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A B S T R A C T

Projected increases in wildfire frequency, size, and severity may further stress already scarce firefighting re-
sources in the western United States that are in high demand. Machine learning is a promising field with the 
ability to model firefighting resource usage without compromising dataset size or complexity. In this study, the 
Categorical Boosting (CatBoost) model was used with historical (2012–2020) wildfire data to train three models 
that calculate predicted daily counts of 1) total assigned personnel (total personnel), 2) assigned personnel that 
are at the fire (ground personnel), and 3) assigned personnel that either work with aircraft or in management 
(air/overhead personnel) based on daily wildfire characteristics. The main drivers behind personnel assignment 
under current management practices included structures threatened, acres burned, point of fire origin, and fire 
priority. While contextual variables such as preparedness level and the presence of other large fires were among 
the least important, the importance of fire priority reveals that factors beyond the features of the fire itself are 
influential in personnel assignment. CatBoost model predictions provide an historical context to firefighting 
resource assignment and could also be used to inform decision-makers and managers about future issues facing 
firefighting resources in the western United States given projected changes in climate.

1. Introduction

Wildfire activity is projected to increase in the conterminous United 
States due to increasing annual temperatures, changing precipitation 
patterns, and seasonal weather changes brought about by anthropogenic 
climate change (Gao et al., 2021; Huang et al., 2015). These increasing 
wildfire frequencies are exacerbated in the western conterminous 
United States, where a combination of anthropogenic climate change, 
fuel buildup due to fire exclusion practices, and human development 
have resulted in further increases in fire frequency as well as increases in 
fire size and severity that are expected to continue into the foreseeable 
future (Abatzoglou and Williams, 2016; Barbero et al., 2015; Calkin 
et al., 2015; Dye et al., 2024; Higuera and Abatzoglou, 2021; Riley and 
Loehman, 2016; Riley et al., 2019; Williams, 2013). In 2020 alone, over 
2.5 million hectares were burned in the western United States (Higuera 
and Abatzoglou, 2021). Furthermore, the United States is experiencing a 
rapid increase in the development of wildland-urban interfaces (WUI) 
where human life and properties are more susceptible to wildfires 
(Bayham and Yoder, 2020; Radeloff et al., 2018) and may demand extra 

attention from firefighting managers. Present and future threats from 
changing wildfire seasonality, frequencies, sizes, and severities, are ex-
pected to increase demand for firefighting resources (i.e., personnel and 
equipment) (Abatzoglou et al., 2021; Bloem et al., 2022; Cullen et al., 
2021; McGinnis et al., 2023).

In the US, wildland firefighting resources are provided by many 
agencies, including federal, state, county, and city employees. Wildfire 
response across these agencies is organized into three levels: local, 
regional, and national. At the local level, personnel stationed in the area 
provide initial response capabilities on their agencies’ land as well as 
land governed by agencies with which they have mutual aid agreements. 
There are over 250 local dispatching centers that manage this local-level 
response. When wildland fires exceed initial response capacity, these 
fires are managed as large fires by incident management teams, with 
personnel generally coming from across the region or country to help 
provide capacity. The US is split into ten geographic coordination areas 
(also known as Geographic Area Coordination Centers (GACCs)), and 
management at this level moves personnel around the regions to sup-
plement local areas experiencing elevated levels of fire activity (see 
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Fig. 1 for a map of seven of the ten GACCs). The National Interagency 
Coordination Center facilitates resource allocations between geographic 
areas experiencing elevated fire activity. This three-level system is 
governed by the concept of “total mobility” of all firefighting suppres-
sion resources, which requires that personnel and equipment will 
respond to wildland fires in the areas of greatest need (National Inter-
agency Fire Center Multi-Agency Coordinating Group, 2024).

An increase in demand for firefighting resources due to climate 
change would likely exacerbate existing issues involving limited fire-
fighting resources. The costs of firefighting are already challenging 
agencies with fire suppression responsibilities. For example, in 1995, 
15% of the budget of the United States Forest Service (USFS) was 
devoted to wildfire suppression. In 2018, almost 66% of the USFS budget 
($2.6 billion) was devoted to wildfire suppression (National Interagency 
Fire Center, 2024; U.S. Forest Service, 2015), and the costs are expected 
to continue to rise (Prestemon et al., 2022). Firefighting resources 
become scarce during times of simultaneous severe fires, a severity 
which is projected to increase (Abatzoglou et al., 2021; Flannigan et al., 
2013; Wasserman and Mueller, 2023), with most fire seasons charac-
terized by unfilled requests for suppression resources (Belval et al., 
2020; Hand et al., 2017; Stonesifer et al., 2017). Previous research has 
found that Type 1 crews (firefighters with the highest qualifications and 
experience, see Interagency Standards for Fire and Fire Aviation Oper-
ations Group (2024) for more information) in particular show high 
levels of usage across seasons (2014–2018), meaning that many crews 
spend substantial time in the field (Belval et al., 2018, 2020; Stonesifer 
et al., 2017). Additional use of these resources has been associated with 
additional risk of accumulated fatigue and potential detrimental impacts 
on crew members (Belval et al., 2018; Cuenca-Lozano and 
Ramirez-Garcia, 2023; Smith et al., 2018). Quantifying the increasing 
pressure on limited firefighting resources and personnel motivates the 
creation of a model that can be used for planning purposes.

Studies using empirical models and simulations to analyze fire-
fighting suppression costs and assignments have used expert knowledge 

to mathematically define explicit relationships between resource usage/ 
cost and environmental and human factors to determine which factors 
have the largest impact on firefighting decisions. Such studies on the 
dollar value of suppression costs tended to use parametric regressions, 
with findings often including the positive correlations between sup-
pression costs and fire weather, extreme fire behavior, and the value of 
threatened structures (Gebert et al., 2007; Hand et al., 2016; Liang et al., 
2008). Other studies focused on resource assignments beyond the dollar 
value. Hand et al. (2017) used wildfire characteristics and assigned 
incident management teams along with a utility-theoretic model to 
perform linear regression on productive capacity from all resources used 
to demonstrate how resource use may vary substantially across incident 
management teams in the United States. Bayham et al. (2020) used a 
two-step regression model to determine how expected weather and 
evacuations affect ordered resources in the western United States. 
Bayham and Yoder (2020) created an econometric model that focused 
on minimizing wildfire damage to determine what factors, such as 
weather conditions, location, and proximity to buildings, were the most 
influential on resource assignment in the western United States and 
found that fires that threatened homes (especially high-cost homes) 
tended to receive more resource allocation. Cullen et al. (2024) used an 
Ordinary Least Squares (OLS) approach to predict the number of total 
personnel days (excluding personnel working with aircraft) and peak 
personnel count based on fire ignition conditions for the years 
2017–2020 in the western US. Wells et al. (2024) used a generalized 
linear mixed model (GLMM) to model the number of ground personnel 
used per incident per fire day with a further goal of using these models to 
determine how ground personnel use changed due to COVID while 
controlling for all other variables.

These studies on resource assignment generally found that the 
number/value of houses threatened by fire and expectations of 
increasing fire weather/behavior were the driving forces behind 
resource assignment. Resource assignment may also be further affected 
by institutional factors such as the Incident Management Team assigned 

Fig. 1. Study area and fires of focus. Western Geographic Area Coordination Centers (GACCs) and origins of fires (2012–2020) considered from the US National 
Incident Management System Incident Status Summary (ICS-209-PLUS), the National Incident Management Situation Report (IMSR), and the Resource Ordering and 
Status System (ROSS)/Interagency Resources Ordering Capability (IROC) datasets across the western United States. Some fires shown here are not in the ROSS/ 
IROC dataset.
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and the GACC region in which the fire took place. Most of these studies 
had some amount of unexplained variance in their final models, which 
points to noisy, nonlinear wildfire systems or the influence of factors not 
included in the models. Hand et al. (2016), for example, presented a 
model predicting suppression expenditure in the western United States 
for the years 2006–2011 that was unable to explain about 40% of the 
variance in expenditure. Bayham et al. (2020) predicted more specific 
resource usages within the western United States for the years 
2007–2013 and created models that predicted type 1 crew and type 2 
crew (crew “type” denotes what the crew is qualified to do; see Inter-
agency Standards for Fire and Fire Aviation Operations Group (2024) for 
more information) usage that were unable to explain between about 50 
and 70% of the variance in the data. Models used in two recent studies 
that directly predicted daily personnel counts, similar to our investiga-
tion, were only able to explain less than 45% of the variability in data 
not yet seen by the models (Cullen et al., 2024; Wells et al., 2024).

Limitations exist in these studies. For example, the relationship be-
tween the independent variables and resource assignment are assumed 
to be linear or log-linear. The usage of generalized linear regression 
models in these studies might not capture nonlinear relationships pre-
sent in datasets with large numbers of variables that have complex re-
lationships with each other as well as the predicted variable. Datasets 
used may be relatively small in sampling size (e.g., only covering a 
couple hundred fires or less) (Bayham and Yoder, 2020; Hand et al., 
2016, 2017; Liang et al., 2008). Studies used the entire datasets for their 
models as well (i.e., not out-of-sample testing of predicted ability), 
which provides no information on the generalizability of the models to 
new data and potentially results in overfit models (a situation where a 
model only does well on observed data and does poorly on unobserved 
data). Only two very recent studies directly predicted personnel counts, 
highlighting a scarcity of research in this area and emphasizing a need 
for further studies (Cullen et al., 2024; Wells et al., 2024).

To develop models that accurately predict daily resource needs while 
specifically considering nonlinear relationships, other methods such as 
machine learning should be considered. Machine learning is a field of 
computer science that focuses on using algorithms to develop a model 
that can generate more accurate predictions than traditional methods 
(de la Riva et al., 2004; Jain et al., 2020; Shmuel and Heifetz, 2023a, 
2023b). Machine learning algorithms require fewer assumptions than 
traditional methods and do not require researchers to directly create 
parametric relationships for the model, making them well-suited when 
compared to statistical methods using linear assumptions for data 
characterized by complex, not fully understood nonlinear patterns or 
trends present within the field of wildfire modelling (Jain et al., 2020; 
Pérez-Porras et al., 2021; Shmuel and Heifetz, 2023b). Generally, ma-
chine learning can handle larger datasets in less time and with less 
computational cost, especially when compared to physics-based 
methods (Jain et al., 2020; Shi et al., 2023; Shmuel and Heifetz, 
2023a). Machine learning has already demonstrated promising results in 
personnel assignment prediction. Costafreda-Aumedes et al. (2016) used 
information from a historical wildfire database in combination with an 
artificial neural network (ANN) to create a model that could predict 
assigned personnel and vehicle counts for large fires (defined as above 
100 ha in this study) in Spain. However, the predictions in this study 
were not calculated at a daily temporal resolution but instead on a 
fire-by-fire basis. This study was performed in Spain, and no similar 
study has been performed in the United States yet.

One specific kind of machine learning model is an offshoot of the 
Gradient Boosting Model (GBM) known as the Categorical Boosting 
(CatBoost) model. Like the GBM, CatBoost sequentially creates weak 
decision trees based on sequentially reweighed and resampled datasets 
and the minimization of a loss function. The advantage of the GBM 
process is that it works well on data that is noisy and nonlinear (Hancock 
and Khoshgoftaar, 2020; Huang et al., 2019; Prokhorenkova et al., 
2018). CatBoost further differentiates itself from the GBM via ordered 
boosting, creating oblivious decision trees, handling categorical 

variables via ordered target statistics, and combining categorical vari-
ables in some splits. These extra functions help to reduce bias, prevent 
target leakage, and work against overfitting (Huang et al., 2019; Pro-
khorenkova et al., 2018). CatBoost models have been used in the study 
of wildfires. Abujayyab et al. (2022) predicted wildfire susceptibility in 
forests in Turkey with five different kinds of boosting models and found 
that the CatBoost model achieved the highest testing accuracy of 
95.47%. Kang et al. (2020) calculated an hourly forest fire risk index for 
forests across South Korea using both a CatBoost model and obtained an 
area under curve (AUC) of 0.8434. The advantages of the CatBoost 
model and the relevant usage of CatBoost in wildfire research make the 
model a prime candidate for predicting daily firefighting personnel 
counts.

Our goal is to gauge the effectiveness of CatBoost models on pre-
dicting the daily assignment of firefighting personnel within the western 
United States based on historical wildfire data using CatBoost models. 
Very few previous studies have focused on daily predictions in fire-
fighting personnel assignment, a gap we seek to fill. We intend for these 
models to be used in highlighting the general trend of firefighting 
personnel assignment under current management practices and not to be 
used for predicting specific fires. We further use these model to under-
stand which drivers are the most influential on daily assigned personnel 
counts with a focus on the nonlinear relationships present.

2. Study area and methods

2.1. Western conterminous United States

The study area for this project is the western conterminous United 
States (Fig. 1). Specifically, we used the boundaries of the western 
GACCs (any GACC that is not the Eastern Area Coordination Center, 
Southern Area Coordination Center, or Alaska Interagency Coordination 
Center). GACCs are defined by fire managers for the purposes of resource 
assignment and management (National Interagency Fire Center, 2019).

2.2. Fire data (2012–2020)

2.2.1. ICS-209-PLUS
The ICS-209-PLUS dataset is a simplified collection of situation re-

ports (sitreps) from the US National Incident Management System 
Incident Situation (ICS-209) reports (St. Denis et al., 2023). The dataset 
includes a table comprised of ICS-209 sitreps, which are filed daily to 
weekly on wildfire incidents and describe specific characteristics asso-
ciated with the fire of interest, with fires each receiving separate sitreps. 
An ICS-209 sitrep is usually created for a wildfire if the fire exceeds 100 
acres in timber vegetation or 300 acres in grass/brush, although smaller 
fires may still be included if the fire is believed to be significant (St. 
Denis et al., 2023). We excluded sitreps that described firefighting ef-
forts in response to pre-planned/prescribed fires. We further removed 
sitreps that contained obvious errors (records with unrealistic total 
personnel counts in the hundreds of thousands, number of threatened 
structures that were in the hundreds of thousands, or locations not in the 
conterminous United States). Missing values in the threatened structures 
field can safely be assumed to equate to no structures threatened and 
filled with zeros. Negative wildfire fire spread rates, which are impos-
sible and only occurred on the first sitreps of some fires, were replaced 
with the current acreage reported by that sitrep.

We created a new variable called “structures in fire” (STR_INFIRE) by 
taking the sum of the number of structures damaged by the fire and the 
number of structures destroyed by the fire. The structures-in-fire vari-
able was created to simplify the data with the consideration that results 
from wildfire simulators may be used as input for our models and will 
not be able to distinguish between damaged and destroyed buildings.

2.2.2. National incident management situation report (IMSR)
The IMSR dataset, a fire dataset from the National Interagency 
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Coordination Center about GACCs, provides information about pre-
paredness levels and uncontained large fires (meaning the large fire does 
not have a secured perimeter) at the national and regional scales as well 
as fire priority at a regional scale (Nguyen et al., 2024). These data 
reflect the availability of and demands on firefighting resources and the 
foci of management. At a preparedness level of 1, resources are more 
available, while at the maximum preparedness level of 5, most resources 
are already assigned to fires. This dataset also includes the number of 
uncontained large fires burning in the US each day. A higher number of 
uncontained large fires causes a higher level of competition for fire-
fighting resources. Fire priority is also captured in this dataset, and it 
reflects which fires were the highest priority for the GACCs, with higher 
numbers corresponding to lower priority fires. Including fire priority in 
the model may help capture some of the institutional and situational 
factors influencing personnel assignment.

2.2.3. Resource ordering and status system (ROSS) and the interagency 
resources ordering capability (IROC)

ROSS and IROC are systems used by dispatchers to manage requests 
for firefighting resources. These software applications track and archive 
information on the requests they receive and fill, including information 
about fire characteristics, response personnel and equipment charac-
teristics, and assignment details (Belval et al., 2020). ROSS was used 
prior to March 2020, after which ROSS was replaced by IROC. Data 
elements from these systems are archived and can be combined into a 
single record of assignments. For conciseness, we will refer to this data 
combination as “ROSS” hereafter. From these data, we were able to 
obtain the number of ground personnel and the number of air/overhead 
personnel assigned to each fire. Ground personnel were defined as 
personnel on the ground at the fire; this includes hand crews and engine 
crews. Air personnel were defined as personnel operating aircraft and 
assisting in aircraft operations. Overhead personnel were defined as all 
personnel in charge of managing resources for the fire. Air and overhead 
personnel counts were combined due to the difficulty of separating out 
the two personnel counts. Aviation personnel are sometimes ordered 
separately from their equipment, which can result in the aviation 
personnel being ordered under a code that classifies them as overhead 
personnel (please see Lockheed Martin Enterprise Solutions & Services 
(ES&S) Ross Project Office (2012) and National Dispatch Efficiency 
Working Group (2024) for more information on the ROSS dataset 
structure).

2.3. Data manipulation and cleanup

Sitreps from the ICS-209-PLUS dataset were assigned a GACC based 
on the initially reported fire coordinates. We then joined the ICS-209- 
PLUS to the national and regional IMSR reports according to both the 
GACC region and report date. Sitreps that did not occur on the same date 
as a national IMSR report or regional IMSR report within the same GACC 
were assigned the values of the previous report if that report was within 
14 days. Otherwise, values of one were assigned for national or regional 
preparedness levels and values of zero were assigned for national or 
regional uncontained large fires. Fire priority from the IMSR wildfire 
reports was joined based on fire name and report date. If no matching 
report was found, then a value of − 1 was assigned for fire priority. 
Several IMSR reports on fire priority with the same exact date matched 
the same sitrep in three different fires. Considering that in every case 
these fire priorities reported disagreed and it was impossible in some 
situations to tell which reported fire priority came first, we assigned a 
value of − 1 for these sitreps as well.

After joining the datasets, we filtered the joined dataset such that for 
each fire, if multiple sitreps were created on the same day, only the 
sitrep with the highest reported total personnel count was kept. The 
removal of the other sitreps helped to prevent overemphasis on fires that 
had more reports written within the same time frame as other fires. We 
then removed sitreps that likely covered the “mop-up” phase of the fire 

when personnel are primarily monitoring the fire after containment has 
been achieved. We discarded these sitreps due to these actions being 
beyond the scope of our project. For each fire, sitrep removal occurred if 
two consecutive days of zero personnel counts occurred and if all of the 
subsequent sitreps had personnel values of less than 20, in which case 
only the first sitrep with a zero personnel count was kept. A value of 20 
was chosen due to any personnel count below that number likely being a 
mop-up crew (Belval et al., 2022). We further cleaned the dataset by 
only keeping fires that started in the western region of the United States, 
which included any fire that did not occur in the Eastern Area Coordi-
nation Center, Southern Area Coordination Center, or the Alaska Inter-
agency Coordination Center. A small subset of sitreps contained percent 
contained/completed values that detailed a maximum management area 
instead of a percentage: these sitreps were dropped. Finally, situation 
reports that had missing values in any of our variables of choice 
(Table 1) were dropped from the data. These data were dropped to 
prevent the arbitrary selection of some value that may not reflect reality 
and also since doing so still retained an acceptable number of sitreps. 
The resulting dataset contained 44,981 sitreps for 6,443 fires (Fig. 1) 
and was used in the model focused on total personnel counts.

From the previous dataset, we created a new dataset by joining the 
ROSS data based on fire ID. If no matches were present in the ROSS 
dataset, then the data for that fire were discarded. Personnel on the 
ground and air/overhead personnel were separately summed from the 
ROSS data and joined along with assigned agency (Forest Service, 
Department of Interior, or other). The resulting dataset contained 
37,680 sitreps and 4,837 fires. Note that personnel counts in this dataset 
and the previous one include personnel from any type of crew, not just 
the type 1 and type 2 crews discussed in previous studies.

The datasets before the ROSS join and after were separately 
randomly split by fire into 5 different groups such that all sitreps 
belonging to one fire were all assigned to the same group. These groups 
were used to maintain consistent 5-fold cross-validation across model 
tests. All sitreps belonging to one fire were kept within the same group to 
prevent information leakage within the CatBoost models.

2.4. CatBoost models

2.4.1. Process of the CatBoost model
The CatBoost model works like the General Boosting Model (GBM) 

by sequentially producing weak decision trees (Hancock and Khosh-
goftaar, 2020; Huang et al., 2019). Trees are trained on a bootstrap of 
the training data and designed to minimize the sample residuals that are 
calculated based on a loss function. Samples with the worst predictions 
are weighed more heavily, while weights are reduced for more correctly 
predicted samples. The next decision tree is created based on a bootstrap 
of the reweighed training data (Hancock and Khoshgoftaar, 2020; 
Huang et al., 2019). In this way, each subsequent decision tree focuses 
on the data with the most unexplained variance from the prior tree. After 
the user-defined number of trees is produced, the final output is formed 
from the summation of the outputs of all of the decision trees weighed by 
a user-defined learning rate (Hancock and Khoshgoftaar, 2020; Huang 
et al., 2019).

CatBoost differs from the GBM through its handling of categorical 
variables, its usage of ordered boosting, and its development of oblivious 
decision trees (Huang et al., 2019; Prokhorenkova et al., 2018). For each 
categorical variable, CatBoost performs two different processes. For 
categorical variables with less than a user-defined number of different 
categorical values, one-hot encoding is performed. For the rest of the 
categorical values that go over the number, ordered target statistics are 
calculated. Ordered target statistics is a process in which the order of the 
categorical values and their associated output values are shuffled, and 
each categorical value is replaced with a new value based on how many 
times the same categorical value has been seen before in the shuffle and 
some user-defined statistic performed with the output values of the 
previous identical categorical values (Huang et al., 2019; 
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Prokhorenkova et al., 2018). Furthermore, when using these variables to 
produce splits in trees, CatBoost may combine different categorical 
variables together to enable better predictions via the reduction of bias 
(Huang et al., 2019; Prokhorenkova et al., 2018). When performing the 
ordered boosting, CatBoost creates several random permutations 

(ordered lists) on the input training data. For each of these ordered lists 
except one withheld list, a separate model is built to predict each 
observation such that the model is trained on all observations before the 
target observation in the permutation and updated based on the model 
targeting the next observation in line. These models are used to design 
the splits in the trees, while the one withheld ordered list is used to 
decide leaf values. Ordered boosting helps to reduce overfitting (Huang 
et al., 2019; Prokhorenkova et al., 2018). Decision trees in the final 
model are oblivious, which means that every split in the same layer is 
identical. Oblivious trees have the benefit of being balanced, reducing 
processing time, and counteracting overfitting (Huang et al., 2019; 
Prokhorenkova et al., 2018).

2.4.2. Model design
We used the CatBoost regressor model from the CatBoost 1.2.2 py-

thon library (Prokhorenkova et al., 2018) to create the CatBoost models. 
Three different CatBoost models were created for three different 
dependent variables of focus: total personnel count from the 
ICS-209-PLUS data without the joined ROSS data, ground personnel 
count from the dataset made after the ROSS data was joined, and air/-
overhead personnel count from the dataset made after the ROSS data 
was joined. After testing variables for each model, we decided upon 
using 14 predictor variables for the model predicting total personnel and 
included assigned agency for the other models, resulting in 15 variables 
for the two models predicting ground personnel or air/overhead 
personnel (Table 1). Predictor variables were selected from the larger set 
of potential variables based on: (1) compatibility with the machine 
learning model; (2) data coverage (i.e., not missing in at least 80% of the 
data), (3) predicting power, and (4) availability (i.e., if the model was to 
be used for a future scenario, could that variable be obtained through 
simulation or projection). Despite previous research suggesting expected 
weather is important (Bayham and Yoder, 2020), expected weather was 
not included in this model. While weather datasets (both current and 
projected) are readily available and one could theoretically use the 
weather on the days after a sitrep to simulate expected weather, that 
data does not capture what weather was actually forecasted to the 
firefighters working on the fire, which is much more difficult to deter-
mine or project and may differ from what weather would occur.

Point of origin latitude and longitude refers to the coordinates of the 
ignition point for the fire and remain the same throughout the sitreps for 
a fire. Structures threatened is not based on any specific metric and is 
instead decided by the person writing the sitrep. The exact definition of 
what structures may be threatened varies based on the sitrep author (St. 
Denis et al., 2023). Percent contained/completed refers to what per-
centage of the perimeter of the fire has been stopped.

2.4.3. Hyperparameter tuning
After deciding upon the predictor and dependent variables, we per-

formed hyperparameter tuning using the RandomizedSearchCV func-
tions from the scikit-learn 1.4.1 python library (Pedregosa et al., 2011). 
Hyperparameters refers to the settings of the model that impact model 
performance but are independent of the input data. Random-
izedSearchCV with 5-fold cross-validation using a GroupKFold splitter 
(splitting on fire ID) was used to test random combinations of hyper-
parameters for each model (Table 2), with 50,000 combinations for the 
total model, 60,000 combinations for the ground model, and 57,000 
combinations for the air/overhead model. The number of combinations 
tested for each model differs due to time constraints. Testing tens of 
thousands of combinations can take several days for each model, even 
with parallel processing distributed among dozens of cores. Tests were 
designed to iterate through 10,000 combinations at a time such that 
code could be run and the results could be examined to decide if testing 
should continue based on whether improvement in R2 was occurring on 
a daily basis. The best combination was chosen based on which resulted 
in the highest R2 and produced reasonable results upon observation of 
the Partial Dependence Plots (i.e., reasonable fluctuations in partial 

Table 1 
Input predictor variables.

Predictor Variable Description Data Type Data 
Source

ACRES Acres burned 
to date

Numeric ICS- 
209- 
PLUS

DISCOVERY_DOY Day of year 
when the 
wildfire was 
discovered

Numeric ICS- 
209- 
PLUS

FUEL_MODEL Fuel Model 
of area based 
on the 
Anderson 
Fire 
Behavior 
Fuel Model (
Anderson, 
1982)

Categorical ICS- 
209- 
PLUS

PCT_CONTAINED_ COMPLETED Percentage 
of fire that is 
contained or 
completed

Numeric/ 
Percentage

ICS- 
209- 
PLUS

POO_LATITUDE Starting 
latitude of 
fire

Numeric ICS- 
209- 
PLUS

POO_LONGITUDE Starting 
longitude of 
fire

Numeric ICS- 
209- 
PLUS

STR_INFIRE Structures 
inside the 
fire

Numeric ICS- 
209- 
PLUS

STR_THREATENED Structures 
currently 
threatened 
by fire

Numeric ICS- 
209- 
PLUS

WF_FSR Wildfire Fire 
Spread Rate 
(acres 
burned since 
last report 
over days 
since last 
report)

Numeric ICS- 
209- 
PLUS

AGENCY Fire agency 
assigned to 
fire

Categorical ROSS

NATIONAL_UNCONTAINED_LARGE_FIRE Number of 
concurrent 
uncontained 
large fires 
across the US

Numeric IMSR

REGIONAL_ 
UNCONTAINED_LARGE_FIRE

Number of 
concurrent 
uncontained 
large fires 
within GACC

Numeric IMSR

NATIONAL_ PREPAREDNESS _LEVEL Measure of 
firefighting 
availability 
across the US

Categorical IMSR

REGIONAL_ PREPAREDNESS_LEVEL Measure of 
firefighting 
availability 
within GACC

Categorical IMSR

FirePriority Ordinal 
measure of 
firefighting 
priority

Ordinal IMSR
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dependence resulting from the data and not unnatural patterns intro-
duced by the model; Partial Dependence Plots are explained shortly). All 
runs were further performed with a random state of 7 to enable com-
parisons between runs (by making all random elements in each model 
the same) and a one hot max size of 0 to make use of CatBoost’s ordered 
target statistics for our categorical variables.

After the RandomizedSearchCV was performed, we took the best 
results and used them in the GridSearchCV functions from the scikit- 
learn 1.4.1 python library (Pedregosa et al., 2011). GridSearchCV was 
set up exactly the same as the previous RandomizedSearchCV, except 
instead of testing random hyperparameters, we tested four different 
combinations involving either having plain or ordered boosting and 
having per tree sampling or per tree level sampling (Table 2). These 
hyperparameters were tested in this way due to both having only two 
choices available and due to the potential of these hyperparameters to 
dramatically increase calculation times if included in the Random-
izedSearchCV. The best hyperparameter combinations are listed in 
Table 3. All hyperparameters that would impact model performance and 
are not mentioned within this paper were left at default values.

2.5. Assessing and interpreting model results

Each model was assessed with a 5-fold cross-validation using the 
previously mentioned defined groups as well as the best hyper-
parameters combinations we could test. The performances of the three 
fitted models were evaluated by computing the averages of the following 
metrics from the scikit-learn and SPOTPY libraries: R2, mean absolute 
error (MAE), root mean squared error (RMSE), and index of agreement 
(Houska et al., 2015; Pedregosa et al., 2011).

The influence of each predictor variable was determined by calcu-
lating the average normalized importance of each variable across the 5- 
fold cross-validation for each model. Importance is defined as the 

difference between the loss value of the model with and without the 
variable of study (Prokhorenkova et al., 2018). We also examined pre-
dictor variable influence by creating Partial Dependence Plots (PDPs) for 
several variables. PDPs are created by taking 500 random samples, 
varying the values of one or two predictor variables while keeping the 
rest constant, and seeing how on average the value of the response 
variable changes (known as partial dependence). We would like to note 
that PDPs are created using the data training and testing split from the 
fifth fold of 5-fold cross-validation for that model.

3. Results

3.1. Model predictions and metrics

The R2 and index of agreement values for the personnel models 
varied from 0.5020 to 0.6273 and 0.8194 to 0.8759, respectively. The 
ground personnel model had the highest R2 and index of agreement 
values while the total personnel model had the lowest. Mean absolute 
error (MAE) and root mean square error (RMSE) also varied among the 
models (Table 4).

All three models share the same issue where extreme values tend to 
be underestimated (Fig. S1). Furthermore, the predictions tend to differ 
more from actual higher values than actual lower values, with all three 
models showing greater ranges in underestimation than overestimation.

As the predicted values increase, the spread of the residuals increases 
as well (Fig. S2). While the range of residuals corresponding to over-
estimation and underestimation are about the same in the air/overhead 
personnel models, underestimation reaches higher extremes than over-
estimation in the total and ground personnel models.

3.2. Variable importance

Most of the predictors of higher importance relate to physical fea-
tures of the fire, such as acres burned, location, percent containment/ 
completion, and structures in the fire or threatened by the fire. We found 
that the most important variable for the total personnel model was 
longitude (LONGITUDE/long), with an importance of 0.1518. The most 
important variable for the ground model was structures threatened 
(STR_THREATENED/threat), with an importance of 0.1493. The most 
important variable for the air/overhead personnel model was acres 
(ACRES/acres), with an importance of 0.1819 (Fig. 2). Many of the 
contextual predictors, such as national/regional uncontained large fires 
and national/regional preparedness level, were less important. The main 
exception to this pattern was fire priority (FirePriority), which was 
found to be the second most important variable in the total personnel 
model, the sixth most important variable in the ground model, and the 
fourth most important variable in the air/overhead model.

3.3. Partial dependence plots

We include here the PDPs for what we consider to be the five most 
important variables across all three models, which include structures 
threatened, acres burned, longitude and latitude of point of fire origin, 
and fire priority. Each PDP was created from the last fold of each 5-fold 
cross-validation.

Structures threatened had a similar influence on the partial depen-
dence of personnel assigned in all three models (Fig. 3) besides a sudden 
rise and fall between 100 and 350 structures threatened for the total 

Table 2 
Hyperparameter testing lists.

Hyperparameter RandomSearchCV Test Lists GridSearchCV 
Test Lists

Iterations [250, 500, 1000–10000 by 
1000s]

–

Learning Rate [0.001, 0.005, 0.01, 0.02, 
0.03,0.04–0.2 by 0.02s]

–

Depth [6,7,8,9,10,11] –
L2 Leaf Regularization [2, 4, 6, 7, 8, 9, 10, 25, 50, 75, 

100]
–

Random Strength [1, 2, 4, 8, 10, 20, 30, 40, 50] –
Random Subspace Method [0.5, 0.6, 0.7, 0.8, 0.9, 1] –
Minimum Data in Leaf [1, 10, 50, 100, 250, 500, 

1000]
–

Minimum Variance 
Sampling (MVS) 
Regularization

[0, 5, 10, 20, 50, 100, 1000] –

Boosting Type – [Plain, Ordered]
Sampling Frequency – [PerTreeLevel, 

PerTree]

Table 3 
Hyperparameter testing best results.

Hyperparameter Total Ground Air

Iterations 1000 4000 4000
Learning Rate 0.03 0.02 0.02
Depth 10 8 8
L2 Leaf Regularization 2 25 25
Random Strength 10 10 10
Random Subspace Method 0.8 0.6 0.6
Minimum Data in Leaf 1 250 250
MVS Regularization 20 0 0
Boosting Type Ordered Ordered Plain
Sampling Frequency PerTreeLevel PerTreeLevel PerTree

Table 4 
Summary of model metrics.

Model R2 MAE RMSE Index of Agreement

Total 0.5020 84.63 173.8 0.8194
Ground 0.6273 108.0 206.1 0.8759
Air/Overhead 0.6141 39.21 59.34 0.8647
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Fig. 2. Average normalized importance plot. Plot of variable importance, ordered with the variable with the highest importance in the total model on the left and the lowest on the right. For each variable, importance in 
the total personnel, ground personnel, and air/overhead personnel models are plotted. Long refers to the point of origin longitude, FirePriority refers to the fire priority, threat refers to the structures threatened, acres 
refers to the acres burned, lat refers to the point of origin latitude, infire refers to the structures in fire, completed refers to the percent contained or completed, fuel refers to the fuel model of the area, doy refers to the 
discovery day of year, nat_prep and reg_prep refer to the national preparedness level and the regional preparedness level, respectively, nat_lf and reg_lf refer to the national uncontained large fires and the regional 
uncontained large fires, respectively, fsr refers to the wildfire fire spread rate, and agency refers to the agency assigned. Agency was not used in the total personnel model. Fuel, fsr, nat_prep, agency, and reg_prep 
correspond to categorical predictors and are the total sum of the importance of each type in each category.
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model (Fig. 3A) Overall, the number of personnel assigned increases as 
the number of structures threatened increases, with the same increase in 
structures threatened resulting in a smaller increase in personnel 
assigned at higher values of structures threatened. The relationship 
between the log of structures threatened and personnel assigned is also 
nonlinear, with tenfold increases in structures threatened having a much 
larger impact at higher values than lower values.

The influence of acres burned on personnel assignment is similar for 
all three models (Fig. 4). Overall, as the number of acres burned in-
creases, the number of personnel assigned increases as well, with 
diminishing returns for the same increase in acres as acres becomes 
larger. Furthermore, the relationship between the log of acres burned 
and the partial dependence is somewhat nonlinear, with tenfold in-
creases in acres burned having more impact at higher values than lower 
values.

Overlaying the partial dependence of personnel assigned on both 
longitude and latitude on a map of the GACCs of the western United 
States (Fig. 5) demonstrates that personnel assignments are greatest at 
more western longitudes, with a trend of decrease in personnel assigned 
as one goes from west to east across all latitudes. Personnel assignments 
also tended to be greater at more southern latitudes, although this 
pattern holds more strongly in western longitudes than eastern latitudes. 
The highest personnel counts were seen within the two California GACCs 
(the Northern California GACC and the Southern California GACC).

Lastly, personnel assignment is the highest at priority 1 for fire pri-
ority (Fig. 6). In all three models, personnel assignment sharply de-
creases from priority 1 to about priority 10, after which decreases 
become more shallow. Around priority 20–30, there is very little change 
in personnel assigned. Furthermore, the number of personnel assigned to 
fires with no priority (priority − 1) is similar to those assigned to fires 
with priority between 10 and 15 (not inclusive).

4. Discussion

4.1. Model metrics and predictions

Predicting firefighting resource usage using wildfire data is chal-
lenging. Hand et al. (2016) presented a model predicting suppression 
expenditure in the western United States for the years 2006–2011 with 
an adjusted R2 of 0.613, meaning almost 40% of the variance in 
expenditure was unexplained. Bayham et al. (2020) predicted more 
specific resource usages within the western United States for the years 
2007–2013 and created models that predicted type 1 crew and type 2 
crew usage with R2 values of 0.5019 and 0.3285, respectively. Cullen 
et al. (2024) and Wells et al. (2024), two studies that more directly 
modeled assigned personnel, were able to explain 26% and 43.2% of the 
variability in personnel assignment in data not yet seen by the models, 
respectively.

Fig. 3. Structures threatened partial dependence plots. Partial dependence plots for structures threatened for the total model (3A), ground model (3B), and air/ 
overhead model (3C). The x-axis is log-scaled.

Fig. 4. Acres burned partial dependence plots. Partial dependence plots for acres burned for the total model (4A), ground model (4B), and air/overhead model (4C). 
The x-axis is log-scaled.
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All three of our models were able to explain over half of the vari-
ability within firefighting personnel assignment (Table 4). The R2 values 
calculated for our models are comparable or better than the ones re-
ported by Hand et al. (2016), Bayham et al. (2020), Cullen et al. (2024), 
and Wells et al. (2024), although we would like to emphasize that our 
study and the first two of the four studies mentioned here focused on 
different, albeit similar, variables. Variability not explained in our 
models is likely due to the stochasticity of the wildfire system combined 
with inconsistencies in fire reports due to fires being reported by 
different people at different times and regularity. Sources of variability 
may also include discrepancies between fire ignition date and fire 
detection date (especially in remote areas), political or situational fac-
tors not included in the model such as incident commander and value of 

threatened homes, and forecasted weather at the time of the sitrep.
Our models have a more extreme range of underprediction than 

overprediction. Furthermore, larger predicted values tended to be 
associated with larger ranges in residuals. Overall, however, our pre-
dictions do follow the trend in actual values, and as the observed value 
increases, the predictions tend to increase proportionally as well. The 
models all perform as desired given the challenges of the input datasets 
and capture the general trend of personnel assignment as opposed to 
predicting specific fires with extreme accuracy.

4.2. Drivers of firefighter personnel assignment

Based on the average normalized importances of the input variables 

Fig. 5. Two-dimensional point of origin partial dependence plot for the total model. Two-dimensional partial dependence plot of longitude and latitude overlaid on 
the Geographic Area Coordination Center (GACC) borders of the western United States. Numbers on the borders between colors denote the separating number for 
those two colors. Numbers with an insert line denote the minimum partial dependence of the color being pointed at. Yellow colors correspond to higher partial 
dependencies and purple colors correspond to lower partial dependencies. The minimum partial dependence is 77.675 and the maximum partial dependence 
is 476.59.

Fig. 6. Fire priority partial dependence plots. Partial dependence plots for fire priority for the total model (6A), ground model (6B), and air/overhead model (6C). 
Black lines on the x-axis (some of which are overlapping) represent every tenth percentile for fire priority.
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(Fig. 2), structures threatened and acres burned are both important 
variables as expected. Structures threatened was the most important 
variable for the ground personnel model and was in the top three vari-
ables for the other two models as well. The influence of structures 
threatened agrees with results found in previous empirical modeling of 
firefighter resource costs and usage (Bayham and Yoder, 2020) and, 
combined with the PDPs (Fig. 3), further shows how firefighter man-
agers focus on the fires with the most potential damage. Acres was found 
to be the most important variable for the air personnel model and was in 
the top four variables for the other two models as well. Considering that 
large fires take up most of firefighting resources (St. Denis et al., 2023), 
the higher importance of acres is expected as well. However, the rela-
tionship between acres and personnel assignment is nonlinear (Fig. 4), 
and above a certain point increases in fire size do not have a major 
impact on assigned personnel. At this point, it seems these fires reach a 
threshold of danger such that additional resource demand cannot be 
supported, or additional resources may not be needed due to a high 
capacity already on the fire. Even with log-scaling applied, the rela-
tionship between structures threatened and acres burned were still 
nonlinear, further showing that CatBoost may be better for capturing 
these nonlinear relationships than parametric linear regressions even if 
log-scaling is taken into consideration.

Latitude and longitude of the point of fire origin were also both 
important variables. Based on the two-dimensional PDP of longitude and 
latitude overlaid on a map of the GACCs of the western United States 
(Fig. 5), one can see that personnel assignment tends to be highest in 
California GACCs, which include the Northern California GACC and the 
Southern California GACC. High levels of personnel assignments within 
California are expected considering California has more state-provided 
and USFS-provided resources than other states and fires in California 
have been associated with high levels of suppression costs and resource 
use in the past (Belval et al., 2020; Gebert et al., 2007; Hand et al., 2016, 
2017). Moreover, despite the fact that GACCs were created to manage 
wildfire personnel assignment, personnel assignment partial depen-
dence does not strictly follow GACC boundaries and is more influenced 
by the latitude and longitude of the point of fire origin/proximity to 
California. This pattern likely corresponds to the fact that California 
GACCs routinely share resources with neighboring GACCs.

In contrast to the variables discussed so far, fire priority is an 
important variable that is not a physical measurement of wildfire 
behavior. According to our models, fires considered to be higher priority 
(lower numbers) received more resourcing than fires considered to be 
lower priority (higher numbers) or fires with no priority being marked 
(denoted as − 1) (Fig. 6). Fires with no priority likely occurred during 
times of less resource demand where fires did not have to be prioritized. 
It is important to note that fire priority reflects the institutional factors 
and the attitudes/practices of managers that affect personnel assignment 
yet cannot be obtained directly from wildfire simulation. Fires with 
similar characteristics may have completely different numbers of 
personnel assigned depending on what fire managers or other outside 
influences (such as governmental bodies) may consider important. 
However, while fire priority influences personnel assignment, fire pri-
ority is certainly influenced by the other independent variables as well 
and cannot be taken as purely political/managerial influence.

While fire priority is an important contextual variable, other 
contextual variables on resource supply and demand in our dataset were 
much less important, including national and regional preparedness 
levels and national and regional uncontained large fires. The charac-
teristics of a fire are more important than other events occurring within 
the GACC or the country in its entirety. Fires considered to be important 
get the personnel required first.

4.3. Applications to fire management

The models described here provide insight into the main drivers 
behind personnel assignments in the recent past (2012–2020). The goal 

was to highlight general trends (as opposed to exact predictions for each 
fire) to provide historical context that could be used to guide future 
management decisions. Furthermore, the focus was on understanding 
not just the monetary cost of fire suppression, but also the cost of peo-
ple’s time, which can have effects on fatigue and fire suppression 
effectiveness. The usage of a daily scale provides a way to track how long 
personnel are being deployed on a fire, as opposed to predicting only the 
cumulative personnel assignment per fire.

Models were created to be combined with fire activities under 
climate change and landscape transformation in the future. Wildfire 
simulators could be used to generate predictions on future wildfire 
behavior that could then be input into these models to get an under-
standing of how current management practices would result in 
personnel usage under future conditions. Most of the variables in these 
models have been selected in part due to their ability to be simulated. 
Fire priority may be a variable about institutional influences and thus 
more difficult to capture, but potential in modelling the variable exists. 
Different GACCs will have guidelines that emphasize different physical 
fire characteristics in different ways. Exploration of these guidelines 
could allow for modeling of fire priority in the future based on other 
modeled fire characteristics. Information about future workload will 
provide insight into the sustainability of current practices and help guide 
decisions on how to reduce worker fatigue given lengthening fire 
weather seasons (Jolly et al., 2015).

Results and findings from these models are most directly applicable 
to the western CONUS, considering that the models were built upon data 
from that region. However, the methods used here could be repeated in 
other geographic locations that are concerned about how changing 
wildfire behavior may impact that area’s ability to supply the necessary 
personnel. Certain independent variables would need to be adjusted/ 
replaced depending on available data (such as preparedness level), but 
as long as there is a historical wildfire record and historical firefighting 
personnel assignment record, the methods here could be repeated to 
provide important historical context.

4.4. Potential caveats of the datasets and models

Datasets before the ROSS join and afterwards are quite different, and 
even personnel counts for the same fires of the two datasets do not al-
ways agree. Summing together the ground and air/overhead personnel 
counts shows that the sum is often greater than the total personnel count 
from the ICS-209-PLUS dataset (Fig. S3). Furthermore, wildfires usually, 
although not always, have an ICS-209 report written about them (and 
thus can be on the ICS-209-PLUS dataset) when the fire exceeds 100 
acres in timber or 300 acres in grass or brush (St. Denis et al., 2023). As a 
result, only 1–2% of all wildfires are represented in this dataset (St. 
Denis et al., 2023). However, as mentioned previously, considering that 
large fires cause the majority of the firefighting costs and use the ma-
jority of personnel (St. Denis et al., 2023), we consider using these fires 
to be a satisfactory way to gain insight into overall firefighting personnel 
assignment behavior. Relative importances of independent variables can 
also vary as different hyperparameters are chosen due to the multi-
collinearity of those variables, though using CatBoost reduces the 
impact of multicollinearity on model fit.

Beyond just reflecting current management practices, the final 
datasets used for this study also reflect current physical conditions. Even 
if management practices do not change, other changes in environmental 
conditions, such as the changes in vegetation and the aforementioned 
climate change, will also alter the relationships between fire and 
personnel assignment. Susceptibility of anthropogenic structures to 
wildfires may also change, as studies in quantifying resilience in order to 
help reinforce these areas are being performed (Argyroudis et al., 2020; 
Tampekis et al., 2023).

It is important to note that this model is not meant for use in decision 
support with regards to recommending resource allocations in the 
future. Using this model in that fashion would require the assumption 
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that decisions made in the past are optimal, which may not be true. 
Instead, this study is a retrospective analysis to help us understand what 
has driven resource allocation in the recent past and what that might 
imply for future demands on firefighting personnel.

4.5. Future work

One future plan for the models created is to simulate future fires with 
the Large Fire Simulator, FSim, under different climate change scenarios 
and to see how personnel assignment trends under current management 
practices may change due to climate change. FSim is a wildfire simulator 
that takes in information regarding landscape surface and vegetation, 
historical fire data, and weather data to simulate thousands of years of 
potential fire seasons with a focus on large fire events (Finney et al., 
2011). FSim had been used with future weather data to predict future 
wildfire behavior under climate change. (Dye et al., 2023; McEvoy et al., 
2020; Riley and Loehman, 2016). Considering that the models created 
here already focus on large fires, FSim would be a great match for 
producing future wildfire behavior to use with the models produced in 
this paper to provide insights into potential future demand for wildland 
firefighting personnel.

5. Conclusion

We found that CatBoost can produce good predictors of firefighting 
personnel assignment based on historical wildfire data from the years 
2012–2020 within the western United States. Three models using a daily 
temporal resolution highlight how personnel time has been used in an 
effort to provide information for fatigue analysis. Our models high-
lighted the main drivers behind personnel assignment under current 
management practices, with structures threatened, acres burned, point 
of fire origin, and fire priority being among the most important. While 
contextual variables such as preparedness level and other uncontained 
large fires were among the least important variables, the importance of 
fire priority shows how factors beyond the characteristics of the fire it-
self are still influential in personnel assignment. Our models provide an 
understanding of the historical practices of personnel assignment that 
can be used as platform towards understanding how to manage 
personnel assignment under future climate change conditions.
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