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Abstract 

In this review, we discuss current research on forest carbon risk from natural disturbance under climate change 
for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential 
to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, 
forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emis-
sions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have 
finite lifespans, and disturbances such as wildfire, insect and disease outbreaks, and drought can hasten tree mortality 
or reduce tree growth, thereby slowing carbon sequestration, driving carbon emissions, and reducing forest carbon 
storage in stable pools, particularly the live and standing dead portions that are counted in many carbon offset 
programs. Many forests have natural disturbance regimes, but climate change and human activities disrupt the fre-
quency and severity of disturbances in ways that are likely to have consequences for the long-term stability of forest 
carbon. To minimize negative effects and maximize resilience of forest carbon, disturbance risks must be accounted 
for in carbon offset protocols, carbon management practices, and carbon mapping and modeling techniques. This 
requires detailed mapping and modeling of the quantities and distribution of forest carbon across the United States 
and hopefully one day globally; the frequency, severity, and timing of disturbances; the mechanisms by which distur-
bances affect carbon storage; and how climate change may alter each of these elements. Several tools (e.g. fire spread 
models, imputed forest inventory models, and forest growth simulators) exist to address one or more of the afore-
mentioned items and can help inform management strategies that reduce forest carbon risk, maintain long-term 
stability of forest carbon, and further explore challenges, uncertainties, and opportunities for evaluating the con-
tinued potential of, and threats to, forests as viable mechanisms for forest carbon storage, including carbon offsets. 
A growing collective body of research and technological improvements have advanced the science, but we highlight 
and discuss key limitations, uncertainties, and gaps that remain.
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Background
Forests contain a large proportion of Earth’s terrestrial 
surface carbon storage, with continued potential for car-
bon sequestration over the coming decades to centuries 
[1, 2]. Forests cover over a third (~ 310 million ha) of the 
United States’ land area, of which ~ 58% are privately 
owned [3]. Maintaining or increasing forest carbon on 
these lands is a critical component of some nature-based 
climate solutions, including forest carbon offset projects. 
Various carbon offset programs have been developed to 
credit landowners for managing forests to maintain and 
increase long-term carbon storage, usually focusing on 
the live tree and standing dead carbon pools because of 
the potential to broadly manage these portions for long-
term carbon stability [4, 5]. Because forests naturally have 
continual carbon exchanges with the atmosphere, offset 
programs try to account for these exchanges to achieve 
carbon stability on the order of decades and up to a cen-
tury into the future [6].

Forest carbon storage is a critical ecosystem service, 
and because of this, offset programs can incentivize car-
bon stability by issuing credits to landowners to create 
and maintain additional forest carbon [7–9]. Losses of 
previously credited carbon can sometimes be compen-
sated either by the project owner (for ‘intentional’ losses) 
or an insurance buffer pool of credits held by the issu-
ing agency (for ‘unintentional’ losses). These guarantees 
against carbon loss from projects may be compromised 
by events that cause larger than anticipated carbon 
emissions. These events, called reversals, are expected 

to happen periodically as a consequence of natural dis-
turbance regimes endemic to a particular ecosystem 
[10–13].

Carbon projects exist within a framework wherein 
there are initial stocks, management that can impact 
those stocks and the disturbance risks for a finite period 
of time, and realized disturbances, all which feed back 
to the initial carbon in the next time step (Fig. 1). Initial 
carbon stocks represent the carbon before a disturbance 
or at the start of a year or period of analysis. Potential 
disturbances, including wildfires, insects and disease 
outbreaks, and drought, change the composition of ini-
tial forest carbon and alter future risk from wildfire [14]. 
The intensity and likelihood of the disturbances and the 
susceptibility of forest carbon can be modulated by man-
agement actions. Management actions have an immedi-
ate, known impact on carbon stocks, and alter the risk of 
various types of disturbance. Disturbances can be under-
stood through a risk framework, where carbon stocks are 
impacted based on likelihood of occurrence, the condi-
tional intensity, and conditional severity. More broadly, 
large enough fluctuations in forest carbon may feedback 
into climate change, which also impacts disturbance risk.

Wildfire, insect and disease outbreaks, and drought 
are among the primary natural processes that reduce 
carbon in forests, but anthropogenic climate change 
has and will continue to alter the frequency, severity, 
and timing of disturbances beyond what has occurred 
historically, affecting carbon stocks at broad spatial and 
temporal scales (Fig. 1) and challenging carbon storage 
and policy goals [15–18]. Understanding the evolving 

Fig. 1  Conceptual cycle of forest carbon risk as modified by disturbances, management actions, and climate change
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dynamics of disturbance regimes is critical for main-
taining carbon permanence (e.g. ensuring carbon pro-
jects are viable over their lifetimes of 20–100  years) 
because deviations from natural disturbance regimes 
influence whether forest carbon can in fact remain a 
viable offset option. However, many offset standards do 
not incorporate all risks to forest carbon stocks asso-
ciated with climate change and disturbance events [19, 
20]. Climate change has already introduced new uncer-
tainties by rapidly driving ecosystems toward warmer, 
and in some places drier, futures with greater moisture 
stress, which likely will include non-stationarity in dis-
turbance regimes that make it more difficult to assess 
forest carbon risk [17, 21, 22]. With sufficient knowl-
edge of how climate change affects disturbances and 
forests, preventative management practices or treat-
ments may be implemented to reduce the likelihood 
of carbon reversals and loss of forest resilience in the 
future.

For a forest carbon offset protocol to reasonably 
account for climate change and disturbance, it is neces-
sary to map and model multiple data layers: the distribu-
tion of forest carbon across the country; the frequency, 
severity, and timing of possible future disturbances; the 
mechanisms by which disturbances may affect carbon 
storage; and how climate change may alter each of these 
elements (Fig. 1). In the United States, there is a growing 
body of scientific literature, tools, and methods that con-
sider one or more of the aforementioned elements, but 
rarely all of them, and future climate change effects are 
often not sufficiently considered.

In this review, we first summarize current literature 
on the general effects of disturbance on forests and for-
est carbon in the United States, followed by the gen-
eral effects of climate change on each disturbance type 
(Table 1). In ecosystems that have evolved with high-fre-
quency, low-severity disturbance regimes such as wild-
fire (i.e., fire-adapted forest ecosystems), there are many 
potential benefits from shifting carbon from ephemeral 
pools (i.e. duff, litter, and small diameter ladder fuels) 
into more stable pools (i.e., large aboveground live and 
dead trees), including reduced temporal variability, 
reduced wildfire severity, and reduced risk to infrastruc-
ture from wildfire. To better understand these interac-
tions, we explore how carbon in different pools affects 
disturbance risk and carbon stability. Next, we identify 
and discuss several of the primary tools and datasets that 
have resulted in significant advances in assessing forest 
carbon risk to disturbance for the United States. Lastly, 
we review how data from some of these tools have been 
utilized to develop management practices for creating 
ecosystem resilience, with co-benefits of building forest 
carbon stability to climate change.

Main text
Types of disturbances
Wildfires
How does wildfire affect forest carbon?  Wildfires emit 
existing forest carbon into the atmosphere and affect 
the capacity to sequester new carbon as well as the rate 
at which it is sequestered (Fig. 2a). Fire effects on forest 
carbon may be immediate, through combustion, or may 
occur over many years through mortality, as dead trees 
decompose and/or surviving trees exhibit reduced growth 
rates. This process has occurred for millennia, often tied 
to human activity [23], and wildfire has been one of the 
most important contributors to interannual forest carbon 
variability in North America [10, 24]. Since 1990, wild-
fire carbon emissions have increased in the United States; 
however, over the same period, forest growth has offset 
these emissions, resulting in a net carbon sink in the total 
forest sector [25]. In Oregon, the 200,000 ha Biscuit Fire 
in 2002 is estimated to have released 17–22 Mg C  ha−1, 
16 times the pre-fire annual net ecosystem production 
(NEP) for this region and negating nearly 50% of the 
annual total net biome production (NBP) for the entire 
state [26]. Fire may damage living trees, contributing to 
delayed mortality from other disturbances [27, 28] or may 
result in extended periods of post-fire carbon loss due to 
decomposition of standing or fallen dead trees [29]. By 
definition, low-severity fires result in less tree mortality 
than high-severity fires, but still release carbon through 
combustion of duff, litter, and small trees (e.g. saplings), 
which are usually not incorporated in carbon accounting 
protocols but may significantly alter future fire risk and 
intensity [30].

Large quantities of total aboveground carbon 
could be lost through combustion and mortality dur-
ing high-severity wildfire; for example, up to 85% loss 
was documented following California’s 2013 Rim Fire 
[31]. Additionally, compounding disturbances such as 
drought, heat, insects, and diseases that result in reduced 
fuel moisture content or mortality can accelerate carbon 
loss during subsequent wildfire [32]. During most wild-
fires, the majority of combustion and carbon loss occurs 
in smaller trees, brush, shrubs, fine woody debris, lit-
ter, and duff, with relatively low percentages of loss in 
larger tree size classes and coarse woody debris, although 
these losses increase with fire severity [32, 33] and 
higher severity fires may be more frequent with climate 
change [34–37]. For example, the area burned by high-
severity wildfires has increased in the western United 
States by ~ 8X since 1985 [38], partly due to warmer, 
drier conditions attributed to climate change. While 
wildfires themselves are a relatively small proportion of 
the current total anthropogenic emissions in the United 
States (between 4–6% during the early 2000s [39]), in 
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the context of leveraging carbon in forests as a sink, this 
trend towards increasing high-severity fire is an impor-
tant piece of the puzzle. In instances with substantial 
large tree mortality, the remaining dead standing carbon 
stores of un-consumed large trees take years to decades 
to decompose and release their carbon, allowing time 
for partial replacement carbon growth from successional 
trees in stands where regrowth occurs [40].

Post-fire total carbon recovery generally occurs sooner 
after low-severity wildfires than high-severity wildfires, 
but rates vary widely depending on forest type [41–43]. 
For example, in eastern Oregon, live aboveground carbon 
lost to high-severity wildfires was over 6X greater than 
low-severity fires in ponderosa pine (Pinus ponderosa) 
forests, and nearly 3X greater than in mixed-conifer for-
ests [44]. Over the twentieth century, fire suppression 
policies and other factors have led to increased fuel loads 
in many fire-adapted forests, increasing susceptibility 

to high-severity wildfire and subsequent risks to carbon 
stability [45]. Across the West, tree mortality and carbon 
sequestration reductions of surviving trees were signifi-
cantly higher following wildfires in high-severity/low-fre-
quency fire regimes than in low-severity/high-frequency 
fire regimes [46]. With climate change, some forests will 
struggle to regenerate trees post-fire, especially following 
high-severity fires at large spatial scales and in more arid 
locations [47].

How does climate change affect wildfire?  Climate is a 
primary driver of wildfire activity with cascading conse-
quences for forest carbon [48]. For thousands of years, 
wildfire has increased in tandem with periods of high 
temperatures, e.g., during the Medieval Climate Anom-
aly [49–51]. The role of humans in managing and alter-
ing natural fire cycles is compounding the climate change 
effects [52]. For example, prior to Euro-American coloni-

Fig. 2  Examples of four disturbance categories. a Wildfire: a post-fire landscape on the Shoshone National Forest, Wyoming [287], b insects 
and disease outbreaks: pine mortality in the Blue Mountains, Oregon [288], c drought: dead trees on the Sierra National Forest, California [289], 
and d other localized disturbances, including but not limited to windthrow and hurricanes: windthrow from the 1962 Columbus Day Windstorm 
in Otis, Oregon [290]
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zation, cultural burning by Native Americans was wide-
spread across the United States, creating fire regimes that 
were not fully dependent on climate [53–57]. Over the 
past century, fire suppression policies in the United States 
have led to a buildup of fuels, priming broad expanses of 
the landscape to burn under extreme weather conditions 
when fires cannot be suppressed [58]. Beginning in the 
late twentieth century, increasing temperature and arid-
ity [23, 59–61] have created more frequent extreme fire-
weather conditions, leading to more very large wildfires 
[62, 63] and area burned at high severity [38, 64], although 
sufficient fuels are necessary for this pattern to continue.

In the western United States, anthropogenic warming 
between 1984–2015 has been estimated to explain 45% 
of total forest area burned [65] and contributed to the 
increase of very large wildfires [66–68]. Eighteen of the 
20 largest wildfires in California history have occurred 
since 2000, with the five largest occurring since 2018 [69]. 
Many of the largest wildfires in recent history are linked 
to climate extremes, including those in the infamous 
2020 fire season in the West [70–73]. Over the twentieth 
century, lengthening of the fire season led to increased 
wildfire activity [74–76], including increased fire severity 
[35, 77–80].

Climate change is expected to continue to alter fire 
regimes into the future. The fire season is projected to 
increase by as many as 58 days in Southern California by 
the end of the twenty-first century [81], extending much 
later into the fall [82–84]. In the Northern Rockies, wild-
fires are projected to occur more frequently in spring and 
fall, and intensify in the summer by the mid-twenty-first 
century [85]. In the Southern Rockies, similar trends are 
projected, increasing the total annual area burned [86]. 
In the Northwest, future warming and drying is expected 
to create more severe fire-weather conditions [87–90], 
and increase the area burned [91–93], an emerging trend 
already observed in recent decades. These regional trends 
are confirmed by multiple national-scale studies [62, 63, 
83, 89, 94–96].

In Alaska, area burned in the last half of the twenti-
eth century has been strongly tied to climate [97–99]. 
These linkages are projected to continue in the future 
[100, 101]. For example, using a process-based ecosys-
tem model driven with future climate, Balshi et al. [102] 
reported that by the end of the twenty-first century, 
wildfire in North American boreal forests could increase 
carbon emissions from these forests by 4.4X the con-
temporary rate, and using a dynamic global vegetation 
model, Bachelet et al. [103] found that increases in wild-
fire could eventually transition Alaska from a net carbon 
sink to a net carbon source by the end of the twenty-first 
century.

In the Southeast, projections for the mid-twenty-
first century suggest the fire season will lengthen by 
2–3  months, and summertime fire danger, as meas-
ured by the Keetch–Byran Drought Index (KBDI), will 
increase by 40% [104]. Although higher KBDI is primarily 
driven by increasing temperatures in the Southeast [105], 
other factors may be important in some subregions [106–
108]. For the Upper Midwest and Northeast, Kerr et  al. 
[109] suggested that the maximum period of consecutive 
days exceeding high-fire danger thresholds (95th percen-
tile Canadian Fire Weather Index) will double by 2100, 
with the onset of peak fire season beginning in early 
spring. Some of the highest increases in wildfire prob-
ability in the United States are projected to occur in the 
Upper Midwest and Northeast, doubling by 2100, and 
are consistent with projections of rising burned areas in 
parts of the East [94, 95]. Determining the effects of cli-
mate change on wildfires has been difficult in areas of the 
United States where wildfires were historically rare (e.g., 
Northeast), and where forests represent a small portion 
of the landscape (e.g., agricultural regions).

For the Hawaiian Islands, wildfire has been a rare 
occurrence historically, moderated primarily by human 
activity and secondarily by climate [110, 111]. Recent 
influxes of non-native vegetation, particularly invasive 
grasses, have altered the islands’ natural fire regimes, 
increasing fire frequency [112]. Linking climate and 
wildfire in Hawaii is difficult due to the extreme micro-
climate gradients in the islands, but lack of precipitation 
is generally the main climatological driver of wildfire in 
Hawaii [113, 114]. Resolving these climate connections 
will be critical to identify wildfire risks to forest carbon in 
Hawaii [115, 116].

Insects and diseases
How do insects and diseases affect forest carbon?  Insects 
and diseases alter forest function, structure, and composi-
tion in complex ways, by regulating primary production, 
nutrient cycling, stand succession, and the abundance of 
associated plants and animals [117]. Insects and diseases 
can also affect other disturbances, such as wildfire. As 
with wildfire, forest carbon loss occurs due to both tree 
mortality and sublethal infestation (Fig. 2b; [16]). Defolia-
tion can reduce the capacity of trees to sequester carbon 
for years after infestation [118–122].

Many insects and diseases pose significant risks to for-
est carbon in the United States (Table  2). In the West, 
major tree losses have occurred during the twenty-first 
century, with affected areas sometimes exceeding burned 
areas [123, 124]. As much as 15% of total forest cover in 
the United States is affected annually by insects and dis-
eases [125]. Diseases are often more diffuse than insect 
outbreaks but affect large areas [126, 127]. During the 
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early twenty-first century in western North America, 
severe outbreaks of mountain pine beetle (Dendroctonus 
ponderosae) [128] caused some forests to switch from 
carbon sinks to major carbon sources over just 6  years, 
with multiple decades predicted before full recovery 
[129]. Since 2000, > 27 million ha have been impacted by 
mountain pine beetle, partly driven by climate change 
[128]. Warming allowed mountain pine beetles to erupt 
at elevations and latitudes where, previously, cold win-
ters killed most brood within host trees [130]. In the 
West, the amount of carbon in trees killed by bark beetle 
outbreaks during 1997–2010 was similar to that in trees 
killed by wildfire, ~ 4.5% of the total carbon in trees in the 
region [124]. Across the United States, forests recently 
impacted by insects and diseases sequestered 69% and 
28% less total forest carbon, respectively, than did simi-
lar unimpacted forests [122]. Using predictive models 
based on forest inventory data, Anderegg et al. [96] doc-
umented that insect-driven mortality risk is highest in 
the Rocky Mountains, Southwest, and Southeast, and is 
comparable to observed mortality from wildfires in these 
regions. Insect-driven forest carbon risk is projected to 
continue to increase throughout the twenty-first cen-
tury, particularly in the Rocky Mountains, Sierra Nevada, 
and the Upper Midwest, but at a much lower rate than 
wildfire risk, which increases strongly across the entire 
United States [96].

Disease impacts have also been significant but more 
difficult to quantify. Beech bark disease has substantially 
reduced the growth of American beech (Fagus grandi-
folia) in the Northeast, decreasing live tree carbon pro-
duction by 11% in Maine alone [131]. Root diseases are 
persistent in the northern Rocky Mountains, reducing 

live tree carbon as much as wildfire and more than har-
vesting or insect outbreaks [132].

The body of literature on the effects of invasive insects 
and diseases on forest carbon stocks is growing [120]. 
More than 450 non-native forest insects and pathogens 
have been introduced into natural areas of the United 
States, of which > 83 are invasive and cause significant 
impacts [133]. The rates of new introductions and estab-
lishments are high but projecting future impacts is dif-
ficult. Under current and projected import patterns, an 
average of two invasive forest insects are expected to be 
established in the United States each year, and an eco-
nomically important forest insect pest is expected to be 
established every 5–6  years [134]. Historically, impacts 
of invasive insects and diseases have been much greater 
in the East than in the West. For example, the chestnut 
blight and Dutch elm disease are among a few distur-
bances that have threatened the existence of entire tree 
genera in the East.

How does climate change affect insects and  dis-
eases?  Broad generalizations of the effects of climate 
change on insects and diseases are difficult to make 
due to the complexity of the life history traits involved 
among species. Climate change may increase susceptibil-
ity to insects and disease by two primary mechanisms: 
(1) warming driving range expansions in areas histori-
cally below temperature thresholds for survival, reducing 
overwintering mortality, and increasing phenology and 
voltinism [130, 135–137]; and (2) warming and drought 
compromising the defense mechanisms of otherwise vig-
orous trees, leading to higher risks of tree mortality from 
insects and diseases [16, 138–141]. In the West, warming 
is expected to expand the range of important insects. For 

Table 2  Examples of forest insects with consequences for forest carbon stability in the United States

Region denotes primary area of impact, east or west of the Rocky Mountains

Region Agent Host tree References

East Emerald ash borer (Agrilus planipennis) Fraxinus spp. [292]

East Hemlock woolly adelgid (Adelges tsugae) Tsuga spp. [152, 154, 293, 294]

East Balsam woolly adelgid (Adelges piceae) Abies spp. [295]

East Spruce budworm (Choristoneura spp.) Picea spp. [296, 297]

East Spongy moth (Lymantria dispar dispar) Most hardwoods [298]

East Southern pine beetle (Dendroctonus frontalis) Pinus spp. [299, 300]

West Mountain pine beetle (Dendroctonus ponderosae) Pinus spp. [129, 228, 301–303]

West Spruce beetle (Dendroctonus rufipennis) Picea spp. [304]

West Other bark beetles Most conifers [124, 130, 137, 305, 306]

West Western spruce budworm (Choristoneura occidentalis) Picea spp. [120]

West Douglas-fir tussock moth (Orgyia pseudotsugata) Pseudotsuga menziesii [307]

West Balsam woolly adelgid (Adelges piceae) Abies spp. [308, 309]

West Forest tent caterpillar (Malacosoma disstria) Most hardwoods [145]
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example, future warming is projected to favor the growth 
of mountain pine beetle populations at higher latitudes 
and higher elevations [130, 142] but may be tempered by 
disrupted seasonality and fractional voltinism, both mala-
daptive to mountain pine beetle [143]. Furthermore, areas 
heavily impacted by mountain pine beetle outbreaks dur-
ing the early twenty-first century are unlikely to experi-
ence outbreaks for decades because suitable host trees are 
depleted. In Alaska, warming and late-summer droughts 
have been positively correlated with spruce beetle (Den-
droctonus rufipennis) outbreaks [144], suggesting levels 
of tree mortality attributed to spruce beetle are likely to 
increase in the future.

Defoliator responses to warming and drought are vari-
able [139] and include important indirect effects medi-
ated through changes in host tree physiology, primarily 
leaf chemistry and palatability [139]. Some insect fun-
gal pathogens are important regulators of defoliator 
populations in the United States and are expected to be 
negatively affected by drought (e.g., Entomophaga maim-
aiga, which causes extensive epizootics in spongy moth 
(Lymantria dispar dispar) in the East). Hotter and drier 
conditions have been positively correlated with increased 
levels of tree mortality from defoliators [145, 146].

Fungal pathogens are sensitive to the timing and 
quantity of precipitation, ambient temperature, relative 
humidity, and other factors that influence leaf-surface 
or soil-moisture content. Some tree diseases that require 
moist conditions are expected to be negatively affected 
by climate change [147]. For example, hotter and drier 
conditions in the Southwest are expected to reduce white 
pine blister rust infections, but infections may increase 
where conditions become warmer and wetter [148, 149]. 
Other tree diseases (e.g., Armillaria root disease) are 
indirectly affected by climate change through increases 
in host stress, suggesting warming and drought may 
increase epizootics [147]. Forest diseases are expected to 
become more frequent and severe with climate change, 
but the magnitude of that change is both uncertain and 
varies by disease and ecosystem. One estimate suggests 
that by the end of the twenty-first century, the rate of 
tree mortality due to insects and diseases in the United 
States will increase by as much as 1.7X, which is a frac-
tion of the 4–14X increase in tree mortality projected 
due to wildfire [96]. One study projects a 2X (insects) and 
3x (diseases) increase in tree mortality rates for the West 
[150]. In the East, insects will remain one of the most 
impactful disturbances in the future [151], where sum-
mer warming and milder winters are expected to facili-
tate northward range expansions of some cold-limited 
insects like the hemlock woolly adelgid (Adelges tsugae) 
and southern pine beetle (Dendroctonus frontalis) [148, 
152, 153]. However, exact climate change effects will be 

complicated by each insect’s tolerances of climate and 
strategies for propagation, insect management practices, 
and regeneration dynamics in a warmer, drier climate, 
and natural selection of hosts for resistance to certain 
insects. For example, Albani et  al. [154] projected that 
expansion of hemlock woolly adelgid would result in 
a nearly 13% reduction in carbon sequestration in the 
first third of the twenty-first century, but by end of the 
twenty-first century these same forests may experience 
a nearly 20% gain in carbon sequestration due to forest 
regeneration of climate-adapted tree species. However, 
this assumes that the insect outbreak’s effects do not 
exceed the carrying capacity of an ecosystem, and that 
climate change-adapted trees are able to regenerate and 
replace trees lost to hemlock woolly adelgid.

Overall, climate change likely creates conditions more 
favorable for many, but not all, insect and disease and 
pathogen species. Many complex interactions occur 
among insects and diseases, their host trees, and other 
community associates that are directly and indirectly 
influenced by climate, making robust quantitative projec-
tions of future carbon risks to insects and diseases dif-
ficult [96, 120, 147, 148]. Relevant human activities are 
particularly multifaceted and difficult to project—includ-
ing domestic and international trade, global economic 
markets and commodity pathways, and human popula-
tion densities and travel—which all influence insect and 
pathogen introductions and establishments in the United 
States [155, 156].

Droughts
How does drought affect forest carbon?  Drought reduces 
tree carbon uptake and in some cases results in large tree 
mortality events (Fig. 2c; [17, 157–163]). Many tree spe-
cies have some level of adaptive capacity to drought. Some 
tree species have deep rooting, stomatal control, and leaf 
shedding that allow them to tolerate drought better than 
other tree species. Despite this, drought has been identi-
fied as the largest disturbance driving primary productiv-
ity declines globally [164]. In the United States, the effects 
of drought on forest carbon are most pronounced in the 
West, though effects in the East are substantial [165]. The 
2011–2015 drought in California killed an estimated 140 
million trees, tipping the carbon balance of the state to 
a net carbon source of − 600 Tg CO2 during 2001–2015 
[166]. The projected carbon stocks of California ponder-
osa pines may not return to levels observed prior to the 
2011–2015 drought due to future warming, droughts, and 
western pine beetle (Dendroctonus brevicomis) outbreaks 
[18], although those prior levels may be inflated due to 
widespread fire suppression [167]. Similarly, drought and 
high vapor pressure deficit are strongly correlated with 
rising tree mortality levels in Alaska [168]. Based on for-
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est inventory data, drought and warming are key drivers 
of the decline of half of the most abundant tree species in 
the western United States over 2001–2018 [169].

How does climate change affect drought?  Climate change 
is projected to bring more frequent and severe droughts 
in many regions of the world, and the western United 
States is frequently identified as a hotspot for increasing 
droughts [170, 171]. Warming exacerbates drought effects 
(termed ‘hot droughts’ or ‘climate change-type droughts’; 
[157, 172]), elevating their lethality to trees and reducing 
forest carbon stocks. However, projecting changes to for-
est carbon due to drought remains a major challenge [22, 
173]. Ultimately, (1) the effects of drought on forest car-
bon in the United States during the twenty-first century 
will be large, and (2) many current models likely underes-
timate drought stress and associated levels of tree mortal-
ity due to drought [22, 96].

Drought impacts on forest carbon stocks in the West 
are substantial [170, 174–177], and likely to increase in 
the future. Elevated temperatures increase soil evapora-
tion, thereby reducing soil moisture available to plants, 
and higher vapor pressure deficit can result in greater 
transpiration in some plants, where stomatal conduct-
ance is a non-linear function of temperature [170, 178]. 
These climate effects have been widely documented, 
but the complexity of species-specific plant responses 
to future climates remain challenging to model. Some 
experts argue the loss of forests to drought could be sub-
stantial across parts of the contiguous United States in 
the future [22, 96].

Other disturbances—windthrow, heat waves, hurricanes
How do these disturbances affect forest carbon?  Forests 
in the United States also experience many other distur-
bances that affect carbon stocks, notably hurricanes, 
severe storms, and heat waves [11]. Particularly for the 
temperate mixed deciduous forests in the northeast and 
Midwest, natural cycles of localized disturbances such 
as ice storms [179] and windthrow [180, 181] are histori-
cally more common than wildfire [182], and help create 
the structural complexity and species/age diversity that 
are important to maintaining stable carbon storage and 
sequestration over long time frames [183–185]. While 
these disturbances cause local and regionwide car-
bon losses (Fig. 2d), they typically have lower U.S.-wide 
impacts than wildfire, insect and disease outbreaks, and 
drought [11, 17, 124]. For example, Hurricane Katrina 
damaged or killed 385 Tg CO2 equivalent trees in the 
Southeast [186]. Over many decades, the net impact of 
hurricanes to forests in the United States is likely a slight 
loss of live carbon [187]. Severe storms and windthrow 
may be important disturbance events, but few compre-

hensive studies document the carbon impacts of these 
events [11]. One critical recent advancement is a better 
understanding of how tropical cyclone regimes shape the 
ecology and evolution of tree species as the intensity and 
frequency of hurricanes affect forest structure and func-
tion [188]. Finally, while heat waves can decrease carbon 
uptake in forests [189], the most severe consequences 
occur when heat waves co-occur with severe drought 
(e.g., ‘hot drought’), as described above. One exception is 
the heat wave in the Northwest in 2021 in which tempera-
tures of > 40 °C caused substantial damage and mortality 
to trees [190].

How does climate change affect these disturbances?  While 
the overall number of hurricanes is not projected to 
change substantially with climate change, the intensity 
of hurricanes is likely to increase [191]. Tree mortality is 
sensitive to wind speed [187] and more intense hurricanes 
may increase forest carbon losses, but the overall effect 
is likely much lower than for wildfire, insect and disease 
outbreaks, and drought. Of note, a recent meta-analysis 
found no consistent projected change in wind disturbance 
in North American forests [16]. A recent review of climate 
change in the United States indicates that climate change 
may increase the frequency and/or intensity of multi-
ple storm types that affect forests, including hurricanes, 
atmospheric rivers, and thunderstorms [192].

Disturbance interactions
While often discussed here and elsewhere as distinct, iso-
lated events, in reality disturbances can have compound-
ing effects. For example, mortality induced by drought, 
disease, or insect infestation can create elevated quanti-
ties of large woody surface fuels with consequences for 
subsequent wildfire [193, 194]. Fire-induced mortality, 
which can sometimes be delayed several years post-fire, 
can affect subsequent fire severity [28] and also increase 
susceptibility to insect infestation in weakened surviv-
ing trees [195]. However, over longer time periods, low 
severity fires and prescribed fires can reduce tree density 
and promote resistance to future insect attack [196]. As 
increased temperatures and aridity widen the opportu-
nity for disturbance-induced mortality at widespread 
spatial scales, dead trees add surface fuels at rates and 
quantities that exceed the natural range of variation [197]. 
Many operational fire behavior models are not yet capa-
ble of accurately predicting how these contributions to 
the large woody surface fuel pool will impact fire behav-
ior [194, 198], but at minimum would likely increase the 
potential energy release during fires due to an influx of 
fuels with low fuel moisture content [32], combined with 
a sharp increase in live-tree density in small size classes 
as new growth regenerates post-disturbance. In the Sierra 
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Nevada, areas of higher fire severity and unpredictable 
fire behavior during the 2022 Creek Fire have been linked 
to widespread mortality from bark beetles and drought a 
decade prior [194, 197]. Generalizing disturbance inter-
actions across forest types and conditions is challenging 
due to uncertainties in the timing, intensity, and spatial 
scale of mortality [199]. In fire regimes defined by surface 
fuel spread, mortality may increase fire severity in the 
short term by creating greater surface loads and fuel con-
tinuity [197], whereas in fire regimes defined by spread in 
canopy fuels, mortality may mimic thinning processes by 
decreasing the continuity of canopy fuels [199].

Mapping and managing forest carbon and forest carbon 
risk
As outlined in “Types of disturbances”, disturbances have 
significant effects on forest carbon. Mapping risk to for-
est carbon requires two basic components: (1) mapping 
forest carbon quantities, and (2) mapping disturbance 
risk via likelihood, frequency, and/or intensity.

Mapping forest carbon on the landscape
Existing forest carbon has been mapped in two primary 
ways: continental synthesis of inventory data and remote 
sensing. In this section, we review the foremost methods 
and datasets that are available to map forest carbon in the 
United States. Since existing carbon offset programs in 
the U.S. account for carbon nationally, we focus on data-
sets that exist for the contiguous United States and/or 
Alaska and Hawaii and do not include regional datasets 
and models unless they can be readily scaled to national 
level.

The USDA Forest Service’s Forest Inventory and 
Analysis (FIA) program manages the most compre-
hensive, large-scale measurements of forested plots in 
the United States. The program includes sites located 
across ownership boundaries for every state and 
includes plot measurements repeated every ~ 10 years. 
FIA data can be used to explore trends in forest con-
ditions, growth, and disturbance across large areas. 
FIA divides the United States into 2402.8 ha hexagons 
[200], and varying numbers of plots within each hex-
agon are surveyed. FIA records for each tree on each 
plot include tree species, diameter, height, and status 
(live or dead). Carbon density can be calculated for 
each plot and interpolated to obtain estimates of for-
est carbon stocks (e.g., [201]). FIA has standardized 
statistical methods for making population estimates 
from the sparse plot locations in their network. Based 
on the rich information FIA provides, the Forest Ser-
vice regularly updates forest carbon stock and flux 
estimates [25]. In this approach, a system of weights is 
applied to plot-level data to estimate conditions for the 

enclosing hexagon [202]. Another recent dataset used 
FIA data aggregated at the state level to develop maps 
of state and regional aboveground forest carbon stocks 
and carbon sequestration over the course of multiple 
FIA remeasurements [203].

While FIA is the most comprehensive measure-
ment dataset, it does not provide a spatially contiguous 
(“wall-to-wall”) map of forest attributes (including car-
bon) because only a small number of plots are measured 
within each hexagon. Computational methods have been 
devised to synthesize contiguous maps from site meas-
urements (e.g., [204]). Although regional data sets are 
available (e.g., the LEMMA/GNN product for the West 
Coast [205]), currently TreeMap has the greatest spa-
tial coverage, spanning the conterminous United States. 
TreeMap uses a machine learning algorithm called ran-
dom forests to assign the most similar FIA plot to each 
pixel, producing a seamless tree-level forest model of the 
conterminous United States (CONUS) at 30 m resolution 
[206–208]. Because each pixel in TreeMap is linked to an 
FIA plot visit, each pixel has a list of trees and their meas-
urements that can be used in allometric equations to esti-
mate carbon stocks [209]. TreeMap is available for the 
western US for 2008 and for CONUS for 2014 and 2016. 
Currently TreeMap data sets are being created for Alaska 
and Hawaii.

The second method of measuring forest carbon uses 
remotely sensed data, which can result in spatially com-
plete coverage and are often combined with FIA data 
(see [210] for a comprehensive review). The National 
Aeronautics and Space Administration (NASA) National 
Forest Carbon Monitoring System (NFCMS) produces 
carbon estimates through applications of the remote 
sensing-based Carnegie-Ames-Stanford Approach 
(CASA) carbon cycle process model [211] and has used 
FIA data to validate aboveground forest carbon esti-
mates. NFCMS is available for CONUS at decadal inter-
vals (1990, 2000, and 2010) at 30-m pixel resolution 
[212]. NFCMS builds upon previous mapping work of 
the National Biomass and Carbon Dataset from NASA 
and Woods Hole Research Center, which used similar 
methods to map a static baseline for the year 2000 [213]. 
NFCMS and FIA have been combined for additional 
downstream applications, including The Forest Carbon 
Map sponsored by the Trust for Public Land and Ameri-
can Forests, which provides a simple viewer for existing 
aboveground carbon storage and sequestration at larger 
scales (county, state, and/or watershed) for the purposes 
of conservation and carbon-cost accounting [214].

Mapping carbon risk to disturbance
Numerous methods and models map forest carbon 
risk to disturbance, and here we highlight noteworthy 
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datasets that have been created across the United States 
(Table 3). We selected datasets and tools that are publicly 
available, peer-reviewed, and have attained widespread 
use by both the science and forest management commu-
nities. While these datasets have significant utility for use 
in carbon offset programs accounting for climate change, 
our review is not comprehensive of all tools.

Statistical disturbance models  Statistical methods have 
been used to create future maps of disturbances and car-
bon stocks while accounting for climate change. For exam-
ple, Anderegg et al. [96] used statistical models of wildfire, 
climate stress (primarily drought), and insect disturbance 
for the contiguous United States from 2000–2100, includ-
ing the impacts of projected climate change from three 
different climate scenarios and six earth system models 
(ESMs). Wildfire effects were based on the Monitoring 
Trends in Burn Severity (MTBS) dataset [215], which 
maps burned area based on statistical analyses of obser-
vations from 1984–2018 and generally does not include 
fuel limitations or management effects, and climate stress 
and insect models of tree mortality from disturbance 
were constructed from FIA data from 2000–2018 in com-
bination with satellite imagery. The models were cross-

validated and tested against independent datasets. These 
models capture impacts of climate change, several climate 
scenarios, and multiple ESMs over the full 2000–2100 
period (Fig. 3a). These datasets are publicly available, as 
is all the underlying code that created them, and a viewer 
and analysis tool was developed to visualize disturbance 
risks (https://​carbo​nplan.​org/​resea​rch/​forest-​risks).

Similar to the above models, Wu et  al. [22] used sev-
eral different approaches to project forest carbon stocks 
across the contiguous United States using multiple ESMs 
from 2020–2100. Their study examined simplified mech-
anistic vegetation models, climate niche models of forest 
biomass by FIA Forest Group, and demographic models 
of forest growth and climate-sensitive disturbance devel-
oped by a previous study [96]. The demographic models 
showed the strongest agreement with historical biomass 
and disturbance trends and are expected to provide 
the most robust information about forest carbon risk. 
Despite substantial uncertainty and differences across 
models, there was consistency in some areas with regards 
to lower or higher climate risk across models [22]. All of 
these datasets are publicly available (https://​wilke​scent​er.​
utah.​edu/​tools/​us-​forest-​carbon-​futur​es/).

Table 3  Major datasets and tools available for evaluating forest carbon risk to disturbances in the United States

TreeMap and FuelMap data can be used with Forest Vegetation Simulator (FVS) to project tree growth and carbon storage

Datasets and tools Disturbance Includes 
climate 
change

Ability 
to 
project?

Carbon-relevant metrics Caveats

United States-wide statistical 
forest carbon models [22]

Fire, insect, drought ✓ ✓ Forest carbon stocks 2020–2100; 
disturbance probabilities 
and carbon losses from distur-
bance

Coarse representation of cli-
mate-dependent disturbance 
and regrowth

United States-wide statistical 
disturbance models [94]

Fire, insect, drought ✓ ✓ Burn area, tree mortality 
from insect and climate stress/
drought

Does not model fire behavior 
or spread

TreeMap and FuelMap Fire, insect, disease ✓ Tree diameter, height, species, 
and status

For fuels, relies on FIA transects 
in a limited subset of plots

Forest Vegetation Simulator 
(FVS)

Fire, insect, disease ✓ Tree volumes, biomass, density, 
canopy cover, harvest yields, fire 
effects

Does not model fire spread

LANDFIRE Fire, insect, disease Current state of landscape, 
disturbance locations

Does not represent full extent 
of insect and disease-related 
mortality

National Insect and Disease Risk 
and Hazard Mapping (NIDRM)

Insect, disease ✓ ✓ Insect and disease risk Uses outdated climate change 
scenarios; only near-term

USFS Insect and Disease Aerial 
Survey

Insect, disease Area infested and carbon 
affected

Relies on human eyesight/judge-
ment; low accuracy

FSim Fire check mark ✓ Burn probability, flame length/
fire intensity

Fire spread equations insuf-
ficiently model novel fuel 
structures; does not project 
vegetation change

Interagency Fuel Treatment 
Decision Support System 
(IFTDSS)

Fire ✓ Conditional burn probability 
under static weather condi-
tions, risk

Static weather; excludes low 
severity impacts

https://carbonplan.org/research/forest-risks
https://wilkescenter.utah.edu/tools/us-forest-carbon-futures/
https://wilkescenter.utah.edu/tools/us-forest-carbon-futures/
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Forest Vegetation Simulator (FVS)  Forest Vegetation 
Simulator (FVS) is an individual tree growth model for 
forest stands that began as the growth and yield model 
Prognosis [216] and has since been expanded to include 
geographic variants that are specific to every region and 
many ecologically distinct areas in the continental United 
States and Alaska [217]. Several model extensions allow 
users to incorporate economics [218], climate change 
[219], and disturbances, such as wildfire [220], insects, 
and disease. The model simulates some stand dynamics 
(i.e., competition, fire spread, insect and disease spread), 
but because FVS is designed to be run at the stand level, 
there are no interactions among stands (Fig. 3).

The Fire and Fuels Extension to the Forest Vegetation 
Simulator (FFE-FVS) estimates potential fire behaviors 
and simulates fire behavior and effects at a stand under 
specific weather, wind, and moisture conditions. FFE-
FVS does not model landscape fire spread but can be 
combined with landscape spread models to estimate con-
ditional wildfire effects. FFE-FVS can be used to estimate 
conditional fire behaviors without causing any impacts to 
the stand, which may be useful in exploring short-term 
changes in fire behavior due to treatments. FFE-FVS 
can also simulate the effect of fires on tree mortality and 
growth, carbon pools, and produce smoke and carbon 
emissions estimates. A submodel within FFE-FVS tracks 
carbon in seven pools: aboveground live trees, below-
ground live, belowground dead, standing dead, forest 
dead and downed wood, forest floor (duff and litter), and 
herbs and shrubs. It also calculates carbon emissions for 
simulated fires. Long-term carbon emissions from dying 
and dead trees are computed for subsequent cycles as 
well. The carbon submodel also tracks carbon stored in 
harvested wood products, including leakage.

In addition, FVS has nine insect and disease exten-
sions, in which each extension affects tree growth and 
stand development [217]. Recent software updates have 
created compatibility problems, so only the dwarf mis-
tletoe and root disease extensions are available today. 
Updates for the extensions for blister rust, bark beetle, 
Douglas-fir tussock moth, and western spruce budworm 
are underway.

FSim (Large Fire Simulator)  FSim is a stochastic, spa-
tially explicit fire behavior model that estimates the likeli-
hood and intensity of wildfires across large regions. Repre-
senting the landscape as a grid, FSim simulates probability 
of ignition, fire spread, and behavior using thousands of 
hypothetical fire seasons (Fig. 4; [221]). FSim results for 
the United States at 270-m resolution for landscape con-
ditions circa 2014 and 2020 are publicly available [222, 
223]. Simulations have been used to evaluate the effects of 
climate change on wildfire [84, 85, 90] and the effects of an 
invasive species (annual grass) on wildfire behavior [224], 
among other applications. FSim can also be used for risk 
assessment using the Highly Valued Resources and Assets 
(HVRAs) concept, which combines the probability and 
intensity of burning with the susceptibility of the valued 
resource, such as forest carbon, to burn probability and 
intensity gradients [225]. The effects of fire can be positive 
or negative depending on the types of HVRAs and their 
response to different intensity levels (e.g., quantifying the 
effect on post-fire carbon due to low-, medium-, or high-
severity fires). This risk assessment method can be applied 
at any spatial extent (e.g., national forest, counties, water-
sheds) by aggregating the relative importance of each 
HVRA within the area. However, modeled fire behavior 
in FSim, and other models based on the Rothermel fire 
spread equation [226], are insufficient to model novel 
fuel structures that may become more common with cli-
mate change. In particular, these models cannot simu-
late fire behavior under conditions where compounding 
disturbances create large quantities of dead large woody 
debris [194], nor under mass fire conditions where fires 
can generate unique local weather systems [198]. Models 
to capture these types of spread conditions are an active 
area of research. However, FSim is calibrated until fire 
spread produces a number of large fires and mean fire 
size within targets based on recently observed fires. In 
this way, despite the above limitation, model results are 
within observed parameters. FSim also does not project 
changes in vegetation due to climate change, a major area 
of uncertainty.

FuelMap  FuelMap is a dataset that was built by imput-
ing FIA measurements of litter, duff, and downed woody 
material (DWM) to a contiguous grid across the contigu-

Fig. 3  Modeled visualization of a forest stand from Forest Vegetation 
Simulator (FVS) using the Stand Visualization Simulator module [217]. 
FVS is an individual tree growth model for forest stands that can 
simulate effects of disturbances on tree growth and forest carbon
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ous United States [227]. FuelMap and TreeMap (“Map-
ping forest carbon on the landscape”) are consistent 
with each other, both by input data and methods. Forest 
carbon response functions to fire have been successfully 
mapped across the contiguous United States at 30-m res-
olution using FuelMap and Tree Map (see “Mapping for-
est carbon on the landscape” above). In other words, the 
amount of carbon retained onsite and emitted during fire 
have been calculated in FVS across a set of six fire intensi-
ties for each FIA plot in FuelMap and TreeMap, meaning 
that these can now be mapped spatially across CONUS. 
These functions can be combined with the probability of 
fire at each of these six intensities that FSim outputs to 
estimate the risk of levels of tree mortality and carbon 
emissions (Fig. 5). FuelMap is reliant on FIA transects in a 
limited number of plots. This method can miss the impact 
of spatial heterogeneity of fuels on the landscape, so the 
resolution at which FuelMap should be used is still under 
investigation.

USFS Insect and Disease Survey  The USDA Forest Ser-
vice Insect and Disease Survey maps insect and disease 
activity annually across the United States. Surveyors in 
airplanes record damage to trees in polygons across for-
ests, noting the disturbance agent, host tree species, and 
damage type and severity. Nationally consistent geospatial 
data sets are available back to 1997, and data sets for indi-
vidual regions are available for earlier years. This dataset 

has been used to map bark beetle-caused tree mortality 
in the western United States [228] and associated carbon 
loss [121]. The accuracy of snag counts in this dataset was 
found to be 3–44% in two recent studies [229, 230].

National Insect and Disease Risk Map (NIDRM)  NIDRM 
is a comprehensive nationwide assessment and database 
created by the USDA Forest Service of the potential haz-
ard for tree mortality due to major forest insects and dis-
eases. It summarizes landscape-level patterns of poten-
tial insect and disease activity and offers a science-based 
administrative planning tool for allocating pest-manage-
ment resources. To capture spatial variations in forest 
health, NIDRM utilizes 186 insect and disease hazard 
models. The NIDRM products, compiled at a resolution 
of 240 m, support forest planning and enable forest-health 
hazard assessments at regional and national scales. These 
products can be used to identify the potential impacts of 
insects and pathogens on forests in the United States. The 
latest version of NIDRM (available at https://​usfs.​maps.​
arcgis.​com/​apps/​MapTo​ur/​index.​html?​appid=​ade65​
7567f​f445d​5bb3a​aa7d8​98d9f​b9) was completed in 2018 
for a 15-year assessment period (2013–2027) [231].

LANDFIRE disturbance layers  LANDFIRE (LF) tracks 
annual landscape changes resulting from natural distur-
bances starting in 1999 and provides spatial vegetation 
and fuels layers for FSim, FuelMap, and FVS at 30-m res-

Fig. 4  The FSim Large Fire Simulator can project how future climate change may alter spatial fire probability patterns, which can then affect forest 
carbon. The two maps show contemporary, 1992–2020 (a) and mid-twenty-first century, 2035–2064 (b) annual burn probability at 270-m resolution 
for a landscape in Cascade Mountains of northern Washington State, United States, simulated by FSim [291]

https://usfs.maps.arcgis.com/apps/MapTour/index.html?appid=ade657567ff445d5bb3aaa7d898d9fb9
https://usfs.maps.arcgis.com/apps/MapTour/index.html?appid=ade657567ff445d5bb3aaa7d898d9fb9
https://usfs.maps.arcgis.com/apps/MapTour/index.html?appid=ade657567ff445d5bb3aaa7d898d9fb9
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olution. The initial version of the dataset identified dis-
turbances using diverse geospatial datasets to detect and 
categorize changes in vegetation cover, supplemented by 
Landsat-based composite images to assign disturbance 
severity between time steps using the Difference Nor-
malized Burn Ratio (dNBR) [232]. In the second genera-
tion of the dataset (LF ReMap, or LF 2.0 [233]), multiple 
teams enhanced the accuracy of disturbance representa-

tion by incorporating Monitoring Trends in Burn Severity 
(MTBS) and the Rapid Assessment of Vegetation Condi-
tion after Wildfire (RAVG) datasets to identify burned 
areas. The disturbance dataset tracks wildfires > 1000 
acres (404.7 ha) in the West and 500 acres (202.3 ha) in 
the East and can be used to monitor tree mortality from 
insects, diseases, and drought. Prior to 2020, the dataset 
incorporated only polygons reported through national 

Fig. 5  A risk map derived from integrating TreeMap and FuelMap data with the Fire and Fuels Extension to the Forest Vegetation Simulator 
(FFE-FVS) (e.g. Fig. 3) and FSim simulations (Fig. 4) for a landscape in the Cascade Mountains of northern Washington, United States [R. Houtman, 
unpublished data]
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datasets such as the USDA Forest Service Activity Track-
ing System (FACTS) database. The 2020 release of LAND-
FIRE [234] includes polygons reported by Insects and Dis-
ease Detection Survey (IDS), which may not capture the 
full extent of insect and disease-related tree mortality and 
are coarse resolution with low accuracy.

Interagency Fuel Treatment Decision Support System 
(IFTDSS)  IFTDSS combines fire behavior and spread 
simulation models with an approachable user interface. 
IFTDSS models simple fire behavior and landscape burn 
probability under static weather from a set of random 
ignitions, and the expected fire spread from a user-defined 
ignition set. Treatments like thinning, mastication, and 
prescribed fire are simulated by altering input files repre-
senting the fuel model [235], canopy cover, canopy height, 
crown base height, and/or crown bulk density based 
on the intended effects of the treatment. The user then 
specifies a set of static weather and fuel moisture condi-
tions to simulate fires, allowing for exploration of vari-
ous scenarios. The primary purpose of IFTDSS is to aid 
land managers in fuel treatment planning by simulating 
the effects of fuel treatments on the landscape. This led 
to some simplifications of the model framework to make 
problems tractable. Because IFTDSS models fire spread 
under static weather, the risk model excludes impacts 
from lower severity fires. Fire model outputs are condi-
tional based on the specified weather scenario. The same 
fire spread caveats apply to IFTDSS as to FSim due to the 
utilization of the same underlying Rothermel equations. 
In order to explore impacts to carbon, IFTDSS outputs 
would need to be combined with a tree-level carbon map 
such as TreeMap and FuelMap.

Strategies to manage forest carbon
In forests adapted to low- to moderate-severity wildfire, 
fuel reduction treatments are effective at reducing the 
intensity and severity of wildfire [236–240]. Fire inten-
sity affects severity, which in turn affects the amount of 
carbon emitted during the fire (through combustion) and 
afterward (through decomposition), as well as the rate 
of carbon sequestration after wildfire [10]. If fuel treat-
ments spatially coincide with a future wildfire, carbon 
emissions from the fire are often reduced [241]. However, 
the benefits of individual fuel treatments are uncertain 
because it is impossible to predict the specific locations 
of future wildfires. Furthermore, the effects of fuel treat-
ments diminish over time, typically lasting 5–15  years 
in forest fuels. In one study, ~ 7% of the area treated was 
subsequently intersected by a wildfire during the effec-
tive life of the fuel treatment [242]. Also, potential reduc-
tions in carbon emissions must be balanced with initial 
losses occurring during fuel treatments, including carbon 

emissions by machinery and vehicles, and long-term 
effects on forest carbon fluxes. The choice of treatment 
type—mechanical, prescribed fire, or a combination of 
the two—significantly affects how much carbon is ini-
tially lost and how much is sequestered after treatment, 
as well as fire behavior in the event that a fire occurs [243, 
244]. Treatments can be strategically applied in some for-
ests, for example where high-severity wildfires may cause 
type-conversions to shrublands or grasslands, which have 
lower carbon storage capacities.

In the near-term (< 50 years) following landscape-level 
fuel reduction treatments, total forest carbon stocks are 
diminished, even when accounting for avoided carbon 
losses from subsequent wildfires [239, 245–248]. Rather 
than tracking just total carbon, an alternative approach 
tracks carbon stored in large aboveground live trees as 
the dominant stable carbon pool in the forest [249–251]. 
In mixed conifer forests in the Sierra Nevada, live tree 
carbon in both untreated and recently treated stands 
was substantially lower than that estimated for stands in 
a historical (1865) landscape, which had frequent fires 
[249]. Prescribed fire released 14.8 Mg C ha−1, with pre-
fire thinning increasing the average release by 70% and 
contributing 21.9–37.5  Mg  C  ha−1 in milling waste. All 
fuel treatments increased fire resistance, but treatments 
that included prescribed fire had lower torching and 
crowning potentials. Hurteau et al. [250] reported simi-
lar findings in ponderosa pine forests in the Southwest. 
While aboveground carbon was greater under the base-
line fire-excluded treatment scenarios, higher potential 
for torching and crowning in untreated stands exposed 
the carbon stocks to greater risk.

Management regimes that reduce forest stand den-
sity and favor large, fire-resistant trees may increase the 
amount of stable carbon on the landscape. This equates 
to a potential risk reduction that can be quantified, or at 
least qualitatively categorized, by some of the mapping 
frameworks discussed in “Mapping carbon risk to distur-
bance”. For example, using the LSim model to explore the 
effects of different treatment and wildfire management 
approaches over 60  years, Young and Ager [251] found 
that increasing the treatment area 5X over current treat-
ment rates produced the most stable forest carbon on 
the landscape over time. Similarly, fuel treatment effects 
simulated over a 90-year period using LANDIS-II found 
that the no-treatment scenario has significantly greater 
overall carbon loss than treatment scenarios in frequent-
fire forest types in the Sierra Nevada [252]. Specific eco-
systems may attain a net benefit from treatments over 
decades to centuries. In another study, long-range carbon 
dynamics were modeled in conjunction with fuel treat-
ments in the Pacific Northwest. The authors concluded 
that due to the low consumption of the majority of fuels 
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and the limited duration of the effectiveness of fuel treat-
ments, long-term carbon storage potential was reduced, 
even where high wildfire risk existed [253]. Balancing 
demands for carbon storage with demands for reduc-
ing wildfire severity would require fuel treatments to be 
implemented strategically throughout landscapes, rather 
than indiscriminately treating all stands [237].

All of the disturbance risks discussed here are also 
being impacted by climate change (Fig.  1). In that con-
text, climate change is not only a driver for management 
designed to sequester carbon in light of disturbances, but 
also contributes to the design of silviculture treatments 
to mitigate direct impacts on specific forests. Managing 
for site-specific stand structures that include features 
such as high overstory compositional diversity [184], age 
diversity [254], spatial complexity [255], and trait diver-
sity [256] are strategies that can increase forest resilience 
in the face of climate change, ideally while also continu-
ing to maintain stable carbon stocks [185]. Treatments 
can be implemented that create climate-resilient forest 
structure traits while simultaneously maximizing carbon 
sequestration rates that create long-term stability. These 
strategies may also reduce the initial carbon stored onsite 
[257], demonstrating the value of understanding how 
treatments impact multiple overlapping priorities.

Although some fuel treatments may catalyze net car-
bon uptake over a long period, Wiechmann et  al. [244] 
reported three of five types of fuel treatments resulted in 
a net loss in forest carbon 10 years after treatment in the 
Sierra Nevada. The two treatment types that recovered 
carbon over 10  years were a burn-only and understory 
thin-only. Conversely, over the long run, a combination 
of prescribed fire and mechanical thinning is most effec-
tive at reducing potential fire severity where it has been 
studied [238, 257]. Across 10 locations in the United 
States, Boerner et al. [243] found that mechanical treat-
ments do reduce forest carbon significantly more than 
prescribed fire, although there was a greater increase in 
carbon sequestration after mechanical treatments.

Spatial relationships of fuel treatments and wildfires 
are important to consider. At the landscape level, effects 
from different treatment scenarios can be highly depend-
ent on the spatial configuration of treatments and the 
percent of the landscape that is treated. Finney [258] and 
Ager et  al. [259] reported that treating 10% of a forest 
landscape reduces expected losses of large trees by 70%. 
Treatments strategically placed in relation to how fire 
spreads are an effective technique for reducing fire expo-
sure beyond the treatment area, including transmission 
to valued natural and cultural resources [260]. However, 
the dynamics of fire spread vary widely by forest type, 
and the design and implementation of fuel treatments 
that are sensitive to the ecology of an individual forest 

could help achieve desired objectives in forest resilience 
[45]. For example, Agee and Skinner [236] outlined both 
a methodology for restoration of fire-excluded dry for-
ests (thin from below, reduce surface fuels, and retain the 
largest, oldest trees) and the characteristics of the ecosys-
tem that determine the forests in which the application of 
these techniques should be prioritized (historically fire-
frequent, low-severity, low-density forests). Management 
of longleaf pine (Pinus palustris) forests in the Southeast 
using the Stoddard-Neel method, a holistic management 
approach that was derived in the first half of the twen-
tieth century, may require greater initial fuel reductions 
prior to the reintroduction of repeated prescribed fires 
[253]. Alternatively, in order to return forests to within 
the range of natural variation prior to fire suppression, 
management of forests that tend to burn at high inten-
sity and high severity, such as jack pine (Pinus banksiana) 
and lodgepole pine (Pinus contorta) forests, could benefit 
from a patchy fuel landscape that allows for some amount 
of self-limiting high-severity fire. Eastern hardwoods may 
require an entirely different approach, with mechanical 
thinning being the primary activity used to meet restora-
tion goals [261].

Management practices that lead to an unintended 
increased risk of high-severity wildfire (e.g., fire suppres-
sion and reductions in harvesting) have also led to an 
increased risk of insect and disease-induced tree mor-
tality in certain forests [262]. Greater homogeneity can 
decrease overall resistance and resilience of a forest to 
biotic disturbances, while higher tree densities increase 
the number of available hosts for transmission of insects 
and diseases. Because of this, many of the same strate-
gies that have been proposed for preserving forest carbon 
in the face of wildfire are also proposed for reducing lev-
els of tree mortality attributed to some types of insects 
and diseases. In the Northern Rockies, Hood et al. [263] 
reported there was up to 50% host tree mortality after 
a mountain pine beetle infestation in dense, untreated 
stands; 39% mortality in stands that had been treated 
with prescribed fire; and almost no mortality in stands 
that were treated with mechanical thinning and pre-
scribed fire. Low-severity fire has been shown to induce 
trees to fortify their resin ducts, thereby increasing resist-
ance to future mountain pine beetle infestation [264]. 
In addition, thinning is widely regarded as an effective 
means for increasing resistance and resilience to several 
notable bark beetles, likely due to reductions in tree com-
petition, increases in tree vigor, increases in tree spacing, 
and changes in microclimate that disrupt aggregation 
pheromone plumes [265–268]. The efficacy of thinning 
to reduce levels of bark beetle-induced tree mortal-
ity has even been demonstrated under extreme drought 
conditions (e.g., [269]). Although sanitation harvesting 
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of infested trees has been proposed to alleviate tree 
mortality [270], these strategies are not as effective for 
reducing forest carbon risk since they run counter to the 
natural disturbance cycle of many forest types [271]. In 
eastern hemlock (Tsuga canadensis) forests, simulations 
show that allowing hemlock wooly adelgid to progress 
naturally through a stand (versus salvage scenarios) may 
result in the least impact to long-term carbon sequestra-
tion and net forest carbon [272].

As with fuel treatments for wildfire, forest thinning 
can sometimes serve as an effective strategy to reduce 
forest carbon risk from drought, bolstering forest resist-
ance (the ability to sustain growth during drought) and 
resilience (the capacity to recover growth after drought) 
[273–277]. This is achieved by reducing tree densities, 
which is the primary driver of resource competition at 
the stand level [277], and by enhancing available grow-
ing space [278]. While the potential of thinning to reduce 
drought effects is widely acknowledged, its effective-
ness varies substantially by context and ecosystem, and 
is influenced by various factors. Stands with lower tree 
densities, achieved through more substantial thinning 
practices, generally exhibit heightened resistance and 
resilience [279–281]. Results from a recent meta-analysis 
of stand density and tree mortality relationships in yel-
low pine (ponderosa pine and Jeffrey pine, Pinus jeffreyi) 
forests suggest that substantially lower stand densities are 
required to maintain adequate levels of resistance to bark 
beetles in contemporary forests compared to recent his-
toric forests, due to the effects of warming and drought 
on forest structure and composition, including transi-
tions from low-density, open and park-like forests to 
dense, second-growth forests [268]. Maintaining stands 
at such low densities may be required to promote high 
levels of resistance to drought and bark beetles in the 
future and represents a substantial change from current 
management prescriptions, of which the carbon conse-
quences over time are largely unknown.

The benefits of thinning on carbon risk reduction, 
through reduced future disturbances, diminish with 
time since last treatment [281, 282]. Notably, the effects 
of thinning differ between broadleaves and conifers, 
although additional studies are needed [283]. Further-
more, the specific thinning method employed can yield 
contrasting outcomes. Thinning from above (involving 
removal of dominant and co-dominant trees) has the 
potential to minimize drought-induced growth reduc-
tions by reducing tree diameter, fostering a more intri-
cate vertical structure that stratifies competition, while 
thinning from below (involving the removal of smaller 
diameter trees in lower canopy positions) may result in 
larger diameters and a monolayered structure, intensi-
fying competition [284]. The type of thinning may also 

result in either complementary or opposing effects on 
different disturbances [285]. For example, thinning from 
below is often used in fuels reduction resulting in forests 
of large, older trees, which are typically more susceptible 
to bark beetles (e.g., [231]). Conversely, thinning from 
above can reduce susceptibility to bark beetles but may 
increase surface fuels resulting from harvest residuals.

Overall, our understanding of relationships between 
forest carbon risks and treatments that reduce tree dam-
age and mortality from insects, diseases, and drought has 
some critical limitations, uncertainties, and gaps. These 
include: (1) a complete accounting of carbon emissions 
during treatments, (2) the likelihood of a tree mortality 
event (e.g., bark beetle outbreak) occurring during the 
period of time when treatments are effective, recognizing 
that efficacy declines with time since treatment, (3) the 
amount of landscape that needs to be treated to impart 
desired effects, and (4) the post-treatment rate of carbon 
uptake.

Conclusions
Forest carbon storage is a critical ecosystem service that 
is facing heightened risks as climate change facilitates 
larger and more severe wildfires, widespread insect and 
disease outbreaks, and more intense droughts in many 
forests of the United States [286]. To minimize negative 
effects and maximize resilience of forest carbon, these 
risks must be accounted for in carbon offset protocols, 
carbon management practices, and carbon mapping and 
modeling techniques. Many of the example tools dis-
cussed in “Mapping carbon risk to disturbance” demon-
strate the significant conceptual challenges of combining 
all the interacting land surface, climate, and ecological 
processes that are needed to analyze forest carbon risk, a 
task that becomes increasingly complicated with climate 
change and over temporal trajectories. Additional chal-
lenges lie in scaling up modeling efforts and management 
techniques across the United States, and it is noteworthy 
that all the studies on managing forest carbon risk dis-
cussed in “Conclusions” have been executed on a local 
project or regional scale, not at a national scale. The lat-
ter requires consistent accounting across variations in 
forest types, disturbance trajectories, and resource avail-
abilities. However, with the continuous advancement in 
scientific understanding and computational capabilities, 
the foundation now exists to scale up analyses that were 
previously only possible on a local scale. This represents 
the next critical step towards elevating forest carbon 
risk science to a level that can facilitate a better under-
standing of forest carbon risk from climate change and 
disturbance across the entire United States and create 
opportunities for strategic forest management directed at 
reducing those risks.
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