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Abstract. The relationship between large fire occurrence and drought has important implications for fire prediction

under current and future climates. This study’s primary objective was to evaluate correlations between drought and fire-
danger-rating indices representing short- and long-term drought, to determine which had the strongest relationships with
large fire occurrence at the scale of the western United States during the years 1984–2008. We combined 4–8-km gridded

drought and fire-danger-rating indices with information on fires greater than 404.7 ha (1000 acres). To account for
differences in indices across climate and vegetation assemblages, indices were converted to percentile conditions for each
pixel. Correlations between area burned and short-term indices Energy Release Component and monthly precipitation
percentile were strong (R2¼ 0.92 and 0.89), as were correlations between number of fires and these indices (R2¼ 0.94 and

0.93). As the period of time tabulated by indices lengthened, correlations with fire occurrence weakened: Palmer Drought
Severity Index and 24-month Standardised Precipitation Index percentile showed weak correlations with area burned
(R2¼ 0.25 and �0.01) and number of large fires (R2¼ 0.3 and 0.01). These results indicate associations between short-

term indices and moisture content of dead fuels, the primary carriers of surface fire.
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Introduction

Wildland fire risk to highly valued resources influences land

management planning, budgeting for firefighting and fuels
reduction work, and positioning of suppression resources in the
United States (Ager et al. 2010; Calkin et al. 2011; Finney et al.
2011b). Current modelling efforts have produced burn proba-

bility maps for the continental US that are statistically similar to
recent fire activity (Finney et al. 2011b), and statistical models
that incorporate climate data have exhibited better-than-random

prediction of area burned (Westerling et al. 2002; Preisler and
Westerling 2007; Preisler et al. 2009), but several challenges in
fire prediction remain. Large fires occur stochastically, in

response to lightning produced by localised convective storms
and human ignitions, making prediction of the location and
timing of fires difficult. As the climate changes, temperature and

precipitation regimes fluctuate, whichmay affect the occurrence
of large fires. Given these uncertainties, it is important to
understand the mechanisms by which various drought and fire
danger indices (which capture different timescales of drought)

are empirically related to large fire occurrence, and the strength
of these relationships.

Another challenge in studies of wildland fire and climate is
that large fires are rare events. Accordingly, much previous
work on fire and climate has taken place at large spatial scales at
annual timesteps, or over timeframes of multiple centuries, in

order to encompass a large enough sample size of fires for
statistical analysis to be possible. In the case of fire historywork,
most studies take place over several hundred years at an annual

timestep that chronicles both drought (inferred from tree ring
width) and fire occurrence (based on positioning of fire scars
relative to tree rings) (e.g. Baisan and Swetnam 1990; Swetnam

and Betancourt 1998; Hessl et al. 2004; Heyerdahl et al. 2008b;
Morgan et al. 2008). Previous studies have linked some of the
variability in fire occurrence and area burned with synoptic

weather patterns such as persistent high pressure blocking ridges
and coupled atmosphere–ocean teleconnections (e.g. El Niño–
SouthernOscillation) that correlatewith droughts (Gedalof et al.
2005; Abatzoglou and Kolden 2011). Owing to limitations in
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fire reporting before 1970, when statistics were aggregated
annually by National Forest or state, studies associating fire
and climate often utilised annual timesteps (Gedalof et al. 2005,

Karen Short, pers. comm.). However, daily and monthly fluc-
tuations in weather are strong determinants of fire ignition and
spread. Recently, finer-scale weather data and a comprehensive

database of large fires have become available, enabling analysis
of the relationship between drought and fire at a more detailed
spatial and temporal scale. An improved understanding of the

time-scales and means through which climate and weather
influence fire occurrence would be beneficial to fire prediction
efforts as well as operational fire management, and provide a
way for researchers to link predictions of climate change with

their potential effect on future fire occurrence.
Precipitation is related to fire occurrence via several mechan-

isms. (1) In dead fuels such as litter and downed woody debris,

fuel moisture is controlled by environmental conditions includ-
ing precipitation, relative humidity, solar radiation and temper-
ature. In the absence of precipitation, dead vegetation (fuels)

will dry out, converging towards ambient relative humidity over
a period of days or weeks, the period increasing with fuel
diameter (Fosberg 1971). (2) During prolonged dry periods

(which occur seasonally in some areas), live herbaceous and
woody shrub vegetation may enter dormancy or die, contribut-
ing to the loading of fine dead surface fuels (,0.635 cm
(,0.2500) in diameter), which are the primary carriers of surface

fire (Scott and Burgan 2005). (3) Live fuels decrease inmoisture
content during dry periods, and the proportion of flammable
compounds may increase (Matt Jolly, pers. comm.). (4) Ignition

and propagation of fire is more likelywhen fuels are dry, and fire
rates of spread are higher (Rothermel 1972;Andrews et al. 2003;
Scott and Burgan 2005).

Live and dead fuel moistures thus fluctuate across a range of
timescales, from daily (due to rain events), to seasonally
(in much of the western US, new live vegetation typically grows
during spring and cure during dry summers), to decadally (in

response to extended droughts). Various fire danger and drought
metrics utilise different temporal scales that are implicitly
related to these fuelmoisture dynamics, butmorework is needed

to relate these metrics to fire occurrence in the western US, both
empirically and physically. Use of indices based on fuel mois-
ture values derived from recent weather could strengthen fire

modelling efforts, because some frequently used metrics may not
be directly related to fire ignition and behaviour.

We quantified the correlation of eight drought and fire

danger metrics with large (.404.7 ha or 1000 acres) fire occur-
rence, defined using two criteria: area burned and number of
fires. The drought and fire danger indices included in this study
were: Standardised Precipitation Index (SPI) calculated for

3-, 6-, 9-, 12- and 24-month intervals, Palmer Drought Severity
Index (PDSI), monthly precipitation totals (PPT) and Energy
Release Component (ERC). These indices were selected based

on their common usage in the literature regarding drought and
fire in the western US, or our assessment of their potential for
capturing the relationship between drought and fire occurrence.

The goals of this study were to: (1) examine which, if any, of
these metrics were strongly related to fire occurrence across
the western US, independent of ecoregion, climatic zone and
vegetation type, and (2) investigate whether the timescale of the

indices affected the strength of their correlations with fire
occurrence. A metric that is strongly correlated with fire occur-
rence across this region could be utilisedwith high confidence in

fire prediction work at this scale. In addition, examining which
metrics are strongly correlated with fire occurrence suggests
physical mechanisms linking drought and fire.

Methods

Study area

The western US was chosen for this study because it spans
several diverse fire-adapted ecoregions. In order to delineate
the study area (Fig. 1) from the grasslands of theGreat Plains, we

used Omernik ecoregions (Omernik 1987).

Data sources: addressing challenges in reporting

Fire records

Fire records were obtained from the Monitoring Trends in
Burn Severity (MTBS) project, conducted jointly by the US
Forest Service and US Geological Survey, which maps the

extent of large fires since 1984 based on Landsat imagery
(Eidenshink et al. 2007). We limited fires included in this study
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Fig. 1. Map of the study area in the western US, west of the grasslands of

the Great Plains region, as delineated by Omernik ecoregion boundaries.

This figure shows all fires included in the analysis, selected from the

MonitoringTrends inBurn Severity database based on the following criteria:

(1) fires with centroid inside the study area and (2) fires with burn area

greater than or equal to 404.7 ha (1000 acres) in size. (Map projection:

Albers.)
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(n¼ 5976) to those that had centroids within our study area
boundary with start dates between 1 January 1984 and 31
December 2008. Only fires larger than 404.7 ha (1000 acres)

were included, because large fires burn most of the area in this
region (Strauss et al. 1989). Data on fire perimeters, areas,
locations and discovery dates were provided by the MTBS

project.
The MTBS project dataset addresses some issues that

previously existed in fire records owing to inconsistent and

incomplete reporting of wildland fires (Brown et al. 2002;
Schmidt et al. 2002). No single comprehensive database tracks
all fires in theUS, so a complete record of firesmust be compiled
from records of multiple federal agencies (US Department of

Agriculture Forest Service uses one system, a second system is
employed by the US Department of Interior (USDOI) Fish and
Wildlife Service, and a third system is used by USDOI’s Bureau

of Land Management, Bureau of Indian Affairs and National
Park Service) as well as non-federal records (state databases,
National Association of State Foresters records and the US Fire

Administration’s National Fire Incident Reporting System).
Compiled records are subject to several issues, including incon-
gruent reporting standards. For example, more than half of non-

federal fire records lack information on date, location or size,
meaning that they cannot be used for analyses with spatial or
temporal questions (Karen Short, pers. comm.). The MTBS
project has determined the spatial locations and discovery dates

of all fires in its dataset through geolocated burn scars, an
advantage of this dataset. A second issue in compilations is
duplicate records that can cause overestimates of area burned on

the order of 40% (Karen Short, pers. comm.). Duplicate records
occur most frequently where large fires cross land ownership

boundaries, causing records to appear in multiple land agency
reporting systems. Because the MTBS project dataset is based
on changes in spectral signatures in Landsat imagery, duplicate

records are eliminated and some previously unreported fires are
detected. Compilations of fire records may also suffer from
omissions, especially of smaller fires, which can cause under-

estimates of fire numbers. Because we limited our analysis to
fires larger than 404.7 ha (1000 acres) in the western United
States, this problem is minimised, but inference is limited to

large fire events.
The intention of the MTBS project is to track wildland fires,

but some prescribed fires have been included in the database
through detection of changes in spectral signatures. At the time

of this study, the MTBS project did not state whether each fire
was prescribed or wildland, so we were unable to separate them.
Data on daily fire progression is lacking or not readily available

from the MTBS project or other sources, meaning the contribu-
tion of daily winds (an important factor in fire growth) could not
be quantified for this study.

Drought and fire danger indices

The eight drought and fire danger indices analysed in this
study provide a means for assessing relative wetness or dryness
of the fire environment, and may serve as predictors of water
availability, vegetation health and fire danger. We utilised

spatially and temporally complete high-resolution gridded
climate and meteorological datasets (Fig. 2). Monthly climate
data from Parameter-elevation Regressions on Independent

Slopes Model (PRISM; Daly et al. 1994a) at 4-km horizontal
resolution were used to derive the PPT, PDSI and SPI indices

0 95190 380 570 760
Kilometres

SPI3

�3.0–�2.5

�2.5–�2.0

�2.0–�1.5

�1.5–�1.0

�1.0–�0.5

�0.5–0

0–0.5

0.5–1.0

1.0–1.5

1.5–2.0

2.0–2.5

2.5–3.0

Fig. 2. Map of the western US with gridded 3-month Standardised Precipitation Index

(SPI3) data for June 2008 andUSClimateDivision boundaries. Themap illustrates the fine-

scale variability in SPI3. (Map projection: Albers.)
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following Kangas and Brown (2007). The drought indices were
calibrated to the 1895–2009 period of record,making themmore
robust thanmonthly drought indices calculated over shorter time

periods. A complementary dataset developed by Abatzoglou
(2013) provided a spatially and temporally complete daily
meteorological dataset from 1979–2010, upsampled to 8-km

resolution by employing high-frequency meteorological condi-
tions from the North American Land Data Assimilation System
(NLDAS) that is then bias-corrected using PRISM. The resul-

tant dataset provided daily maximum and minimum tempera-
tures, relative humidity, daily precipitation amount and
duration, temperature, and state-of-the-weather code for 1300
hours (local time), all components necessary for calculations of

ERC. This study utilised the products of these efforts: PPT,
PDSI and SPI at 3-, 6-, 9-, 12- and 24-month timescales at a 4-km
scale and monthly timestep, and ERC(G) at an 8-km scale on a

daily timestep.
Previous work on fire and climate faced challenges in

obtaining consistent and complete weather records; these

gridded datasets address some of these challenges. For example,
Remote Automated Weather Stations (RAWS) used for fire
danger calculations are subject to quality control problems and

are often switched off when fire season ends, meaning that
weather records are temporally incomplete. Until recently,
weather data has typically been available only at sparse point
locations with weather stations or summarised at coarse resolu-

tion. Researchers were presented with the choice of using
weather data from a single station as a proxy for a large area,
or using a dataset such as the National Climatic Data Center

climate division data, which averages conditions from weather
stations over large areas that do not necessarily correspond to
ecoregion boundaries (e.g. Balling et al. 1992; Littell et al.

2009). Microclimates can vary widely within a few square
kilometres, especially in the mountainous terrain that charac-
terises much of the western US (Holden et al. 2011; Sellers
1965; Thornthwaite 1953), suggesting that coarse-resolution

climate division data may not be representative of conditions
at remote wildfire locations, as was noted by Westerling et al.

(2002).

Recent efforts have produced griddedweather datasets with a
resolution of several kilometres, such as the ones used in this
study, by applying physically and statistically based algorithms

to weather station records (Daly et al. 1994b; Thornton et al.

2012; Abatzoglou 2013). Such datasets have made more
detailed analysis possible by avoiding the spatial limitations

of climate division datasets and the often temporally sporadic
and spatially non-uniform data from weather stations. Gridded
datasets at 4–8-km resolution cannot account for all microcli-
mate variability, but represent an advance in this effort.

Below, we briefly describe the calculation of each index and
previous work relating this index to fire occurrence. Throughout
this manuscript, we qualitatively define the strength of correla-

tions as follows: weak (R2, 0.45), moderate (0.45,R2, 0.8)
or strong (0.8#R2# 1).

Palmer Drought Severity Index (PDSI)

Palmer (1965) outlined calculation of his drought metric as
‘a first step toward understanding drought,’ but the metric

has since become widely institutionalised, especially for
estimating agricultural drought. Positive values of PDSI
suggest wetter-than-normal conditions, and negative values

suggest drought (�1¼mild drought, �2¼moderate drought,
�3¼ severe drought and �4¼ extreme drought) (Palmer
1965). The PDSI uses a water balance method that adds

precipitation to soil moisture in the top two layers of soil,
whereas a simple temperature-driven evapotranspiration algo-
rithm (Thornthwaite 1948) removes it. The calculation of PDSI

is autoregressive, based on a portion of the current month’s
value and the preceding value (Guttman 1998). Thus, PDSI has
no inherent time scale, with PDSI values having different
‘memories’ varying from 2 to more than 9 months depending

on the location (Guttman 1998). The spatial scale of PDSI also
varies, because the index can be calculated for a single weather
station or several stations may be averaged, as in the case of

climate division data.
Criticisms of the PDSI are numerous. The algorithm lacks

information on important drivers of evapotranspiration, vegeta-

tion curing and dead fuel moisture, including relative humidity,
solar radiation and wind speed (Sheffield et al. 2012). All
precipitation is assumed to be rain, meaning the algorithm is

potentially ill-suited for areas where a significant proportion of
the precipitation is snowfall. Hence, PDSI has been found to be
only weakly to moderately correlated with soil moisture
(r¼ 0.5–0.7, equivalent to R2¼ 0.25–0.49), with the strongest

correlation in late summer and autumn, corresponding with fire
season in much of the western US (Dai et al. 2004). Owing to
data and processing limitations, Palmer developed the index for

nine climate divisions in the Midwest, resulting in empirically
derived constants that are not locally calibrated for other
locations (Palmer 1965). Consequently, the PDSI’s value has

been found to vary across precipitation regimes, with a single
value having different meanings in different areas (Guttman
et al. 1992; Guttman 1998). In addition, PDSI values are
sensitive to the time period used to calibrate the metric

(Karl 1986).
Despite these shortcomings and lack of a clear mechanism

relating PDSI to fire occurrence, the PDSI is the index most

commonly used to assess drought in the fire literature (Table 1;
Baisan and Swetnam 1990; Swetnam and Betancourt 1998;
Hessl et al. 2004; Heyerdahl et al. 2008b). For fire history

studies, PDSI is often the best available metric because of finer-
scale reconstructions (18) than those available for precipitation
and temperature (generally 2.58). Current-season PDSI values

have been related to contemporary fire occurrence in some
ecosystems of the western US, although correlations are rarely
strong (Table 1).

Monthly precipitation totals (PPT)

Monthly precipitation amount has been used in several

studies as a metric relating drought to fire occurrence. This
metric is simple to measure and calculate; however, because
precipitation regimes vary across climatic regions, amounts

must be normalised to local records in order to indicate depar-
ture from normal conditions. Littell et al. (2009) found seasonal
precipitation to be a significant factor in multivariate models
predicting area burned for some but not all ecoregions in the
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western US, with negative summer precipitation included in
models for 7 of 16 ecoregions. Balling et al. (1992) found total
annual precipitation had a Spearman’s rank correlation of�0.52

to �0.54 with area burned in Yellowstone National Park, a
stronger correlation than they found with PDSI (Table 1).

Standardised Precipitation Index (SPI)

The SPI is calculated as ‘the difference of precipitation from
the mean for a specified time period divided by the standard
deviation’ (McKee et al. 1993); where precipitation amounts are
not normally distributed, they must be first converted to a

normal distribution (Lloyd-Hughes and Saunders 2002). Bene-
fits of the SPI include: (1) it can be used to derive probability of
precipitation deviation, (2) it is normalised, so wet and dry

climates are represented in similar fashions (McKee et al. 1993),
(3) SPI spectra exhibit similar patterns at all locations, meaning
the values are comparable across regions (Guttman 1998) and

(4) the index can be calculated for any time length in order to
capture short- or long-term drought. Despite the advantages of
the SPI, we found only one study relating SPI to fire occurrence:
Fernandes et al. (2011) found strong correlations between

summer 3-month SPI (SPI3) and anomalies in fire incidence
in the Western Amazon.

Energy Release Component (ERC)

The Energy Release Component (ERC), an index in the US
National Fire Danger Rating System (NFDRS), provides an
approximation of dryness based on estimates of fuel moisture

(Andrews et al. 2003). ERC is a continuous variable calculated
from a suite of meteorological and site variables, including
relative humidity, temperature, precipitation duration, latitude
and day of year (Cohen and Deeming 1985). ERC is calculated

daily and is thus more dynamic than current implementations of
PDSI and SPI, because it is sensitive to daily relative humidity
and precipitation timing and duration (i.e. large rain events

cause a significant reduction in ERC). ERC calculation is also
affected by fuel loadings in different size classes. For example,
in this study, ERC was calculated for fuel model G, which

includes a substantial loading of large dead fuels as well as fine
fuels (Bradshaw et al. 1983; Andrews et al. 2003). Owing to the
heavy weighting of large dead fuels, ERC(G) is mainly driven
by weather conditions during the previous 1.5 months, which is

Table 1. Review of literature relating drought and precipitation indices calculated from weather records to area burned in the western US during

the modern era

Studies utilise fire records kept byUSDepartment of Interior National Park Service, Bureau of LandManagement, Bureau of IndianAffairs, USDepartment of

Agriculture Forest Service, states and private landowners. Palmer Drought Severity Index (PDSI), Energy Release Component for fuel model G (ERC(G))

Region Authors Years Statistic relating drought index to fire occurrence

Yellowstone

National Park, Wyoming, US

Balling et al. (1992) 1895–1990 PDSI for two adjacent climate divisions. Pearson product-moment correla-

tion (r), between area burned and summer PDSI¼�0.04 to �0.33, for

antecedent winter PDSI¼�0.14 to �0.35, for antecedent year PDSI¼
�0.12 to �0.36, for antecedent 2 years PDSI¼�0.12 to �0.38. Spear-

man’s Rank between area burned and summer PDSI¼�0.55 to �0.6, for

antecedent winter PDSI¼�0.23 to �0.27, for antecedent year PDSI¼
�0.2, for antecedent 2 years PDSI¼�0.18.

Interior

Western US

Collins et al. (2006) 1926–2002 Average PDSI calculated for 3 regions (1¼MT, ID, WY; 2¼NV, UT;

3¼AZ, NM) based on averaging PDSI value for each state. Correlations

between area burned and PDSI were: R2¼ 0.27–0.43 for current year;

R2¼ 0.44–0.67 for model including current year and 2 years antecedent

Western US Littell et al. (2009) 1916–2003 and

1980–2003

Forward selection regression used to parameterise generalised linear models

based on seasonal precipitation, temperature and PDSI for current and

antecedent year; dependent variable was annual area burned by ecopro-

vince, R2¼ 0.33–0.87

National Forests

in north-western

California, US

Miller et al. (2012) 1910–1959 and

1987–2008

Regression models predicted number of fires based on summer PDSI (June,

July and August) (R2¼ 0.37) and total annual area burned (R2¼ 0.37) for

the first time period. For the later time period, total precipitation in June,

July and August was correlated with number of fires (R2¼ 0.60) and total

annual area burned (R2¼ 0.54).

Idaho and western

Montana, US

Morgan et al. (2008) 1900–2003 Spearman’s rank correlation between annual area burned and climate-divi-

sion temperature and precipitation. Summer precipitation: r¼�0.49

Summer temperature (normalised): r¼ 0.59

Two National

Forest groups in

southern Oregon

and northern

California, US

Trouet et al. (2009) 1973–2005 National Forests clustered into two groups with similar temporal sequences

of area burned. Daily ERC(G) was averaged to produce a seasonal value

for July–August–September. Correlation (r) between annual area burned

and seasonal ERC(G)¼ 0.32 – 0.4

US West Westerling et al. (2003) 1980–2000 Monthly PDSI values are ‘the average of values interpolated from US cli-

mate divisions’ onto a 1� 18 grid. Pearson’s correlation (r) , –0.7 – 0.8.

(Note: lagged positive correlations in arid regions may indicate abundant

moisture for fine fuel growth.)
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the time it takes for deadwoody debris 7.6–20.3 cm (3–8 inches)
in diameter (also called 1000-h fuels) to mostly equilibrate to
constant ambient conditions (Fosberg et al. 1981).

ERC(G) has been shown to have a strong relationship with
fire occurrence in Arizona: the probability of fire increases
with ERC(G), and can be quantified with logistic regression

(Andrews andBevins 2003;Andrews et al. 2003). Therefore, the
ERC(G) is used by US federal land agencies both operationally
(Predictive Services) and in simulation models that predict fire

size and probability, including FSPro and FSim (Finney et al.

2011a, 2011b). However, the parameters of the logistic regres-
sion relating ERC(G) and fire occurrence vary with location,
suggesting that fires are likely to ignite at different ERC(G)

values in different areas due to variations in climate and fuels.
For example, fuels tend to burn at a much lower (moister) ERC
(G) on Washington’s Olympic Peninsula where relative humid-

ity is higher and temperatures are lower during fire season, than
in the Great Basin where relative humidity is lower and
temperatures are higher. Thus, ERC(G) should be regarded as

a relative index; current ERC(G) values must be compared to
historic values in the same location, as well as local fire
occurrence information, in order to interpret them correctly

(Schlobohm and Brain 2002).

Associating fire occurrence and weather data

Each fire’s location was assigned to the latitude and longitude at
the centroid of its perimeter, and the discovery datewas used as a
proxy for ignition date. For each fire, we identified the closest

pixel of weather data, in both space and time. For monthly
indices (PPT, PDSI and all SPIs), we queried the spatially
closest pixel during the month of the fire’s discovery. Values of

monthly indices are based on conditions at the end of each
month. We queried the daily ERC(G) data to identify the ERC
(G) of the closest pixel on the fire’s discovery date, as well as the
6 days following, and averaged these seven daily ERC(G)

values. In the absence of data on containment dates and daily fire
progression, we assumed that these first 7 days were critical to
fire spread. This assumption may not always hold true, because

some large fires, especially those ignited by lightning under
moderate conditions, may grow slowly for a period of weeks
until a weather event spurs their growth. However, we were

hesitant to use an analysis window longer than 7 days for
ERC(G) because this would increase the chance of erroneously
incorporating low ERC(G) values associated with weather

events that curtailed fire growth.

Statistical analyses

Empirical distributions of indices for fire v. all conditions

The empirical frequency distributions of indices vary. For
example, the SPI is normally distributed and centred at zero,

with more than two-thirds of values between �1 and 1, indicat-
ing relatively normal conditions. Therefore, if fires occurred at
random with respect to this index, from a purely probabilistic
standpoint, fires would be more likely to occur at values close to

zero than at extreme values of the index simply because mild
values occur more often by an order of magnitude. The same is
true for PDSI: PDSI values signifying mild drought also occur

much more frequently than extreme values. This property of

PDSI may be why some studies have found that synchronous
fires tend to occur at PDSI values signifying mild (frequently
occurring) rather than extreme (rarely occurring) drought

(e.g. Baisan and Swetnam 1990; Hessl et al. 2004).
To remove the confounding effect of different empirical

distributions in relation to fire occurrence, we tested whether the

distribution of each index was significantly different during
conditions under which large fires occurred than under all
conditions, using two tests based on the empirical frequency

distribution (EFD) and the empirical cumulative distribution
function (ECDF). To determine the EFD of each index’s values,
we queried the gridded index data and created a histogram of all
pixel values occurring during the study period from 1 January

1984 through 31 December 2008. We used all days of the year
rather than attempt to delineate a fire season, because the length
of fire season varies spatially across the western US and

temporally from year to year. We then created histograms of
index values associated with large fire events. For each index, to
test whether the means of the two EFDs (‘fire’ v. ‘all’) were

different, we compared the bootstrapped means of the two
EFDs, using 500 random samples of n¼ 1000with replacement,
and then constructed a 90% confidence interval around the

means. Because many of the empirical distributions are non-
normal, this bootstrapping approach was needed to create a
confidence interval around the mean. We chose a sample size of
1000 in order to rectify bias introduced by extremely large

(n. 1� 106 for ‘all’ conditions) and unequal (n¼ 5976 for
‘fire’ conditions) population sizes.

Second, we plotted the ECDF of each index for all values and

statistically compared it to values associated with large fires.
The null hypothesis was that the two distributions were the
same. Because smaller values of PPT, PDSI and SPI indicate

drier conditions, the alternative hypothesis we tested was that
the ECDF of the metric associated with large fires was greater
than that of all values of the metric (if the ECDF is greater, the
distribution is shifted to the left, suggesting lower index values).

Conversely, higher values of ERC(G) indicate drier conditions,
so the alternative hypothesis is that the ECDF of the ‘fire’
distribution is less than that of ‘all’ conditions (in this case, if the

ECDF is less, the distribution is shifted to the right, signifying
higher index values). The non-parametric test statistic D mea-
sures the maximum separation distance between the two dis-

tributions. As D increases, so does the likelihood that the two
distributions are from different populations. The Kolmogorov–
Smirnov (KS) test was applied to determine the probability that

D occurred by chance. Due again to large and unequal sample
sizes, we ran the KS test for 500 samples of n¼ 1000 for each
index. We then calculated how many times the null hypothesis
would have been rejected at a¼ 0.1 in order to determine

whether the ‘fire’ and ‘all’ ECDFs were different. This method-
ology removes the confounding effect of the different frequency
distributions of the indices, and determines whether each metric

has power in detecting conditions conducive to large fire events.

Correlations of metrics with large fire occurrence

In order to remove confounding effects introduced by the
distribution of the metric and by variations in microclimate, we
converted weather and climate data to percentile-based mea-

sures that convey the relative rarity of a given index value for
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each pixel that experienced a fire. Thus, we focused on departure
from median precipitation conditions as a metric for severity of
dry or wet conditions, as measured by a suite of drought and fire-

danger indices, rather than attempting to find a definition of
drought that applies to all climates in the western US.

For each pixel where a fire occurred, we queried all values

during the period of study. These values were then sorted, in
order to establish the rank of the index’s value during each fire.
Ranks were calculated based on the index values as a single pool

for all seasons, all months and all years. Ranks were then
converted to percentiles. For PDSI, SPIs and PPT, low percen-
tiles (near zero) indicate extremely dry conditions, whereas high
percentiles (near 100) indicate wet conditions. For ERC(G), the

reverse is true: low percentiles (near zero) indicate fuels with
high moisture content, whereas high percentiles (near 100)
indicate dry fuels. Each fire was thus assigned a percentile for

each index. For example, if the value of PPT for March 1997
ranked 100th of 200 values, signifying average conditions, the
PPT percentile would be 50. Because each pixel has a different

distribution of weather data, we found index percentiles for each
individual pixel (therefore, an ERC(G) value of 57 may indicate
95th percentile conditions in one cell, whereas in another cell

the 95th percentile ERC(G) value may be 89 – but in both
cases the 95th percentile value indicates a comparable level of
aridity for that microclimate). This methodology is similar to that
ofAlley (1984),whorecommendedasimilar rank-basedapproach.

For each metric separately, we summed area burned and
number of fires across the western US, binning fires by percen-
tile class (e.g. 1st percentile, 2nd percentile). For example, if

there were three fires that occurred during 100th percentile ERC
(G) conditions (a 1000-ha fire that occurred in June 2000 in
Arizona, a 1200-ha fire during August 2003 in Montana and a

1500-ha fire in southern California in November 2008) then the
total area burned during 100th percentile ERC(G) conditions
would be 3700 ha. Essentially, the output is a histogram of area
burnedwith 100 binswhere each index percentile corresponds to

a bin. The relationship of index percentiles to total area burned
was then quantified using linear regression, and evaluated by
means of regression analysis (R2) and tests of significance

(P-values). Note that these correlations are based on index
values during time periods when a fire occurred. The same
methodology was repeated to produce linear models relating

number of fires to index percentiles.

Results

Empirical distributions of indices for ‘fire’ v. ‘all’ conditions

Empirical frequency distributions (EFDs) of drought indices are
varied, and include bimodal, normal and right-skewed (Fig. 3).

The EFD of PDSI is bimodal, because of the fact that the index
value is reset at the end of a drought or pluvial episode, resulting
in a dip in the frequency of themetric at values near zero (Palmer

1965). Mild to moderate PDSI values (�2 to þ2) occur most
frequently in our dataset, with extreme values (e.g. �5 or þ5)
occurring very rarely, indicating the rarity of extreme drought

and wet conditions as recorded by this index (Fig. 3c). Based on
visual inspection of the graph, the distribution of PDSIs associ-
ated with large fire occurrence is shifted slightly to the left of the
distribution of all PDSIs, indicating that fires tend to occur

during lower PDSIs. The PDSI values most commonly associ-
atedwith large fires are�0.5 to�2, indicatingmild drought. The
fact that most fires occur at values of PDSI indicating mild

drought does not necessarily imply that mild drought is more
conducive to large fire than extreme drought; rather, values of
the indexnear zero occurmuchmore frequently,with a relatively

small number of months during which fires could potentially
occur at rare extreme values of the index. This result also illus-
trates that extreme drought that cumulates over prolonged peri-

ods of moisture deficit is not a prerequisite for fire occurrence.
Instead, the proclivity for fire occurrence during mild drought
conditions as assessed by the PDSI, may explain why years of
fire synchrony tend to occur during years of mild–moderate

rather than extreme drought simply becausemild droughts occur
muchmore frequently (Baisan and Swetnam 1990; Balling et al.
1992; Swetnam and Betancourt 1998; Westerling et al. 2003;

Hessl et al. 2004; Heyerdahl et al. 2008a).
The EFD of ERC(G) is characterised by frequent occurrence

of moderate ERC(G) values, whereas high values indicating

extremely dry conditions are rare (Fig. 3a). Zero values occur
most frequently (zero is assigned to indicate snow or high fuel
moistures that preclude burning). The distribution of ERC(G)

values associated with large fire events is markedly different
from that of ERC(G)s as a whole, being skewed towards the
higher ERC(G) values typically associated with dry fuels.

In contrast to PDSI and ERC(G), the EFD of monthly

precipitation values (PPT) is heavily right-skewed, with the
lowest precipitation values being most common (Fig. 3b). The
distribution of PPT during large fire events is more heavily

skewed towards low PPTs than the distribution of PPT during
the entire period of study, indicating fire events take place
preferentially at lower PPTs.

The EFD of the Standard Precipitation Index is by definition
normal because of its calculation, as discussed previously
(Fig. 3d–h). The distribution of SPI3 values under which large
fires ignite is shifted towardsmore negative (drier) values of SPI3

than that of the distribution of the metric as a whole, indicating
that large fires tend to burn more frequently under values of SPI3
that indicate drought. However, visual inspection of these figures

indicates that this shift weakens as the period tabulated by the
metric lengthens, until it is not visible for SPI24 (Fig. 3).

We also performed quantitative testing of the means of the

EFDs. Testing of the means indicated that the mean values of
ERC(G), PPT and SPI3 associated with large fires are signifi-
cantly drier than the mean of all values at the 90% confidence

level (Fig. 4, Table 2). Confidence intervals around themeans of
the ‘fire’ and ‘all’ values distributions for PDSI, SPI6, SPI9,
SPI12 and SPI24 overlapped, indicating that the means are not
significantly different.

A second method for testing whether the distributions of
‘fire’ and ‘all’ conditions are different used the Kolmogorov–
Smirnov test of the D statistic of the empirical cumulative

distribution functions (ECDFs; Table 2). These Kolmogorov–
Smirnov tests indicated that the ‘fire’ distributions of ERC(G)
and PPT are significantly different than the distributions of these

metrics under all conditions, and strong evidence existed for
SPI3 as well (Fig. 5; Table 2). Evidence that the ‘fire’ distribu-
tions of SPI6, SPI9, SPI12 and SPI24 are different from ‘all’
conditions weakened as the time period tabulated by the metric
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increased (Table 2; Fig. 5). For PDSI, relatively weak evidence
exists that the two distributions are different, and this hypothesis

would be rejected by both testing of the means (Fig. 4) and
approximately one-third of Kolmogorov–Smirnov statistic tests

at a¼ 0.1 (Fig. 5; Table 2). Thus, PDSI is not strongly related to
large fire occurrence.

Taken as a whole, these results suggest that shorter-term
indices (ERC(G), PPT and SPI3) are more strongly associated
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Fig. 3. Empirical frequency distribution (EFD) of index values, 1 January 1984–31December 2008, in the study

area (shown in black) plotted with EFD of index values associated with large fire events (shown in grey).
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that these indices are related to fire occurrence. (a) EnergyRelease Component for fuelmodel G (ERC(G)) (7-day

average), (b) monthly precipitation (PPT), (c) Palmer Drought Severity Index (PDSI), (d) Standardised
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with large fire occurrence than longer-termmetrics (PDSI, SPI6,
SPI9, SPI12 and SPI24).

Correlations of metrics with large fire occurrence

The area burned by individual fires was not strongly related to
raw index values. Results are shown for ERC(G) and PDSI,
with the pattern being similar for the other metrics (Fig. 6).

The largest fires occur at frequent values of indices (moderate
ERC(G), low PPT, moderate PDSI and moderate SPI), rather
than the most extreme values. For example, the largest fires did

not occur at the highest ERC(G)s, which are rare in the record.
Large fires occurred more often during the drier phase of the
metrics (higher ERC(G)s, negative PDSI and negative SPI);

this relationship with SPI is stronger in the shorter phase of this
metric (SPI3), and weakens progressively as the duration of the
metric becomes longer. In the case of ERC(G), PPT and PDSI,

the relationship with fire area is further obscured by the fact
that these metrics vary regionally (e.g. a precipitation value of
20mm in a month may signify wet conditions in the Great
Basin and dry conditions on the Washington Coast). However,

by transforming indices to percentile values for each fire, the
relationships become more apparent. For example, a scatter-
plot of ERC(G) percentile v. fire size illustrates that large

fires tend to occur when ERC(G) is above the 80th percentile
(Fig. 7).

We parameterised linear models relating index percentile to

number of large fires (Table 3, Fig. 8) and area burned (Table 4,
Fig. 9). For all metrics, correlations between index percentile
and number of large fires were stronger than those between

index percentile and area burned. Of all metrics, ERC(G)
percentile demonstrated the strongest relationship with area
burned (adjusted R2¼ 0.92; Table 4; Fig. 9) as well as number
of fires (adjustedR2¼ 0.94; Fig. 8; Table 3). Number of fires and

area burned increased exponentially with ERC(G) percentile.
PPT percentile (Figs 8, 9, Tables 3, 4) demonstrated almost as
strong a relationship with number of fires and area burned as

ERC(G) (for number of fires, adjusted R2¼ 0.93; for area
burned, adjusted R2¼ 0.89). SPI3 percentile (Figs 8, 9,
Tables 3, 4) had a strong correlation with number of fires

(adjusted R2¼ 0.83) and moderate correlation with area burned
(adjusted R2¼ 0.70). For SPI6, 9, 12 and 24 percentile (Fig. 9,
Table 4), the models explained less than half of the variability in
area burned, indicating a weak relationship between area burned

and these indices. Correlations with number of fires were
somewhat stronger, with models explaining more than half the
variability in the data for SPI6, 9 and 12 percentile, declining

with the time periodmeasured by the index. PDSI percentile also
showed a weak relationship with area burned (adjusted
R2¼ 0.34, Fig. 9, Table 4), except perhaps at extremely low

PDSI values (0–20th percentile), where area burned increases
with drought severity. In addition, PDSI percentile had a weak
relationship with number of large fires (adjusted R2¼ 0.30,

Fig. 8, Table 3). Based on these results, we concluded that
ERC(G) percentile is the index with the most power in predict-
ing large fire occurrence across the western US, followed
closely by PPT percentile.

Discussion

We found strong correlations between fire occurrence (defined

as total area burned and total number of fires) and certain
drought and fire danger indices across the western US, indi-
cating that models based on a single metric can account for over

90% of the variability in number of large fires and area burned
across a large region, once metrics have been normalised to
account for local climate. We therefore concluded that our
methodology was successful in reducing the effect of
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Fig. 4. The 90% confidence interval around the mean value of indices, for

all index values during 1 January 1984–31 December 2008 and for index

values associated with large fires events. Bootstrapped mean was calculated

on a sample with replacement, with sample size¼ 1000, and sample

conducted 500 times. Pairs of confidence intervals overlapped for PDSI,

SPI6, SPI9, SPI12 and SPI24, meaning there is not statistical evidence that

the means are different under conditions when large fires occurred. Monthly

precipitation (PPT), Energy Release Component (ERC), Palmer Drought

Severity Index (PDSI) and Standardised Precipitation Index at 3-, 6-, 9-, 12-

and 24-month timescales (SPI3–SPI24).
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confounding factors discussed in the Introduction and Methods
sections, by: (1) accounting for the empirical distribution of

indices by normalising metrics to percentile, (2) removing the
relative meanings of some indices by normalising them to local
climate, (3) using a consistent georeferenced dataset for fire

occurrence provided by the MTBS project, which reduced
problematic fire records and (4) utilising gridded index data to
more closely represent weather and climate conditions near

remote fire locations than datasets with coarser resolutions.
Once metrics were normalised to percentile, we found that

metrics based on the previous 1–3 months of weather data had
strong correlations with both total area burned and number of

large fires, indicating that this time period is critical to produc-
ing the conditions conducive to large fires. As the time period
tabulated by the metric lengthened, the correlation weakened.

This result indicates the importance of dead fuel moisture in
promoting or retarding the spread of large fires. Dead surface

fuels (grass, litter, duff andwoody debris) are the primary carrier
of surface fires, and provide the intensity necessary for surface
fires to transition to crown fires (Van Wagner 1977). Fine fuels

such as grass are frequently referred to as 1-h fuels, because they
mostly equilibrate to constant ambient conditions within a few
hours, whereas woody debris 7.6–20.3 cm (3–8 inches) in

diameter falls into the 1000-h category, meaning it takes ,40
days to mostly equilibrate with constant environmental condi-
tions (Fosberg et al. 1981). Dead fuelmoistures therefore largely
depend on weather conditions within the previous month and a

half. It follows, therefore, that monthly precipitation totals
(PPT), which were strongly related to area burned and number
of fires in the western US, are a major driver of dead fuel

Table 2. Statistics comparing empirical distributions of indices during large fire events with those during all conditions

The null hypothesis (Ho) was that the two distributions were the same. The alternative hypothesis (Ha) for PalmerDrought Severity Index (PDSI), Standardised

Precipitation Index (SPIs) and monthly precipitation (PPT) was that the empirical cumulative distribution function (ECDF) of the index during fires is greater

than that of all values; for Energy Release Component for fuel model G (ERC(G)),Hawas that the ECDF of ERC(G) associatedwith fire events is less than that

of all ERC(G)s. Ho was rejected a higher percentage of the time for shorter-term metrics (at a¼ 0.1), constituting evidence that large fire occurrence is more

strongly related to shorter-term metrics. The D statistic measures the maximum separation distance between the two distributions, with higher values

suggesting higher likelihood that the two distributions are different. Data in italic show strong evidence for differences between the ‘fire’ and ‘all’ distributions

Index Median of means (fire) Median of means (all) Means different based on 90% CI? D (median) Percentage of tests in which Ho rejected

ERC(G) 79.80 52.1 Yes 0.52 100.0

PPT 15.10 42.6 Yes 0.36 100.0

SPI3 20.30 0.1 Yes 0.26 95.5

SPI6 �0.20 0.1 No 0.20 78.6

SPI9 �0.10 0.2 No 0.20 77.8

SPI12 �0.05 0.2 No 0.19 72.6

PDSI �0.70 �0.1 No 0.19 70.0

SPI24 0.23 0.26 No 0.11 18.6
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moisture values. Because ERC(G) contains fuels of all size
classes, including a heavy weighting of 1000-h fuels (Bradshaw
et al. 1983; Andrews et al. 2003), this index also captures trends

in fuel moistures largely based on weather during the previous
month and a half. ERC(G) has two other properties which likely
caused it to have a stronger relationship with fire occurrence

than other indices in this study. First, ERC(G) calculation
includes relative humidity and solar radiation terms, which are
important determinants of fuel moisture and vegetation curing.

As vegetation cures, it becomes more readily available to burn
and thus contribute to increased fire intensity and rate of spread
(Scott and Burgan 2005). Second, ERC(G) is calculated on a

daily timestep and can capture timing of precipitation events,
which affect the potential for fires to grow. Of the indices

analysed, only ERC(G) captures daily weather, because other
indices are summed over monthly intervals. However, ERC(G)

calculation is more complex than that of PPT, which performed
nearly as well, indicating that PPT could be used in situations
where time, processing power or data inputs are limited. SPI3

did not perform as well as ERC(G) or PPT, but was strongly
correlated with number of large fires and moderately correlated
with area burned in the western US. Given that SPI3 is based on
precipitation during a 3-month period, we expect that it would

have a moderately strong relationship with fuel moistures.
Indices based on longer timeframes had weaker or no

relationship with fire occurrence. This result was likely due to

the fact that longer-term indices do not strongly reflect recent
precipitation and thus have weaker relationships with dead fuel
moistures. For example, because PDSI is autoregressive, sum-

mer PDSI values will reflect antecedent conditions and are
affected by winter–spring precipitation. Similarly, SPI9 for
October–June could have an equivalent value for a 9-month
period encompassing a dry October–March followed by a wet
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Table 3. Linear models relating index percentiles to number of large

fires

n, number of large fires; ERC_pct, Energy Release Component for fuel

model G (ERC(G)) percentile; PPT_pct, monthly precipitation (PPT)

percentile; PDSI_pct, Palmer Drought Severity Index (PDSI) percentile;

SPI3_pct, Standardised Precipitation Index (SPI) at 3-month percentile;

SPI6_pct, SPI6 percentile; SPI9_pct, SPI9 percentile; SPI12_pct, SPI12

percentile; SPI24_pct, SPI24 percentile; R2 adjusted R2 of model

Index Model R2

ERC(G) log10n¼ 0.02768� (ERCpct) � 0.2333 0.94

PPT log10n¼�0.01389� (PPTpct)þ 2.303 0.93

PDSI log10n¼�0.002438� (PDSIpct)þ 1.878 0.30

SPI3 log10n¼�0.006487� (SPI3pct)þ 2.058 0.83

SPI6 log10n¼�0.003710� (SPI6pct)þ 1.944 0.68

SPI9 log10n¼�0.002978� (SPI9pct)þ 1.910 0.52

SPI12 log10n¼�0.002813� (SPI12pct)þ 1.903 0.52

SPI24 log10n¼�0.000473� (SPI24pct)þ 1.743 0.012
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April–June, as it would for a wet October–March followed by a
dry April–June. However, the effect on dead fuel moistures as

well as the amount of vegetation that has cured would be
extremely different.

The weather conditions surrounding the extensive 1910 fires

in Montana and Idaho demonstrate a case where shorter-term
metrics would have likely been more strongly correlated with
fire occurrence than longer-term metrics. In a 1931 study, the
year 1910 was not listed as being among the 10 driest years for

either state during the period of record (1895–1930 for Montana
and 1898–1930 for Idaho) (Henry 1931). Henry (1931) notes
that, ‘The dry year 1910 is seemingly in a class by itself’ with the

onset of the drought being ‘quite sudden as compared with the
others’. Work by Brown and Abatzoglou (2010) and Diaz and
Swetnam (in press) using gridded weather data reinforces these

conclusions: an anomalously wet and cool winter was followed
by an anomalously dry andwarm spring and summer. In the case
of 1910, an infamous year of synchronous fires, longer-term
metrics such as PDSI, SPI9, SPI12 or SPI24 would likely not

have captured the conditions that promoted fire, whereas
shorter-term metrics such as ERC(G) or PPT likely would have
(Chuck McHugh, pers. comm.).

Although shorter-term fluctuations in precipitation strongly
affect dead fuel moistures, longer-term periods of dry weather
affect live fuels. As noted above, long periods of dry weather

may result in mortality and curing of some live fuels, increasing
rates of spread and fire intensity (Scott and Burgan 2005). This
dynamic occurs seasonally in many ecosystems, but longer-

than-average dry periods contribute to additional mortality.
In addition, long droughts may reduce live fuel moisture of
trees, which likely contributes to crown fire potential. However,
live fuel flammability is still not well understood, with current

research focussing on differences between new and old foliage
and the abundance of flammable compounds, which fluctuate in
response to seasonal drivers (Matt Jolly, pers. comm.). Metrics

capturing longer time periods may relate in some way to these
factors, but further research is needed to measure seasonal
fluctuations in live fuel moistures and link them to index values.

Fire suppression has likely affected the relationship of fire
occurrence with fuel conditions. Some evidence indicates that
the relationship of PDSI and fire occurrence was stronger during
the pre-suppression era (Miller et al. 2012), when firesmay have

burned under more moderate conditions. Prior to European
colonisation, Native American burning was common in the
US, with many tribes choosing to ignite burns during mild

weather conditions in the spring (Lewis 1973). Current fire
management policies in the western US tend to eliminate fires
that can be suppressed, with suppression more effective under

mild and moderate conditions (Finney et al. 2009), leaving fires
that escape suppression under the most extreme weather condi-
tions to burn most of the acreage. There are exceptions, includ-

ing fires that are allowed to burn in remote areas under mild or
moderate conditions. Suppression forces can often take advan-
tage of small precipitation events to control or contain fires, with
such precipitation events being captured by ERC(G) calcula-

tion. In the pre-suppression era, fires might have continued to
grow once these precipitation events ended. MTBS project data
do not contain information on suppression efforts, therefore, this

factor could not be included in our analysis.
We found stronger correlations between index percentiles and

number of large fires than with area burned. We conclude short-

term drought is a stronger driver of number of large fires than of
total area burned, because probability of ignition increases with
drier fuel moistures, whereas the area burned by large fires is

also affected by other factors responsible for fire growth,
including wind, temperature, topography, barriers to spread, fuel
type, availability of fine fuels in some ecoregions, suppression
tactics andmaturity of forest in stand-replacing regimes.We note

that individual fire sizes were not strongly related to drought and
fire danger indices, likely because of the effect of these factors.
It is noteworthy, however, that precipitation indices showed a

strong correlation with fire occurrence at the scale of the western
US without including these other factors in statistical models.

Conclusions

The primary goals of this study were to: (1) investigate how
shorter- and longer-term drought are related to fire occurrence in

the western US by evaluating the strength of the correlation of
various drought and fire danger indices with area burned and
number of large fires and (2) determinewhether a single drought

or fire danger index is strongly related to fire occurrence across
the western US, because such a metric could be used in pre-
dictive modelling of large fires in current fire danger applica-

tions, fire history studies and studies predicting future fire
occurrence under changing climatic conditions. When con-
verted to a percentile-based measure indicating departure from
local median conditions, short-term metrics ERC(G) and

monthly precipitation (PPT) had strong correlations with area
burned (R2¼ 0.92 and 0.89) and number of large fires (R2¼ 0.94
and 0.93) in the western US over the study period (1984–2008).

As the temporal scale of indices increased, the strength of their
relationship with fire occurrence decreased. A likely reason for
this result is that shorter-term metrics are more strongly related

to dead fuel moistures, which are largely dependent on weather
during the past 1–3 months. Longer-term metrics are not as
sensitive to recent precipitation events that affect fuel moistures
and thus fire occurrence. Although PDSI is the most commonly

used drought metric in fire history studies and in efforts to
predict area burned, we found that it is not strongly correlated
with area burned (R2¼ 0.34 for PDSI percentile) or number of

large fires (R2¼ 0.30), likely because of the fact that it is not

Table 4. Linear models relating drought index percentiles to

area burned

A, area burned; ERC_pct, ERC(G) percentile; PPT_pct, PPT percentile;

PDSI_pct, PDSI percentile; SPI3_pct, SPI3 percentile; SPI6_pct, SPI6

percentile; SPI9_pct, SPI9 percentile; SPI12_pct, SPI12 percentile;

SPI24_pct, SPI24 percentile; R2, adjusted R2 of model

Index Model R2

ERC(G) log10A¼ 0.03551� (ERCpct)þ 2.592 0.92

PPT log10A¼�0.01862� (PPTpct)þ 5.984 0.89

PDSI log10A¼�0.003780� (PDSIpct)þ 5.4875 0.25

SPI3 log10A¼�0.009755� (SPI3pct)þ 5.738 0.70

SPI6 log10A¼�0.005972� (SPI6pct)þ 5.595 0.46

SPI9 log10A¼�0.003784� (SPI9pct)þ 5.502 0.28

SPI12 log10A¼�0.003366� (SPI12pct)þ 5.492 0.23

SPI24 log10A¼ 0.000007998� (SPI24pct)þ 5.317 �0.01
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strongly related to dead fuel moistures (Dai et al. 2004). We
therefore recommend the use of ERC(G) or the more easily
calculated PPT for use in applications that associate precipita-

tion and fire occurrence.
Because ERC(G) and PPT are largely based on weather

conditions during the previous month, they are not easily used

for long-lead forecasting of fire occurrence, nor can they be used
in fire history studies, such as those relying on tree-ring data,
without research examining these shorter-term indices and tree

growth. Little is currently known about the mechanisms that
drive drought, especially during fire seasons, with precipitation
anomalies associated with El Niño–Southern Oscillation being
more strongly linked to winter than summer precipitation across

much of the western US (Ropelewski and Halpert 1986;
McCabe and Dettinger 1999). Hence, long-lead forecasting of
fire danger is currently challenging, given our result that fire

season precipitation is the strongest predictor of fire occurrence.
However, if it were possible to predict synoptic patterns that
cause negative precipitation anomalies that endure formore than

1 month, areas of high fire danger could in turn be predicted
using forecast ERC(G) and PPT values.
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