do so. However, in most cases, we did not
find evidence indicating that wildfires influenced migration patterns
through this indirect pathway via residents’ changing mobility pre-
ferences or capabilities.While wildfires can influencehumanmigration
at high levels of structure loss, the majority of wildfire events between
1999 and 2020 did not reach this destruction threshold and, subse-
quently, did not result in changes to existing migration trends. Fol-
lowing the majority of destructive wildfires in this study
(14–257 structures destroyed, 89% of the 519 wildfires examined), we
observed no significant increase in out-migration, indicating that
immobility is a common response to wildfire, as it is among other
hazards11,12,14–17. Furthermore, the rare spikes in out-migration following
the most destructive events were almost all temporally constrained to
the disaster period and first year following the event, and did not
remain elevated in the second post-event year. The only exception to
this trend was following the Camp Fire, in which out-migration from
burned tracts remained elevated for the entire temporal period
examined. Finally, we observed no declines in in-migration following
wildfire events. Rather than being deterred by substantial wildfire
destruction, in-migrants arrived in fire-affected tracts at the same rate
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that they did prior to the fire and relative to neighboring, unburned
tracts. Together, these findings suggest that, during the study period,
wildfires that did not cause very high levels of structure loss also did
not influence residential mobility preferences and/or capabilities suf-
ficiently to affect population-level migration trends.

Prior environmental migration scholarship conducted across
hazard types finds broad variability in the direction and magnitude of
migration response. We showed that, further, the migration response
to the same hazard can vary widely across severity levels, increasing
non-linearly at the highest level of impact. Our findings speak to the
outsized effects of the most extreme environmental events on human
migration. Fires are a common environmental phenomenon occurring
acrossmany parts of the U.S. (Fig. 1); it is only amuch smaller subset of
rare, but extremely destructive wildfires that have directly impacted
migration through structure loss. This finding is important for situat-
ing a general understanding of wildfire-related mobility in the con-
tiguous U.S. – namely, that immobility is the most common response
to destructive wildfires. Climatemobility scholars have recently begun
emphasizing such findings that have historically been treated as null
results of lesser interest, arguing for the importance of studying
immobility, especially in the context of intensifying environmental
hazards14,16,19. Future research should investigate how both individual
aspirations and macro-level structural conditions collectively inform
the mobility of residents living in fire-prone places.

While we observed immobility as the most common response to
destructive wildfires, we also know that the rate of wildfire-driven
structure loss in the U.S. has been increasing over time1, with a sub-
stantial number of outlying extreme events occurring in recent years
(Fig. 1). Absentmajor adaptation efforts, if the recent intensification of
wildfire destructiveness continues, our findings suggest that we may
expect to observe more direct displacement caused by extreme wild-
fires in the future. Althoughwe didnot observe substantial evidenceof
indirect wildfire-mobility effects, in which residents began leaving or
avoided moving into fire-affected regions absent major structure loss,
these effects may yet emerge in the future as the wildfire regime
continues to change. Future research should examine how these
pathways ofwildfire-relatedmigration evolve. Additionally, research in
this area could examine whether more recent extreme events and
events outside of the contiguous U.S., such as the 2023 Maui Fire in
Hawaii, have similar migration effects as those found in this analysis.

Our research design provides a number of important advances to
the emerging study of wildfire-related mobility. First, because our
wildfire data measure exact counts of structures destroyed at a fine
spatial scale, we were able to stratify our analyses by level of wildfire
severity. This is a distinct approach from previous wildfire migration
studies, which have either investigated a very small selection of
events30–32, or havemademinimal distinctions in event severity among
many events20. By stratifying our analysis across levels of wildfire
destruction, we are able to examine thresholds in wildfire-migration
relationships, which is an important area of investigation given prior
research suggesting non-linear migration responses to other environ-
mental hazards11,12,17,34. Second, our data allow us to examine wildfire-
related migration at the census tract scale, the spatial unit that most
closely approximates neighborhoods36. This spatial scale is critical
conceptually, given that priormigration researchgenerally documents
short-distancemoves in response to environmental changes15. It is also
technically important for the study of wildfires, because their area of
direct impact tends to be small relative to the land area of counties, the
coarser spatial unit used in prior studies most similar to ours20,32 (see
Supplementary Information 2 for a more detailed discussion of wild-
fires and spatial scale). Finally, compared to past studies, our quasi-
experimental design comparing burned tracts to counterfactual
unburned tracts offers improved causal identification of wildfire
effects on migration. This approach has not previously been used to
study wildfire-migration relationships and is especially important for

research on environmental hazard impacts, given the potential for
confounding events43. Our use of three distinct sets of control groups
further allows us to ensure the robustness of our findings and identify
spatial spillovers outside of immediately burned regions. Together,
these elements of our research design allow us to comprehensively
identify nonlinear effects of wildfire destruction at a local scale.

Our study has several limitations that we anticipate can be
addressed as future research continues to expand knowledge on
wildfire-mobility dynamics. First, our study design did not identify
residential moves within tracts. As a result, it is possible that wildfire
destructionmay cause changes to populationmobility at a finer spatial
scale thanwewere able to observe. Such a patternwould be in keeping
with findings from a Colorado-based survey, in which residents in a
fire-affected region who desired to move preferred nearby
destinations27. However, even if such within-tract residential mobility
were taking place, it would still affirm our study’s broader conclusion:
residents by and large did notmigrate out of fire-prone areas after less
destructive events. Additionally, our aggregated census tract-level
approach is not able to distinguishbetween individual residentswhose
dwellings were located within a burned tract but not within the burn
footprint, and those whose dwellings were located directly within the
burn footprint. Because somewildfires fall within a census tract but do
not burn that tract’s entire area, our approach necessarily included
some unexposed residents in the treated condition. This may mean
that our results underestimate the magnitude of migratory effects.

A second limitation of our approach is that the CCP migration
data generally cannot be demographically decomposed40. Using these
data, we are limited in our ability to analyze potentially different
migration trends across axes of difference such as race, ethnicity, or
nativity. While our approach provides a broad picture, we cannot
determine whether particular demographic groups are more or less
likely to migrate in response to wildfire destruction. This limitation is
not unique to the CCPmigration data, and we are aware of no publicly
availablemigrationdata source that has extensive spatial and temporal
coverage, fine-grained spatial and temporal units, and demographic
decomposability. Future work creating such data would greatly
expand the scope of environmental migration research, enabling lines
of inquiry focused more explicitly on disproportionate impacts and
questions of equity.

Finally, it is important to note that the CCP migration data only
include residents with a Social Security Number (SSN) and a credit
history, and therefore under-represent relatively younger and finan-
cially disadvantaged people44,45. As such, the CCP sample is not
necessarily representative of the full U.S. population in all places. This
challenge is endemic to many commonly-used forms of migration
data; for instance, the Internal Revenue Service’s county-to-county
migration data includes only residents who file taxes46 and mobility
data derived frommobile phones only sample from residents who use
a cell phone47. There is a tradeoff to usingmigration data such as these
that offer broad geographic and temporal coverage, but do not fully
capture all subpopulations that may be especially vulnerable to wild-
fire impacts. For example, a case study of the CampFire found that the
residential structure types most likely to house lower-income resi-
dents, mobile home residents, and renters had a higher probability of
being destroyed in the fire, suggesting that these populations were
more susceptible to housing loss due to characteristics of the built
environment48. While we clearly detected a significantmigratory effect
from the Camp Fire, the CCP’s underrepresentation of financially dis-
advantaged residents means that we may have underestimated the
overall effect size for this particular event if these residents were not
fully represented in the data. Similarly, in a case study of the 2017
Thomas Fire in California, researchers highlighted the ways that
undocumented immigrants who worked in affected areas were both
highly impacted by the fire but simultaneously not visible in official
census statistics49. Focused attention on the experiences of vulnerable
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subpopulations with wildfire is needed, and must be conducted with
tailored data that can overcome limitations of existing national-level
datasets. Yet, such analyses would need to address considerable
privacy concerns that arise when studying demographically identified
groups at small spatial scales.

The heightened out-migration observed after relatively rare but
highly destructive wildfires invites further study focused more closely
on patterns of in-migration in the years following the event. The con-
cept of “recovery migration” adopted in scholarship on hurricanes
encompasses both returning residents and new in-migrants41,42, and
others have further highlighted the temporary in-migration of indivi-
duals drawn by disaster cleanup employment50. This area of research is
generally understudied relative to other aspects of environmental
migration10, and future research should analyze these distinct forms of
in-migration after destructive wildfires. Existing studies suggest that
several possible dynamics may be at play, including post-wildfire
gentrification48, as well as the continued push of residents into more
affordable but also more fire-prone places22.

In this study, we present a broad examination of wildfire’s impacts
on human migration patterns in the contiguous U.S., addressing a
scarcity of wildfire-focused research in environmental migration
scholarship13. Emerging scholarship on this topic to date has been
geographically focused on North America, yet wildfires are a
global phenomenon5,6. Prior research conducted in countries with
substantial agricultural sectors generally finds more pronounced
environmental migration effects, as environmental changes alter agri-
cultural productivity, thereby influencing household income and sub-
sequent migration10,12,17. This pattern suggests that, in different
geographic contexts, wildfiresmay influencemigration differently, with
potentially stronger effects in agriculturally-dependent regions. Future
research should investigate wildfire impacts on migration across
the broad geography of fire-prone places, with special attention to the
different causal pathways through which fire may influence mobility.

Methods
Data construction
We constructed a longitudinal dataset of wildfire destruction and
quarterly out- and in-migration probabilities at the census tract scale.
Wildfire destruction metrics were adapted from administrative
records collected in the U.S. National Incident Management System/
Incident Command System, archived by the interagency National
Wildfire Coordinating Group, and subsequently processed by St. Denis
et al. (“ICS”)33. The ICS records encompass all documented wildfires in
the U.S. that require the establishment of an incident management
team. Drawing on St. Denis et al.’s procedure to create a spatio-
temporal version of the data, we used the ICS’s linkage to wildfire
perimeters from the Monitoring Trends in Burn Severity database38

and the Fire Events Delineation (FIRED) database37 to produce census
tract- and quarter-level wildfire data based on 2010 tract boundaries.
We selected census tracts as our unit of analysis because they
approximate a measure of neighborhoods, generally including
between 1200 to 8000 residents36. No single unit of analysis perfectly
corresponded to the wide range of wildfire burn footprint sizes in our
data. However, the granularity of census tracts is better-suited to
match the spatial scale of burn footprints, which are generally much
smaller than the next largest administrative unit—counties—which
have been used in prior wildfire research (see Supplementary Infor-
mation 2 for additional details on spatial unit selection)20,32. We
obtained tract and state boundaries from the U.S. Census Bureau
through the National Historical Geographic Information System
(NHGIS) and R tigris package respectively51.

The ICS dataset is one of the most comprehensive longitudinal
sources of wildfire data for the U.S. For each wildfire event, the ICS
reports the total number of structures destroyed, a measure that
includes residential, commercial, outbuilding, and mixed-use

structures. We utilize data from the full temporal period available in
the most recent publication of the ICS, which covers 1999 through
2020. 1999 was the first year for which the National Wildfire Coordi-
nating Group provided the raw data from which the ICS is produced.
2020 represents the most recent year through which the ICS has been
cleaned33.

Amajor benefit of the ICSdataset is that it reports directmeasures
of hazard impact rather than the dollar value of damaged property.
The latter approach to disaster data reporting, while commonly used,
is unable to distinguish between the destruction of a small number of
high-value structures and a high number of low-value structures.
The conflation of number of structures damaged or destroyedwith the
estimated monetary value of damages to structures distorts damage
estimates, overstating damages in areas with high property values and
understating damages in areas with low property values. The ICS
counts of destroyed or damaged structures thus provide amore direct
measure of hazard impact33. However, it does not account for wildfire
impacts on wildlands, agricultural lands, or livestock, which could
potentially influence migration via impacts on environment-
dependent livelihoods such as forestry, farming, or environmental
amenity-based tourism.

Migrationmeasures come from the Federal Reserve Bank of New
York/Equifax Consumer Credit Panel (CCP). The CCP is an anon-
ymous five percent random sample drawn from the credit histories
maintained by Equifax. It contains panel data on over 10 million
individuals. The consumer credit histories are built from themonthly
reports Equifax receives from mortgage lenders, credit card issuers,
student loan servicers, and other debt holders. Equifax uses an
algorithm to identify each individual’s most likely current address
from the addresses reported by all of a borrower’s creditors. Equifax
provides the census tract containing the selected address in the CCP
data. The street addresses themselves are withheld for anonymity, as
are all names and Social Security Numbers. A unique anonymous
identifier is assigned to each borrower, allowing researchers to build
individual-level quarterly histories40. To account for differences in
population size between tracts, we used the proportion of indivi-
duals in a tract who moved into or out of the tract as the dependent
variable for our analysis. Unfortunately, the CCP does not contain
demographic information on the borrowers, such as sex, race, eth-
nicity, or nativity.

The Federal Reserve Bank of New York/Equifax Consumer Credit
Panel (CCP) has several advantages over other sources of data on
residential migration. Compared to U.S. Census Bureau surveys that
measure migration, such as the American Community Survey or the
Current Population Survey, the CCP’s large sample size provides sta-
tistical power necessary for analyses at smaller spatial and temporal
scales45. Compared to the widely-used Internal Revenue Service’s
county-to-county migration estimates (IRS), which report total counts
of migrants between county pairs, the CCP provides individual-level
records which report residential locations quarterly, as opposed to
annually, strengthening temporal inference. Further, the individual-
level records can be aggregated to fit a spatial unit, such as a state,
county, or census tract. The finer temporal and spatial scales that are
possible with the CCP make it highly attractive for the study of envir-
onmental shocks and migration responses32.

The CCP also has several limitations. The data represent only
those U.S. adults who have a Social Security Number (SSN) and a credit
history. Therefore, coverage excludes the estimated 10–11% of adults
who do not have a formal credit history and those without an SSN44.
This means that younger and financially disadvantaged people are
under-represented in the data45. As mentioned above, the CCP does
not contain demographic information on the borrowers, such as sex,
race, ethnicity, or nativity. These limitations mean that the dataset
cannot be used to examine individual-level sociodemographic dis-
parities in hazard-related migration.
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Finally, to conduct our matching procedure, we processed tract-
level landscape and population variables associated with wildfire
risk52,53. These include elevation and slope derived from NASA’s 90m
SRTM digital elevation map54, and the percent of land in each tract
belonging to specific land cover classes, derived from the 2019
National Land Cover Database55. Of available land cover classes, we
utilized the percentage of a tract covered by forest, shrub/scrub, and
developed land, which are associated with flammability53. We pro-
cessed the variables above using Google Earth Engine’s cloud com-
puting platform56. In addition to these landscape characteristics, we
also included a tract’s total land area (where smaller indicates a more
urbanized tract) and 2010 county-level population estimates57.

Stratification of wildfires by severity
Given the right skew of the wildfire destruction distribution, we
chose to analyze only the most destructive decile of wildfires that
destroyed structures (hereafter, “top decile”). The top decile
encompasses events ranging from fourteen structures destroyed at
the least destructive to 18,804 structures destroyed at the most
destructive. However, even this most destructive top decile itself is
right skewed, with the majority of events causing a lower level of
destruction. For this reason, we subsequently stratified the top decile
into four sets for analysis: (1) the full decile distribution (n = 519), (2)
the less destructive portion of the decile distribution (n = 463), (3)
the more destructive portion of the decile distribution excluding the
Camp Fire (n = 55), and (4) the most destructive event in the decile
distribution, the Camp Fire (n = 1) (shown in Fig. 1b). We subdivided
the top decile into these groups with the aid of Jenks natural breaks
classification, which is a data classification method that minimizes
variation within groups58.

Analytical strategy
We used a difference-in-differences (DID) strategy to model out-
migration and in-migration probabilities in wildfire “treated” tracts
(e.g., tracts containing the burn footprint) comparing them to
unburned “control” tracts. We compared migration probabilities dur-
ing the eight quarters preceding the event with the event quarter and
eight quarters after the event. A separateDIDmodel wasfitted for each
subset of events and control rings (see section 2.4). The model takes
the form:

mpit =β0 +β1Treati +
XT

t =0

β2tPeriodt +
XT

t =0

β3t Treati*Periodt

� �
+ εit

Where mpit is a measure of migration probability in tract i in time
period t, which is defined as the total number ofmovers into or out of a
tract divided by the total population of the tract at the start of the
period. Treati indicates whether a tract was burned in a wildfire event
(“1”) or an unburned control tract (“0”). Periodt indicates whether the
time period was pre-fire (“0” is the reference category), the event
quarter (“1”), the first year after the event quarter (“2”), or the second
year after the event quarter (“3”). We modeled multiple post-event
temporal periods rather than a binary post-fire period to test whether
migratory effects differed over time. The interaction terms between
Treati and each of the three event and post event Periodt terms are
the primary DID coefficients of interest. They reflect whether the
change in migration probability between the pre-fire period and
subsequent time periods was significantly different between burned
and unburned tracts. εit represents residual errors. We report robust
standard errors clustered at the tract level and include a Bonferroni-
adjusted p value threshold of 0.0021. For ease of interpretation, we
transformed the interaction coefficients to report X number of
migrants per ten-thousand residents. We conducted analyses using
the estimatr package59 in R statistical software versions 4.3.3 and 4.4.0
and reported two-sided p values.

Applied research analyzing longitudinal data has often used fixed
effects (FE) to address concerns about omitted variables. However,
recent methodological research suggests that this approach is inap-
propriate for certain causal research questions, and does not yield
readily-interpreted, nonparametric causal estimators60–62. For this
reason, we did not include fixed effects in our models, and instead
addressed potential omitted variables bias through a matching pro-
cedure (described below). Matching treatment and control groups
based on observed covariate values has recently been advanced as an
alternative to FE models63. We nevertheless conducted additional
sensitivity tests comparing our primary non-FE models to those with
tract FE, quarter FE, and two-way FE. We performed these tests on the
upper decile of wildfires using 0–5 mile controls, and found no sub-
stantive differences in the direction, magnitude, or statistical sig-
nificance of the DID estimates. Additionally, we ran the same set of
models but with a single pre- and single post-fire period, rather than
three event and post-event periods. Here, we found that model coef-
ficients followed the same patterns as our primary specification
models, with significant increases in out-migration and no significant
changes in in-migration in the post-fire period. These tests indicate
that our findings are robust across a range of alternative specifications.

Control selection
We matched control tracts to each treated tract through a two-step
procedure. First, for each burned tract or cluster of tracts that corre-
spond to a single wildfire, we calculated three rings of distance-based
neighboring tracts. We did so by drawing buffers from the outer edge
of burned tracts to 5 miles (“5-mile ring”), from 5 to 25 miles (“25-mile
ring”), and from 25 to 50 miles (“50-mile ring”) (Fig. 2c, left). We then
intersected these buffers with spatially overlapping tracts (Fig. 2c,
right) to create the final control tract selection for a given wildfire.

We selected three distinct sets of controls to address the potential
for spatial spillover, in which the effects of a destructive wildfire travel
beyond the immediate area in which the incident occurred. A recent
study of Australia’s Black Summer fires suggests that such spillovers
canoccur up to 5 kmaway froma directly burned area43. Because there
is not sufficient empirical research from which to establish whether
such spillovers are common across different wildfire events, we con-
ducted analyses for each wildfire subset three times, each with a dif-
ferent ring of control tracts. Building these sensitivity tests into our
analysis allowed us to rule out spatial spillovers for most wildfire
subsets, and to identify a modest spatial spillover in the case of in-
migration following the Camp Fire.

In cases in which a control tract also experienced a destructive
wildfire within the seventeen-quarter observation window, the tract
was removed from consideration as a control. This step ensured that
treated units were not compared to control units that themselves
were treated within the observation period. If a tract quarter was
defined as a control for multiple fire-affected tracts, it was only
counted once within a given pooled model. In- and out-migration
probabilities vary more widely in tracts with small populations,
which is in part due to the data’s small sample size within these
tracts. Tominimize the influence of these outliers, observations with
an in-migration probability greater than two standard deviations
above the full dataset’s mean in-migration were removed and
observations with an out-migration probability greater than the
maximum quarterly out-migration observed following the 2018
Camp Fire were removed.

After selecting three rings of potential control tracts for each
wildfire, we next conducted coarsened exact matching (CEM) in order
to balance covariates between treatment and control groups64. CEM
has been used in prior disaster research to strengthen causal inference
in quasi-experimental research designs65. We matched treatment and
control tracts using a set of covariates that we selected based on their
expected association with the treatment condition (experiencing a
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destructivewildfire)66.Matchingwas conducted separatelywithin each
subset of wildfire events using the MatchIt package in R67. While ICS
wildfire data are available for Hawaii and Alaska, certain covariates did
not include coverage in these states. We therefore constrained our
analysis to the contiguous U.S.

To evaluate covariate balance before and after matching, we
examined the standardized mean differences between treatment and
control groups of each covariate (Supplementary Information
Figs. S.I.3–S.I.6). After matching, standardized mean differences were
nearly all at or below 0.1, which is a threshold at which covariates are
considered to be well-balanced. The Camp Fire model was the primary
exception, where we used a smaller selection of covariates (tract size
and percent developed, forest, and shrub or scrub) and matched
covariates were better-balanced but did not all fall below the preferred
0.1 standardized mean differences threshold. These limitations were
due to the smaller set of treated and control groups available for
analyzing a single event, in contrast to the much larger N available for
aggregated event analyses. Overall, results suggested that CEM sub-
stantially improved covariate balance across treated and control
groups,withminimal reduction in thenumberofobservations used for
analysis (usually <10–15%).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thewildfire data and covariates used for coarsenedexactmatching are
publicly available at refs. 33,54,55,57. Source data for figures are pro-
videdwith this paper. The rawmigrationdata fromthe Federal Reserve
Bank of New York/Equifax Consumer Credit Panel (CCP) are available
under restricted access to Federal Reserve System employees and
cannot be shared due to Data Use Agreement terms. Source data are
provided with this paper.

Code availability
Codesdeveloped toprocess thepublicly available data listed above are
available through OSF at https://osf.io/xa39e/.
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