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HIGHLIGHTS

� A negative fire–vegetation feedback reduced

reburn extent by 5 Mha over 33 years

� Resistance to reburning was strongest in the most

fire-prone areas

� This resistance will likely continue to dampen

climate change impacts on wildfire

ABSTRACT

The North American boreal biome (NAB) is

warming at 2–4 times the mean global rate, con-

tributing to increasing wildfire activity. The degree

to which this trend alters biome-level feedbacks to

global climate depends on how strongly bottom-up

feedbacks between fire and vegetation dampen the

effects of climate drivers. As young vegetation

recovering from fire covers a growing portion of the

landscape, it could resist reburning, buffering

against further increases in fire. Resistance to

reburning could be particularly strong in the NAB,

where slow post-fire fuel accumulation is some-

times combined with a fire-driven shift from con-

ifers toward less-flammable, deciduous trees.

However, continued warming could eventually

override the feedback. To quantify the strength of

the feedback throughout the biome, we divided the

NAB into 27 Fire Regime Units (FRUs) and used

fire data from 1986 to 2018 to determine the area

expected to have burned more than once (that is,

reburned) within each FRU under the null

assumption that recent fire does not influence burn

probability. Then, we ran a spatial simulation to

quantify the strength of departure from the null
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value while accounting for variation driven by

stochastic fire patterns. Reburn extent was 5 Mha

less than expected without the feedback. Departure

from the null model was strongest in the most fire-

prone FRUs, suggesting that the feedback will

continue to dampen climate-driven increases in

wildfire activity. These results provide a sound

baseline from which to identify potential weaken-

ing of the feedback under continued warming, and

our approach could be expanded to other biomes.

Key words: fire–vegetation feedback; reburn;

null model; boreal forest; wildfire; analytical mod-

el; spatial simulation; neutral landscape.

INTRODUCTION

The boreal forest biome accounts for approximately

one-third of both the global forested area and ter-

restrial carbon stocks (Pan and others 2011; Brandt

and others 2013). Climate change has driven an

increase in wildfire activity across the biome in

recent decades (Hanes and others 2019; Burrell and

others 2022). This trend of increasing wildfire

activity has the potential to alter biome-level

feedbacks to global climate, depending on the de-

gree to which the increase in wildfire activity alters

forest cover, species composition, and soil carbon

pools (Archibald and others 2018). Climate-driven

changes to boreal fire regimes were most evident in

Canada’s 2023 fire season, when May–October

temperatures were 2.2�C above the 30-year mean

and almost 15 million hectares burned, making it

Canada’s largest fire year on record (Boulanger and

others 2024; Jain and others 2024). The probability

of similarly large fire years will increase in a

warming climate (Kirchmeier-Young and others

2024), and the fire-driven release of carbon from

above- and belowground stores could accelerate

climate warming (Walker and others 2019; Phillips

and others 2022).

Predicting the degree to which climate change

will alter boreal biome-level feedbacks to the cli-

mate system requires an understanding of how the

bottom-up feedbacks between fire and vegetation

will moderate the effects of top-down climate dri-

vers. The top-down drivers of increasing wildfire

are particularly pronounced in boreal regions,

which have been warming at 2–4 times the mean

global rate over recent decades (Zhang and others

2019; Rantanen and others 2022). The resulting

feedbacks to global climate (Archibald and others

2018) are likely to be more prominent in North

American than Eurasian boreal forests because

wildfires in North America tend to be larger and

more severe (Wooster and Zhang 2004; de Groot

and others 2013; Rogers and others 2015). How-

ever, the North American boreal forest (hereafter,

NAB) may have particularly strong bottom-up

feedbacks that could dampen the impacts of these

top-down changes.

As the trend of rapid warming continues to drive

increasing wildfire activity across the NAB, a

growing portion of the landscape will be covered by

young vegetation, which may be resistant to

burning for a period of years to decades (Héon and

others 2014; Hart and others 2019). The primary

mechanisms underlying this resistance to reburn-

ing (that is, the negative fire–vegetation feedback)

are the slow fuel buildup following high-severity

fire (Thompson and others 2017; Walker and oth-

ers 2020), sometimes combined with an increase in

the abundance of less flammable, broadleaf decid-

uous trees after the burning of conifer-dominated

forests (Johnstone and others 2010; Whitman and

others 2018). Because the accumulation of flam-

mable fuel is particularly slow following fire in the

NAB, it may have a stronger negative fire–vegeta-

tion feedback than found in most regions globally.

Fuel buildup is particularly slow in wetlands

(Johnston and others 2015), which are much more

widespread in the NAB than most other temperate

forest regions (Brandt 2009), further strengthening

the potential for the negative fire–vegetation

feedback to moderate the climate-driven increases

in wildfire activity.

A negative fire–vegetation feedback has also

been suggested to limit short-interval reburns in

portions of the western United States (Parks and

others 2015, 2018), but the duration of this feed-

back may be short (for example, < 10 years) due

to rapid fine fuel accumulation (Buma and others

2020). It was predicted to play only a minor role in

dampening future climate-driven increases in fire

extent across the western United States (Abat-

zoglou and others 2021). By contrast, the negative

feedback in the NAB was interpreted to have sub-

stantially limited wildfire activity in the past (Héon

and others 2014; Erni and others 2017; Hoecker

and Higuera 2019), and simulation models suggest

potential to offset much of the effect of climate

warming on future wildfire activity (Boulanger and

others 2017; Marchal and others 2019; Foster and

others 2022).

Despite empirical evidence of a negative fire–

vegetation feedback in portions of the NAB and

models projecting its role in dampening the effect

of climate on future wildfire activity, a systematic
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approach to quantifying contemporary variation in

the strength of the fire–vegetation across the NAB

is lacking. A stronger baseline understanding of

how the fire–vegetation feedback has moderated

wildfire activity in recent decades is needed to

strengthen projections of future wildfire trends and

feedbacks of the NAB to global climate. For in-

stance, as the climate continues to warm and sev-

ere fire weather becomes more common (Jain and

others 2022), there is increasing potential to over-

ride the resistance to reburning (Buma and others

2022; Whitman and others 2024). Then again, in-

creases in fire frequency and/or severity could re-

duce soil organic matter (Walker and others 2019),

thereby favoring post-fire regeneration of decidu-

ous trees over conifers, as documented in north-

western portions of the NAB in recent decades

(Johnstone and others 2020; Baltzer and others

2021; Massey and others 2023). The resulting

expansion of forests dominated by less flammable,

deciduous species might maintain or strengthen the

feedback, even in the face of drier fuels and a

greater frequency of severe fire weather (Mack

et al. 2021).

Here, we develop a combined analytical and

simulation modeling approach to quantify the

variation in the strength of the fire–vegetation

feedback across the NAB over recent decades (from

1986 to 2018). We address two main questions: (1)

How strong is the resistance to reburning across the

NAB? and (2) To what degree does the strength of

that resistance vary geographically? By addressing

these questions, we will develop a sound baseline

for understanding the degree to which the feedback

could limit further climate-driven increases in

wildfire activity. This baseline understanding will

also help to identify if or when we begin to see a

weakening of the feedback in the face of drier fuels

and an increasing frequency of severe fire weather,

or if there is a strengthening of the feedback in

response to increasing deciduous forest cover in

portions of the NAB.

METHODS

Study Area

The North American boreal biome (NAB) spans

about 600 million ha, with forest and woodland

comprising almost 60% of that area (Brandt 2009).

Lakes, wetlands, and meadows account for most of

the remaining area. Conifers typically dominate

long-unburned stands, but broadleaf deciduous

species may be abundant at lower latitudes and

soon after fire in portions of the biome (Johnstone

and others 2011; Shenoy and others 2011; Hoecker

and Higuera 2019). The dominant conifers are

white spruce (Picea glauca (Moench) Voss), black

spruce (Picea mariana (Mill.) Britton, Sterns &

Poggenb.), balsam fir (Abies balsamea (L.) Mill.),

jack pine (Pinus banksiana Lamb.), and tamarack

(Larix laricina (Du Roi) K. Koch). Major broadleaf

tree species include trembling aspen (Populus

tremuloides Michx.), balsam poplar (P. balsamifera

L.), and birches (Betula papyrifera Marshall and B.

neoalaskana Sarg.). The NAB has a sparse human

population compared to most forested regions

globally. Human land use—primarily urban devel-

opment, forest harvesting, agriculture, and min-

ing—is concentrated primarily along the southern

part of the biome. These activities have altered

wildfire frequency, seasonality, and size, with the

strength of that influence decreasing with distance

from the more populated areas (Tymstra and others

2020; Parisien and others 2023).

To evaluate spatial variation in the resistance to

reburning, we divided the NAB into 27 smaller

regions, hereafter referred to as Fire Regime Units

(FRUs; Figure 1a), following a recent classification

of fire regimes across Canada (Erni and others

2020). The FRUs of Canada were identified using

1970–2016 datasets for five fire regime metrics: fire

frequency (number of fires per unit area per unit

time), burn rate (proportion of area burned per

year), fire size, ignition source, and seasonality.

These variables indirectly account for much of the

underlying variation in macroclimate, topography,

soils, vegetation, and ignitions that drive variation

in fire regimes.

For Canada, we included the FRUs located

within the boreal forest region of Brandt (2009),

excluding FRUs 20 and 30, which are currently

dominated by agricultural land use, and FRUs 43

and 46, which are composed largely of rocky ridges

that lack continuous flammable vegetation. We

also merged five of the smaller FRUs with their

neighboring FRU to maintain a narrower range of

sizes of our analysis units. For Alaska, we limited

our analysis to the following Level III Ecoregions of

the U. S. Environmental Protection Agency (2013):

Interior Forested Lowlands and Uplands (3.1.1),

Interior Bottomlands (3.1.2), Yukon Flats (3.1.3),

Ogilvie Mountains (3.2.1), and Interior Highlands

(6.1.1). These ecoregions include 93% of the total

area burned in Alaska between 1986 and 2018.

Because the boreal ecoregions of interior Alaska

form a mosaic, where non-contiguous patches of

two ecoregions are embedded within the others,

we combined the five ecoregions into one region.

We labeled this region FRU AK, for consistency
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with the terminology used to name the subdivi-

sions of the boreal forest within Canada (Fig-

ure 1a). Fire regime statistics for the 27 FRUs are

provided in Appendix S1.

Modeling Approach

To determine whether resistance to reburning is

evident in the contemporary fire record (1986–

2018), and if so, to compare the strength of that

resistance across the NAB, we first produced a null

model for each FRU. The null model quantifies the

area expected to have burned more than once (that

is, reburned) between 1986 and 2018 under the

null hypothesis that the probability of burning in

each year is independent of previous fires (that is,

that fire-driven changes to vegetation, fuel, and

microclimate have no influence on subsequent fire

occurrence).

We began by producing the null model analyti-

cally, using the time series of annual area burned

across the FRU, as explained under the ‘Analytical

model’ heading below. To assess the strength of the

difference between the null and observed reburn

area, we had to know the degree to which

stochastic variation in annual burn patterns could

drive variation in the area that reburns under the

null model. We quantified this stochastic variation

by running a spatial simulation where the area that

burned each year followed the observed fire record,

but the burn patterns in each year were indepen-

dent of the time since previous fires, as explained

under the ‘Simulation model’ heading. After

numerous replicates, we generated a frequency

distribution of the area expected to have reburned

under the null model. From this distribution, we

assessed the likelihood that the observed reburn

extent could have occurred in a system with no

feedbacks.

Fire and Mask Datasets

Annual fire perimeters were acquired from the

National Burned Area Composite (NBAC; Hall and

others 2020; https://cwfis.cfs.nrcan.gc.ca/datamart/

metadata/nbac) for Canada and the Monitoring

Trends in Burn Severity project (MTBS; Eidenshink

and others 2007; https://www.mtbs.gov/) for

Alaska. The Canadian NBAC dataset was devel-

oped, in part, to provide an accurate and consistent

method for removing unburned patches and water

bodies from within fire perimeters (Skakun and

others 2022), thereby improving estimates of an-

nual area burned. For the MTBS perimeters, we

used the entire area within each fire perimeter,

even though it may include small patches within

the ‘unburned to low’ burn-severity class. This class

may include pixels that experienced a low-severity

or sub-canopy burn, pixels with a mix of burned

and unburned vegetation, or truly unburned pix-

Figure 1. Illustration of a the 26 Fire Regime Units (FRUs) of Canada plus the boreal forest area of Alaska, representing

the full extent of the North American boreal forest biome. The FRU numbers shown on the map correspond to their

identification numbers used throughout the text and in Table 1. Fire regime statistics of the FRUs are summarized in

Appendix S1. In b, the area that burned between 1986 and 2018 is color-coded by the number of times each 1-ha pixel

burned over that period. Masked areas include water bodies, urban and built-up land cover, cropland, tundra, and exposed

rocky ridges. The inset map depicts the extent of the North American boreal forest (Brandt 2009; gray shading) in relation

to the boundaries of Alaska (AK) and the Canadian provinces and territories: AB = Alberta, BC = British Columbia,

MB = Manitoba, NL = Newfoundland and Labrador, NT = Northwest Territories, NU = Nunavut, ON = Ontario,

QC = Québec, SK = Saskatchewan, and YT = Yukon Territories.
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els, including water bodies and areas of bare rock,

which we masked out, as described below. We

limited our analysis to fires larger than 200 ha,

which accounted for 97% of the area burned across

Canada in the second half of the twentieth century

(Stocks and others 2002). We converted the fire

polygons to raster of 100-m resolution, and we

masked out all non-flammable land cover (Fig-

ure 1b).

To generate the mask layer for Canada, we used

the water, urban, tundra, and non-fuel classes of

the 2019 fuel types layer of the Fire Behavior

Prediction (FBP) System (updated from Beaudoin

and others 2014; https://cwfis.cfs.nrcan.gc.ca/back

ground/maps/fbpft). The ‘non-fuel’ category in-

cludes cropland and rocky ridges. It also includes

recently burned areas, which are initially repre-

sented as non-fuel and expected to revert to other

fuel types as the vegetation regrows. Because

treating recently burned areas as non-fuel is

inconsistent with our null model, we filtered this

class to include only those portions of the non-fuel

class that have not burned since at least 1986. This

step enabled us to mask out cropland and persistent

non-burnable areas (for example, rocky ridges)

while retaining recently burned areas. For Alaska,

we developed the mask using the 2015 land-cover

data of the North American Land Change Moni-

toring System (http://www.cec.org/north-america

n-land-change-monitoring-system/), which was

derived from Landsat imagery at 30-m resolution.

We masked out six of the 19 land-cover classes to

remove water, persistent snow and ice, tundra,

cropland, and barren land cover (classes, 11, 12, 15,

16, 17, and 18). Across all 27 FRUs, masking to

exclude non-burnable land cover reduced the

analysis area by 23%, from 5.2 to 4.0 million km2

(Figure 1b).

We resampled both mask layers to 100-m reso-

lution and calculated the time series of annual area

burned within each FRU as the area burned by

each fire larger than 200 ha (or 400 ha in Alaska)

within the unmasked land area. Although the fire

perimeters were generated primarily from 30-m

Landsat data, we used 100-m resolution raster for

our analyses as a compromise between the Landsat

data and the 250-m resolution of the primary da-

taset used for masking out non-burnable areas (the

FBP fuel types layer). Also, with a focus on the

number of fires over time, the difference between

30- and 100-m resolution was likely to have little

influence on our results. In tests on a subset of

FRUs, the reburn extent differed by less than

0.02% when calculated using 100-m raster com-

pared to the polygon fire perimeters. Since we

conducted the analysis for each FRU individually,

we analyzed fires that crossed the Canada–Alaska

border by selecting only the portion of the fire that

fell within the target FRU, using the dataset

developed for the respective country.

Analytical Model

To analytically construct a null model of the pro-

portion of each FRU expected to have burned a

given number of times (n) in the absence of fire–

vegetation feedbacks, we modeled the number of

fires occurring in an arbitrarily small pixel (ca.

1 ha) over time as the number of successes (burns)

in t independent, non-identical Bernoulli trials,

where t is the number of years in the observed fire

record (1986–2018 equals 33 years). The null

assumption that the probability of burning in any

year is unaffected by previous fires enabled us to

treat the probability of burning in each year as an

independent trial. This null assumption then en-

abled us to view year-to-year variation in area

burned as driven by top-down processes (for

example, climate or weather), which, in turn,

made the Bernoulli trials non-identical—the prob-

ability of success (burning) varied across the inde-

pendent trials (years), but not as a function of time

since the previous fire.

The number of successes (burns) in t indepen-

dent, non-identical trials follows the Poisson bino-

mial distribution (Hong 2013),

P N tð Þ ¼ nf g ¼
X

B2Yn

Y

i2B
pi
Y

j2Bc

1� pj
� �

ð1Þ

where N(t) is the number of times a pixel burns in t

years, and Yn represents all subsets of n years that

can be drawn from the years in the analysis. For

each realization, B is the subset of years in which

the pixel burns, and Bc (the complement of B) is the

subset of years when it does not burn. The proba-

bility that the pixel burns in the ith year is pi, which

we set equal to the proportion of the FRU observed

to have burned in the corresponding year (after

masking out non-burnable land cover). For in-

stance, if 5% of the FRU burned in a particular year

and we were to randomly select one pixel within

the FRU, the probability that the selected pixel

burned that year is 0.05. Similarly, 1 – pj represents

the probability that a pixel did not burn in the jth

year, which we set equal to the proportion of the

FRU that did not burn in the corresponding year of

the observed record.

We can easily apply Eq. (1) to determine the

probability that a pixel remains unburned over t

years. In this case, B would be empty, and the
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equation simplifies to the product of the probabil-

ities of not burning in each year ((1-p1) 9 (1-

p2) 9 … 9 (1-pt), where p1 is the proportion of

the landscape that burned 1986, p2 is the propor-

tion burned in 1987, etc.). To calculate the proba-

bility of burning one or more times (P{N(t) ‡ 1}),

we first generated a set (Yn) of all possible combi-

nations of n years in which the pixel could burn.

Then, we iteratively selected each subset of burned

years (B) and calculated the product of the proba-

bilities of burning (pi) during each of those years.

We then multiplied this value by the product of the

probabilities of not burning (1-pj) in each of the

remaining years given in Bc. Finally, we summed

these values over all possible subsets of n years.

As n increases, the set of possible years in which a

pixel could burn increases rapidly, following Yn =

t!/(n! 9 (t-n)!) (Ross 2010). Thus, with

t = 33 years, there are 528 possible combinations of

2 years in which a pixel could burn, 5456 combi-

nations of 3 years, and 40,920 combinations of

4 years. There are methods to approximate the

Poisson binomial distribution when either n or t is

large (Hong 2013). However, our time series is

short enough that we could make the calculations

directly. We also verified our calculations by rec-

ognizing that the probability of burning two or

more times, P{N(t) ‡ 2} (that is, the probability of

reburning), is equal to 1-P{N(t) = 0}-P{N(t) = 1}.

If we assume that fire regimes are spatially

homogeneous within the unmasked portion of

each FRU, the probability of a pixel burning n times

over the t-year analysis also represents the pro-

portion of the FRU expected to have burned n times

in t years under our null model. Thus, we used

Eq. (1) to calculate the proportion of each FRU

expected to have burned any number of times over

the analysis period. Then, we compared these val-

ues to the proportion of each FRU observed to have

burned the corresponding number of times.

Spatial Simulation

Although Eq. (1) enables us to determine whether

the observed reburn area is more or less than ex-

pected under the null model, it does not tell us

whether this difference exceeds the variance ex-

pected due to stochastic variation in annual fire

patterns. To assess the degree to which stochastic

variation could influence the reburn area found in

a single realization under the null hypothesis, we

conducted a spatial simulation on a neutral land-

scape (Gardner 2017). In each replicate, we ran-

domly generated fires year-by-year, where the

proportion of the landscape that burns each year

follows the proportion burned in the corresponding

year of the observed record, and we simulated each

year’s fires independent of previous years (Fig-

ure 2a).

For each year, we simulated fires on a 106-cell

grid (1000 9 1000 cells). Because we simulated

fires on a neutral landscape, we did not simulate

fire spread per se. Instead, we generated clumps of

cells to represent burned patches, where we cali-

brated the size of the clumps based on the observed

fire-size distribution across the FRU. This approach

speeds up the simulation process and required few

assumptions or parameters to calibrate. After sim-

ulating each year’s fires, we summed the grids over

t years to determine the number of times each cell

burned over a single replicate. We repeated this

process 1000 times (t = 33 years per replicate) to

generate a distribution of the proportion of the FRU

that reburned per replicate. From these distribu-

tions, we assessed the probability that the observed

reburn area could have occurred under the null

model with no feedbacks.

Our process for simulating fires during each year

of the simulation involved first producing a Gaus-

sian random field using package ‘NLMR’ (Sciaini

and others 2018) in R version 4.4.3 (R Core Team

2025). The resulting cell values varied continu-

ously from 0 to 1. To convert these to a binary grid

representing burned and unburned cells, we set a

threshold, above which cells were burned, and

below which they remained unburned (values of 1

and 0, respectively). We set the threshold so that

each cell burned with probability pi in the ith year

of each replicate. As in Eq. (1), pi is equal to the

proportion of the landscape observed to have

burned in the corresponding year (Figure 2a). To

simulate this probability of burning, we first gen-

erated a unique series of g Bernoulli random

numbers for each year of the simulation, where g is

the total number of cells in the grid (106), and pi
provides the probability of success (burns) in the

random numbers. Then, we set the threshold so

that the proportion of the grid that burns is equal to

the proportion of successes across the Bernoulli

random numbers. Setting the threshold in this

manner produces stochastic variation in the area

that burns per year, but as the number of replicates

increases, the mean proportion of cells that burn in

the ith year approaches pi.

The key parameter that we calibrated when

generating the Gaussian random fields was the

scale of spatial autocorrelation, which determines

the distribution of simulated patch sizes. We refer

to the patch-size distribution rather than the fire-

size distribution because an individual fire could be

A. J. Tepley and others



Figure 2. Illustration of the application and calibration of the null simulation model. In a, the observed fire pattern (left) is

shown along with a bar chart of the annual area burned (bottom center). Wildfires were simulated annually, where the

proportion of the grid that burns each year is based on the proportion of the landscape burned in the corresponding year in

the bar chart, and fire patterns are independent of areas burned in previous years. Simulated fires for the 14 largest fire

years (accounting for 87% of the total area burned in the FRU) are shown in the upper part of a, where burned cells

(black) have a value of 1, and unburned cells (gray) have a value of 0. At the end of each replicate, the annual grids are

summed to provide the number of fires per cell, as shown in the lower right of panel (a). Although the mean reburn area

across numerous replicates is equal to the value determined by Eq. (1), the variance around that value increases as the

simulated fire sizes increase, as shown in (b). We controlled the simulated fire sizes by adjusting the scale of spatial

autocorrelation, as specified by entering the range of the variogram in NLMR (Sciaini and others 2018). To facilitate

interpretation, we represent the scale of spatial autocorrelation as the percentage of the grid area covered by a circle with a

radius equal to the range of the variogram. Results of 250 replicates at eight scales of spatial autocorrelation are shown as

points overlaid on box-and-whisker plots to illustrate how the variance across replicates increases with the scale of spatial

autocorrelation. We adjusted the autocorrelation parameter until we reached the closest correspondence between the

simulated and observed patch-size distribution. Panel, c shows results of 500 replicates each at three scales of spatial

autocorrelation, where we selected a scale of 5% of the grid area (center panel) for this FRU. To plot the patch-size

distributions, we ranked all patches over the 33-year analysis from large to small. Dashed vertical lines represent the patch

size that accounts for a given percentage of the observed area burned over the full analysis period. Light and dark blue

shading represent the full range and interquartile range (IQR) of patch sizes for the corresponding rank across the different

replicates.
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split along an FRU boundary, or it could be divided

into two or more non-contiguous patches by

masked cells (for example, water bodies or rocky

ridges) within the FRU. We specified the scale of

spatial autocorrelation by setting the range of the

underlying variogram (Sciaini and others 2018).

Although we set this range in the number of cells,

we communicate these values by calculating the

area of a circle with a radius equal to the specified

variogram range and scaling that area as a per-

centage of the grid area (Figure 2b). For instance,

on our 106-cell grid, a circle with a radius of 126

cells has an area equal to 5% of the grid area, and

we refer to this percentage as the scale of spatial

autocorrelation.

After running the simulations across a range of

scales of spatial autocorrelation, we verified that

the mean reburn area across replicates remained

equal to the value determined analytically Eq. (1).

However, as we increased the scale of spatial

autocorrelation (that is, as the size of simulated

fires increases), the variation in reburn area across

replicates also increased (Figure 2b). Thus, before

we could compare the observed reburn area to the

distribution of simulated reburn areas, we had to

calibrate the scale of spatial autocorrelation to best

match the simulated to the observed patch-size

distribution. We used the ‘patches’ function of the

R ‘terra’ package (Hijmans and others 2024) to

identify patches of contiguous burned cells

(searching in eight directions) for each year of the

observed record and each year of the simulation.

Then, we compiled patch sizes across the 33-year

record to construct the full patch-size distribution

(Figure 2c).

To determine the appropriate scale of spatial

autocorrelation, we ran the model for 500 repli-

cates each at various scales of spatial autocorrela-

tion, and we adjusted the autocorrelation

parameter iteratively to improve the correspon-

dence between the simulated and observed patch-

size distributions (Figure 2c). We prioritized

matching the sizes of the larger patches that com-

prise the vast majority of the area burned over

time. To facilitate this comparison, we ranked the

observed patches and the simulated patches within

each replicate from large to small (Moritz and

others 2005). Then, we visually compared the ob-

served patch size for a given rank to both the full

range and the interquartile range of simulated

patch sizes at the respective rank (Figure 2c).

After selecting the scale of autocorrelation that

produced the closest visual match to the observed

patch sizes, we repeated the simulation for 1000

replicates and conducted a quantitative compari-

son. First, we calculated the mean patch size for

each rank across all simulation replicates (that is,

the mean size of the largest patch per replicate, the

mean size of the second largest patch per replicate,

etc.). Then, we conducted a two-sample Kol-

mogorov–Smirnov (KS) test using R function

‘ks.test’ (R Core Team 2025) to assess whether

those means and the observed patch sizes came

from the same distribution. To prioritize matching

the fit to large patches, we conducted the test

iteratively, each time including a larger portion of

the patch-size distribution. First, we included only

the largest patches to the rank that accounted for

10% of the observed area burned over the 33-year

analysis. For each subsequent iteration of the KS

test, we progressively increased the minimum

patch-size rank (reduced the minimum patch size)

to include those patches accounting for an addi-

tional 10% of the observed area burned.

After calibration, our simulated patch-size dis-

tributions closely matched the observed fire-size

distributions. When including the patches

accounting for 70% of the total area burned over

the 33-year analysis, only four of the 27 FRUs had

simulated patch-size distributions that differed sig-

nificantly from the observed distribution, and none

differed from the observed patch-size distributions

when including patches accounting for 40% of the

total area burned (Appendix S2).

Quantifying the Departure from the Null Model

When averaged across 1000 replicates, the mean of

the simulated reburn areas was nearly identical to

the value determined analytically Eq. (1), and the

simulated reburn areas were normally distributed

around the analytically-determined value. There-

fore, we fit a normal distribution to the simulated

reburn values using R function ‘pnorm’ (R Core

Team 2025), parameterized using the analytically-

determined null reburn area and the standard

deviation of the simulated values.

Using the normal distribution fit to the simulated

reburn areas, we calculated the area under the

outer tail to provide the p-value for a one-sided test

of the probability that the results support a signif-

icant fire–vegetation feedback. The outer tail of the

distribution represents the tail of the curve that

extends farther from the null estimate than the

observed reburn area. If the observed reburn area

was less than the null value, consistent with a

negative fire–vegetation feedback, the area under

the lower tail would represent the probability that

an area less than the observed reburn area could

have reburned under the null model. If the ob-
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served reburn area was greater than the null value,

the area under the upper tail would provide the

probability that an area greater than the observed

reburn area could have reburned under the null

model, thereby representing the strength of a pos-

itive feedback.

RESULTS

The observed reburn area was significantly less

(p < 0.05) than expected under the null model in

17 of the 27 FRUs (Table 1). When summed over

these FRUs, the area affected by reburns was

5,037,611 ha less than expected under the null

model, representing a reduction of reburn area by

152,655 ha per year, on average. To place these

values in context, 73.6 million ha burned across all

FRUs from 1986 to 2018, and the observed reburn

area accounts for just 3.8% of the total area burned

rather than 10.6%, as expected under the null

model. Results for each FRU individually are pro-

vided in Appendix S3, including a comparison of

simulated and observed patch-size distributions.

To help compare patterns across FRUs, we cal-

culated the fire rotation for each FRU over the

analysis period by dividing 33 years by the cumu-

lative proportion of the FRU that burned over that

interval (Table 1; Baker, 2009). The observed re-

burn area was farthest below the null value in the

FRUs with the shortest fire rotations (that is, the

most fire-prone FRUs), and the difference between

observed and null values generally decreased as fire

rotations became longer (going clockwise in Fig-

ure 3 or from right to left in Figure 4a). The 17

FRUs with significantly less reburn area (p < 0.05)

than expected under the null model include all 14

Table 1. Comparison of differences between the observed reburn area and that simulated under a null
model with no feedbacks among 27 Fire Regime Units (FRUs) of the North American boreal forest

FRU Area FR Reburn area (%) Reburn area (ha) Reburn difference (ha) p-value

(km2) (yr) Null Obs Null Obs Total Annual

27 186,619 60 10.38 3.70 1,936,730 689,991 –1,246,739 –37,780 < 0.001

23/25 147,895 79 6.20 1.27 917,396 188,155 –729,241 –22,098 < 0.001

26 266,737 87 5.22 1.36 1,392,636 363,646 –1,028,990 –31,182 < 0.001

8/9 174,850 100 4.01 1.84 700,274 322,341 –377,933 –11,453 < 0.001

33 74,906 104 3.72 0.38 278,427 28,665 –249,762 –7,569 < 0.001

AK 472,376 129 2.57 1.27 1,213,534 598,136 –615,398 –18,648 < 0.001

17 155,524 147 2.06 1.33 319,978 206,859 –113,119 –3,428 < 0.001

22 92,416 149 1.50 0.46 138,717 42,654 –96,063 –2,911 < 0.001

21 156,292 172 1.48 0.97 231,937 151,027 –80,910 –2,452 0.042

40/41 164,242 179 1.36 0.45 223,205 74,028 –149,177 –4,521 < 0.001

29/31 75,839 182 1.33 0.11 100,714 8,674 –92,040 –2,789 < 0.001

35/38 75,232 186 1.15 0.43 86,818 32,340 –54,478 –1,651 0.014

34 127,982 250 0.75 0.06 96,114 7,987 –88,127 –2,671 < 0.001

10 168,001 262 0.63 0.25 105,505 41,621 –63,884 –1,936 0.006

45 81,301 283 0.56 0.39 45,122 31,851 –13,271 –402 0.164

28 79,993 296 0.51 0.32 41,116 25,957 –15,159 –459 0.205

18 140,760 388 0.32 0.33 45,043 46,279 + 1,236 + 37 0.466

11 95,251 406 0.25 0.05 23,432 4,723 –18,709 –567 0.127

16 196,537 475 0.21 0.08 40,683 16,589 –24,094 –730 0.011

6 210,349 492 0.20 0.06 42,070 13,035 –29,035 –880 0.003

5 105,045 683 0.06 0.11 9,559 11,770 + 2,211 + 67 0.395

32 124,429 751 0.08 0.13 10,203 16,674 + 6,471 + 196 0.143

13/15 107,028 915 0.06 0.06 6,101 6,843 + 742 + 22 0.426

14 226,723 2,031 0.01 0.01 2,721 2,461 –260 –8 0.466

58 63,771 2,268 0.01 0.03 574 1,953 + 1,379 + 42 0.027

1 96,281 3,216 0.00 0.00 193 0 –193 –6 0.340

7 126,868 3,313 0.00 0.00 507 91 –416 –13 0.304

The FRUs are listed in order of increasing fire rotation (FR), as calculated based on the total area burned between 1986 and 2018. The reburn area is represented as the
percentage of the FRU area and in hectares. The difference in observed reburn area and that estimated under the null model are presented as the total difference over the 33-
year analysis period and the mean annual difference. The p-value was calculated as the area under the outer tail of the normal curve fit to the output of 1000 simulation
replicates.
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FRUs with fire rotations £ 262 years, plus three

with longer fire rotations (Table 1). The finding

that a 33-year analysis window was long enough to

detect a statistically significant reduction in reburn

Figure 3. Comparison of the observed reburn extent to that expected under the null model for five selected FRUs across

the North American boreal forest. The selected FRUs are arranged in order of increasing fire rotation going clockwise from

upper left. For each FRU, we depict the area observed to have burned a given number of times between 1986 and 2018

and the output of one replicate of the simulation with the fire-size distribution calibrated to approximate the observed fire-

size distribution. Then, we compared the observed reburn area to the results of 1000 simulation replicates per FRU, where

the vertical blue dashed line represents the null reburn area calculated following Eq. 1, and gray bars represent the

distribution of reburn areas produced across the 1000 replicates. The solid blue curve is a normal density function fit to

that distribution. The statistical significance of the departure from the null model was calculated as the area under the

outer tail of the distribution. Complete results for all 27 FRUs are provided in Appendix S3, including a map of the

observed fire extent, a time series of annual area burned, maps produced by two simulation replicates, and a comparison of

the observed and simulated patch-size distribution and the reburn area results after 1000 replicates.
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area in each of these FRUs (and highly signification

reductions, p < 0.001, in 11 of them) illustrates

the strength of the negative feedback.

The 10 FRUs where the observed reburn area

was not significantly different from the null model

(p > 0.05) were among the least fire-prone FRUs,

each with a fire rotation ‡ 283 years (Table 1).

Failure to reject the null model in these FRUs could

indicate that fire–vegetation feedbacks were weak

or absent. Alternatively, with so little fire, a 33-year

analysis may have been too short to include

opportunities for fires to encroach upon the

perimeters of other recently burned areas, leaving

little chance for feedbacks to play out (Appendix

S3).

The observed reburn area was significantly

greater than the null value in only one FRU (FRU

58, p = 0.027), but only by 1379 ha (Table 1). This

was one of the least fire-prone FRUs (fire rota-

tion > 2000 years), and 77% of the reburn area

occurred when a portion of a single fire from 1990

was reburned by another fire in 2018, at close to

the longest reburn interval in our analysis. A single

reburn event was sufficient to drive a statistically

significant increase relative to the null model, but

with so little fire in the FRU, this result should not

imply that this difference would hold when viewed

over a longer analysis window.

By comparing observed to null reburn extents

across FRUs with such a wide range of fire rota-

tions, we gained insight into whether the negative

feedback (that is, the resistance to reburning) is

likely to persist in the face of climate change-driven

increases in wildfire activity. Under the null model,

we demonstrated a clear trend whereby the pro-

portion of an FRU expected to reburn increases as

the proportion of the FRU that burned over the

analysis period increases (Figure 4a). The observed

extent of reburns also increased with increasing

area burned across the FRUs, but at a much slower

rate. Thus, for the three most fire-prone FRUs

(FRUs 23/25, 26, and 27 of north-central Canada),

we would have expected an additional 3.9–6.7% of

the land area (just over 3 million hectares; Table 1)

to have burned more than once between 1986 and

2018 in the absence of a feedback (Figure 2b).

If the capacity to resist reburning is similar across

FRUs (that is, if the feedback mechanisms are

similar across the NAB), but the difference from the

null model across FRUs was driven largely differ-

ences in the opportunities for those feedback

mechanisms to play out (that is, opportunities for

fires to encounter a recently burned area), the

Figure 4. Variation in the reduction in reburn area from 1986 to 2018 across the North American boreal forest. In a trends

in the null and observed proportion of the FRU that reburned are plotted as a function of the cumulative proportion of the

FRU that burned over the analysis period. The proportion burned on the x-axis was calculated as 33 years divided by the

fire rotation (provided in Table 1). Spatial variation in the reduction of reburn area relative to the null model is shown in

panel, b where the magnitude of reduction is shown as the percentage of the FRU area (NS indicates FRUs where the

observed reburn area was not significantly lower than expected under the null model). Although points for all FRUs are

plotted in, a the curves were fit using only the FRUs for which the observed reburn extent was significantly lower than

expected under the null model. We modeled the proportion of the FRU that reburned (r) within the analysis window as a

power function of the cumulative proportion of the FRU that burned, b within the analysis window. The resulting

equations are r ¼ 0:342b1:929 (R2 = 0.998, p < 0.001) for the null model and r ¼ 0:046b1:399 (R2 = 0.719, p < 0.001) for

the observed data. Note that the x-axis value for each FRU corresponds to the proportion of its fire rotation included within

the 33-year analysis window.
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trend across FRUs in Figure 4a would represent the

likely trend within an FRU in response to increas-

ing wildfire activity. As annual area burned in-

creases, points would shift to the right along the x-

axis, and the null and expected curves illustrate the

expectations for the corresponding increase in re-

burn area with and without feedbacks.

DISCUSSION

We found strong and widespread resistance to

reburning (that is, a negative fire–vegetation feed-

back) across the NAB, which led to a 5 Mha

reduction in reburn extent over 33 years compared

to the null expectation without a feedback (Figs. 3

and 4). The feedback was strong enough that a 33-

year fire record was sufficient to find a statistically

significant reduction in reburn area in each FRU

with a contemporary fire rotation £ 262 years

(Table 1). The reduction in reburn extent was

strongest in the FRUs with the shortest fire rotation

(down to 60 years in FRU 27, northern Saskatch-

ewan; Table 1 and Figure 3), illustrating that the

effects of the negative feedback were greatest

where there were the most opportunities for the

feedbacks to play out (that is, where fires spread

into recently burned areas). Thus, the reduction in

reburn extent was strong in central and western

Canada and Alaska, excluding the less fire-prone

areas near the foothills of the Rocky Mountains. In

eastern Canada, only the areas east of the Hudson

and James Bays in northwestern Québec (FRU 8/9)

had a strong reduction in reburn extent relative to

the null model, but with the fourth shortest fire

rotation overall, this FRU was by far the most fire-

prone part of eastern Canada (Table 1, Figure 4b).

Our finding of a strong negative feedback in the

most fire-prone FRUs (that is, those with the

shortest fire rotations) suggests the resistance to

reburning will likely continue to limit wildfire

activity across much of the NAB, even as the cli-

mate continues to warm and become more con-

ducive to fire, assuming similar feedback

mechanisms play out across the other FRUs.

However, if climate and severe fire weather were to

increasingly override the feedback (Buma and

others 2022; Whitman and others 2024), or if

conifer forests were increasingly converted to ei-

ther less-flammable deciduous species (Johnstone

and others 2011; Kelly and others 2013) or more

fire-prone grasslands (Stralberg and others 2018),

our analyses will provide a baseline from which to

identify the change.

Influence of Feedbacks on Boreal Fire
Regimes

Resistance to reburning at short intervals has long

influenced fire regimes across the NAB. For in-

stance, tree-ring fire scars and establishment dates

along a 190-km-long transect in northern Québec

suggest that fire frequency increased over time

since fire, with stands < 50 years being less fire

prone than older stands (Héon and others 2014).

After expanding the transect to 320 km, stands <

50 years old remained resistant to burning, and

this resistance was found to reduce the burn rate to

about 40% of that expected without the feedback

(Erni and others 2017). This resistance to reburning

is consistent with gradual fuel accumulation fol-

lowing severe fire (Johnston and others 2015;

Thompson and others 2017; Walker and others

2020).

Increasing wildfire activity has potential to

strengthen the feedback in northwestern portions

of the NAB, where extensive fires over the last

couple of decades have driven a shift toward

increasing cover of broadleaf deciduous trees that

are less flammable than conifers (Beck and others

2011; Mann and others 2012). This shift could

become more pronounced with further climate-

driven increases wildfire activity (Baltzer and oth-

ers 2021; Walker and others 2023) because once

deciduous trees become established in former

conifer-dominated stands, subsequent fires tend to

perpetuate or increase their dominance (Hansen

and others 2021; Hayes and Buma 2021). The low

flammability of deciduous species may lead to a

particularly strong negative feedback (Bernier and

others 2016; Cuming, 2001; Hély and others 2000),

which could offset a portion of the increases in

wildfire activity and associated carbon emissions

otherwise expected in a warming climate (Terrier

and others 2013; Foster and others 2022).

Although shifts toward increasing deciduous

cover were found to have dampened fire activity

when the climate was otherwise conducive to

widespread fire in the paleoeological record in both

the western and eastern NAB (Girardin and others

2013; Kelly and others 2013; Hoecker and Higuera

2019), recent fire-driven increases in deciduous

cover have been limited primarily to the north-

western NAB (Johnstone and others 2010, 2020;

Mack and others 2021). In the eastern NAB, forest

harvesting has contributed to the expansion of as-

pen cover (Marchais and others 2022), but fire-

driven reductions in black spruce dominance cur-

rently favor replacement by jack pine (Baltzer and

others 2021). However, fire intervals < 30 years
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could eventually limit post-fire jack pine regener-

ation due to the immaturity risk (that is, insuffi-

cient time for adequate seed production;

Splawinski and others 2019, Augustin and others

2022).

Despite evidence of the negative feedback mod-

erating the effects of climate on area burned in the

paleoecological record, recent fire extent may be

exceeding that found over the past several millen-

nia (Kelly and others 2013). Studies of contempo-

rary reburns have found that the negative feedback

was strongest within the first decade following fire,

followed by a gradual weakening to the point

where it could more easily be overcome by severe

fire weather by 20 years following fire (Buma and

others 2022; Whitman and others 2024). Days of

extensive fire growth under severe fire weather

have the greatest potential to override the negative

feedback. These days are increasingly recognized as

important drivers of total area burned (Balik and

others 2024), and they are likely to become more

common under future climate (Jain and others

2022). However, our finding that the departure

from the null model was strongest in the most fire-

prone FRUs (that is, those with the shortest fire

rotations; Table 1), suggests potential for the feed-

back to continue to limit wildfire activity.

Fire patterns during some of the most extensive

recent fire years, including the record-breaking fire

season of 2023 (Jain and others 2024), support our

interpretation that the negative feedback will con-

tinue to moderate future fire patterns, even if the

feedback is weakened to some degree. For example,

2.5 Mha burned across the eastern Northwest

Territories in 2023 (FRU 26, the third most fire-

prone FRU; Table 1). Just over 90% of the burned

area within the FRU had no recent fire, despite

38% of the FRU having been burned at least once

within the previous 33 years (equivalent to the

length of our analysis). More than 2 Mha also

burned across this FRU in 2014, when the province

had been under prolonged drought since the pre-

vious fall, with precipitation 30% below normal

and temperatures 1.5–2.5�C above normal through

June and July (Kochtubajda and others 2019).

Although 24% of the FRU had burned at least once

over the preceding 33 years, this recently burned

area comprised only 3.3% of the area that burned

in 2014. Even in such a severe fire season, more

than 96% of the fire extent was in areas with no

recent fire.

Our analyses could be repeated in another dec-

ade or two to test for a weakening of the feedback.

We expect to see increasing wildfire activity as the

climate continues to warm and severe fire weather

becomes more common (Boulanger and others

2024; Kirchmeier-Young and others 2024).

Increasing wildfire activity would lead to an in-

crease in reburn area as recently burned areas

cover a greater proportion of the landscape (that is,

a larger area will be available to reburn), and there

are more opportunities for fires to interact with that

recently burned area. However, such changes

would not necessarily indicate a weakening of the

feedback. As climate-driven increases in wildfire

activity lead to shorter fire rotations, FRUs would

shift to the right along the x-axis of Figure 4a, and

we would expect a corresponding increase in re-

burn extent. Such an increase would not represent

a weakening of the feedback unless the slope of the

observed curve becomes steeper, or if individual

FRUs became strong outliers above the curve.

Strengths and Limitations

One of the main strengths of our modeling ap-

proach is the ability to calibrate and apply this ap-

proach using data readily available in many regions

globally. The inputs were limited to fire perimeters

spanning a couple of decades (for example, span-

ning the Landsat record; Eidenshink and others

2007; Hall and others 2020) and a land-cover da-

taset that can be used to mask out non-burnable

parts of the landscape. In addition, the model

should be applied to regions where the fire regime

is relatively homogenous—in our case, the FRUs of

Erni et al. (2020)—to allow for the null assumption

that in each year, all of the landscape would be

equally likely to burn in the absence of a fire–

vegetation feedback.

After acquiring a time series of annual area

burned for the study region, the analytical model

can quickly be applied to quantify the degree to

which the observed reburn area departs from the

null value with no need for further calibration or

running a time-consuming simulation. The ability

to formulate this process mathematically Eq. (1)

strengthens our understanding of how reburn

dynamics would play out in a system with top-

down variation in annual area burned but no

bottom-up feedbacks. The spatial simulation then

corroborates the results of the analytical model and

provides confidence intervals needed to determine

if the difference between null and observed reburn

extents is statistically significant. Comparing the

two modeling approaches demonstrates how

increasing fire size drives wider variation around

the null reburn area. This modeling approach could

easily be expanded to compare results across di-

verse regions. For instance, adding results from
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regions with a positive fire–vegetation feedback

(Kitzberger and others 2016; Lindenmayer and

others 2022; Zylstra and others 2023) to Figure 4a

would be expected to produce data points above

the curve representing the null model.

Despite the relative ease of running the model,

there were three main limitations. First, our mod-

eling approach uses the observed time series of

annual area burned to calculate the expected re-

burn area under the null model. However, in the

case of a negative feedback, resistance to reburning

would limit not just which areas burn, but also the

total area burned per year (Boulanger and others

2017; Marchal and others 2019; Gaboriau and

others 2023). Without a negative feedback, the

total area burned during extensive fire years like

2023 would have been even larger than observed,

but our null model does not estimate this additional

burned area. Instead, our null model works on the

assumption that the annual area burned is driven

by top-down processes (that is, climate/weather),

and a bottom-up fire–vegetation feedback may

influence which parts of the landscape burn each

year.

Because our null model does not incorporate an

estimate of the additional area that would have

burned each year without a negative feedback, our

finding that the observed reburn area across the

NAB was just over 5 Mha less than expected under

the null model from 1986 to 2018 (Table 1) should

be viewed as a conservative estimate. The potential

for the feedback to contribute to an even greater

reduction in reburn area is important to consider

given the potential for reburns to substantially alter

the trajectory and rate of post-fire vegetation

development (Whitman and others 2019; Hayes

and Buma 2021) and soil carbon storage (Walker

and others 2019).

The second main limitation is that our modeling

approach does not account for variation in the

strength of the feedback over timescales shorter

than the full analysis period (33 years in our case)

or account for changes in the feedback as the

number of reburns increases. For instance, in bor-

eal forests, the resistance to reburning may be

strongest during the first decade or two after fire

and then weaken with increasing time since fire

(Buma and others 2022; Whitman and others

2024). Because our null model does not account for

variation in the strength of the feedback within the

analysis period (33 years), our results represent a

time-averaged effect of the feedback that could

potentially underestimate the strength of the

feedback at short intervals (< 10–20 years) and

overestimate the effect at longer intervals (up to

33 years). Also, progressive increases in deciduous

tree cover over successive reburns (Hayes and

Buma 2021) could alter the strength of the feed-

back in ways not addressed by our null model.

The second limitation could be important if we

were to expand our analysis over a period much

longer than the duration of the negative feedback

or if areas that burned three or more times within

the analysis period were common across the study

region. However, the slow fuel accumulation after

fire in the NAB, combined with the potential for

cover-type shifts from conifer to less-flammable

deciduous species, makes it likely that at least some

resistance to reburning would persist throughout

the 33-year analysis window (Héon and others

2014; Thompson and others 2017). Also, areas that

burned three or more times over the analysis per-

iod accounted for < 2% of the total reburn area in

21 of the 27 FRUs.

Finally, our null model required the assumption

that fire regimes are spatially homogeneous within

the unmasked portion of each FRU. This assump-

tion could be a problem because distance to

waterbodies or the amount of water surrounding a

given site may reduce the probability of burning

during a particular event (Nielsen and others

2016). However, when considered over decades,

the lack of burning during a particular event per-

mits the buildup of fuel that eventually makes sites

more fire-prone (Bernier and others 2016). This

was the case for the 2013 Eastmain Fire of northern

Québec, which burned intensely through a large

area of mature conifer forest (> 100 years old) that

had previously been protected from fire by lakes

and wetlands (Erni et al. 2017). Also, if certain

areas were less likely to burn due to topographic

protection from fire, but our null model treats all

unmasked areas as equally likely to burn, this dif-

ference would lead us to find a weaker negative

feedback. Because our model uses the observed

annual area burned, topographic protection from

fire would concentrate this burned area on a

smaller portion of the landscape, leading to a

greater likelihood of reburning than in our null

model.

CONCLUSIONS

Resistance to reburning at short intervals has long

influenced fire regimes across the NAB. In the past,

this resistance has dampened the effects of fire-

conducive climate on wildfire extent (Hoecker and

Higuera 2019; Gaboriau and others 2023). How-

ever, with wildfire extent increasing to unprece-

dented levels (Kelly and others 2013; Boulanger

A. J. Tepley and others



and others 2024; Jain and others 2024), it remains

uncertain whether the negative feedback will

continue to limit future increases in wildfire extent

(Buma and others 2022). We evaluated the

strength of the negative feedback over recent dec-

ades and found it was strong, leading to a conser-

vative estimate of more than 5 Mha less reburn

area over 33 years than would be expected in the

absence of a feedback.

Our finding that the feedback was strong in the

most fire-prone FRUs implies that the resistance to

reburning will continue to limit reburn extent, and

thus, annual area burned and carbon emissions,

even in a warmer, more fire-conducive climate.

These results corroborate findings from other ap-

proaches to model future fire regimes while

accounting for fire–climate–vegetation interactions

(Girardin and others 2013; Boulanger and others

2017; Marchal and others 2019; Foster and others

2022). However, uncertainty remains regarding the

degree to which a warming climate and severe fire

weather will override the feedback or whether the

expansion of less-flammable deciduous species

could strengthen, or at least, maintain the feedback

in the face of a warming climate. Our results pro-

vide a sound baseline for identifying any change in

the fire–vegetation feedback, and our modeling

approach provides a practical method for compar-

ing the direction and strength of the feedback

across diverse regions.
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eron Y, Hély C. 2023. Interactions within the climate-vege-

tation-fire nexus may transform 21st century boreal forests in

northwestern Canada. Science 26.

Gardner RH. 2017. Characterizing Categorical Map Patterns

Using Neutral Landscape Models. In: Gergel SE, Turner MG,

Eds. Learning Landscape Ecology: A Practical Guide to Con-

cepts and Techniques, . New York: Springer. pp 83–103.

Girardin MP, Ali AA, Carcaillet C, Blarquez O, Hély C, Terrier A,
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