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Abstract: During periods with epidemic mountain pine beetle (Dendroctonus ponderosae Hopkins) populations in lodge-
pole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests, large amounts of tree foliage are thought to
undergo changes in moisture content and chemistry brought about by tree decline and death. However, many of the pre-
sumed changes have yet to be quantified. In this study, we quantified and compared fuel moisture, chemistry, and resulting
flammability of bark beetle affected foliage in terms of ignitability, combustibility, consumability, and sustainability at a site
in far eastern Idaho, USA. Results revealed substantial decreases in moisture content, the proportion of starches and sugars,
and crude fat and increases in the proportions of lignin, cellulose, and hemicellulose in foliage of trees attacked in the pre-
vious year (yellow foliage) or more than two years previously (red foliage). Increases in emission rates of several terpenes
that were correlated with flammability were also detected in yellow foliage. The flammability of fresh yellow and red foliage
increased with regard to ignitability and sustainability, with shorter times to ignition, lower temperatures at ignition, and
higher heat yields when compared with unattacked green foliage. Our results confirm the overwhelming importance of fuel
moisture on flammability and suggest that fuel chemical composition also has significant effects on lodgepole pine foliage
flammability.

Résumé : Durant les périodes où les populations de dendroctone du pin ponderosa (Dendroctonus ponderosae Hopkins) at-
teignent des niveaux épidémiques dans les forêts de pin tordu (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.), on
croit que la teneur en humidité et les caractéristiques chimiques de grandes quantités de feuillage subissent des changements
provoqués par le dépérissement et la mort des arbres. Cependant, plusieurs des changements présumés n’ont toujours pas
été quantifiés. Dans cette étude, nous avons quantifié et comparé l’humidité des combustibles, les caractéristiques chimiques
et l’inflammabilité du feuillage à la suite de l’attaque du dendroctone en termes d’allumabilité, de combustibilité, de
consommabilité et de durabilité dans une station située dans l’extrême est de l’Idaho, aux États-Unis. Les résultats ont révélé
qu’il y avait une diminution importante de la teneur en humidité, de la proportion d’amidon et de sucres, de matière grasse
brute et une augmentation de la proportion de lignine, de cellulose et d’hémicellulose dans le feuillage des arbres attaqués
l’année précédente (le feuillage jaune) ou il y plus de deux ans (le feuillage rouge). L’augmentation du taux d’émission de
plusieurs terpènes qui était corrélé avec l’inflammabilité a également été détectée dans le feuillage jaune. L’inflammabilité
du feuillage frais jaune ou rouge a augmenté en termes d’allumabilité et de durabilité avec un temps d’allumage plus court,
une température d’allumage plus basse et un rendement calorifique plus élevé comparativement au feuillage vert sain. Nos
résultats confirment l’importance considérable de l’humidité des combustibles sur l’inflammabilité et indiquent que la com-
position chimique des combustibles a également des effets significatifs sur l’inflammabilité du feuillage du pin tordu.

[Traduit par la Rédaction]

Introduction

Lodgepole pine (Pinus contorta Dougl. ex Loud. var. lati-
folia Engelm.) forests in North America have experienced
widespread mountain pine beetle (MPB; Coleoptera: Curcu-
lionidae; Dendroctonus ponderosae Hopkins) mortality since
the 1990s. Dramatic increases in total area affected by the
MPB have been observed in the western United States since
2000, with over 3.5 million hectares of mortality in 2009
alone (Man 2010). Although the scale of the recent mortality
is unparalleled during the last 100 years, the last two decades
have been characterized by a combination of conditions fa-
vorable for an outbreak, including warming, drought, and
contiguous areas stocked with susceptible trees (Bentz et al.

2010). The severity and scale of the outbreak have caused
concern among forest managers, politicians, and the public
about the potential impact of the mortality on fire occurrence,
severity, and behavior (Rocky Mountain Research Station
2011). Jenkins et al. (2008) reviewed literature on the influence
of bark beetles on fuels and fire behavior in three conifer–host
systems. Other recent studies have quantified MPB-induced
changes to fuels and potential fire behavior in affected for-
ests in Colorado (Klutsch et al. 2009, 2011), Idaho and
Utah (Page and Jenkins 2007a, 2007b), and Wyoming (Si-
mard et al. 2011). However, significant uncertainty still re-
mains as to the applicability of the fire modeling systems
used in these studies to assess fire behavior potential, par-
ticularly crown fire potential, due to unknown changes in
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the moisture content and chemistry of the foliage brought
about by tree decline and death.
Conifer forest fuels are composed of varying proportions

of lignin, cellulose, hemicellulose, extractives, and minerals
(Browning 1963). The proportions can differ by tree species
and tissue, with the woody constituents containing high pro-
portions of lignin, cellulose, and hemicellulose and the foli-
age having more extractive content (Kramer and Kozlowski
1960). The relative amounts of these compounds in forest
fuels are known to affect flammability (Shafizadeh et al.
1977; Rundel 1981). Lignin is the primary polymer provid-
ing structure to woody fuels. Its high relative molecular
mass requires relatively high temperatures for volatilization,
producing much of the char residue left after combustion
(Shafizadeh 1971). The celluloses and hemicelluloses, found
in the cell walls of plants, are the primary source of volatiles
in flaming combustion (Shafizadeh 1968). Mineral ash is
composed of silica, calcium, magnesium, and potassium and
represents the noncombustible portion of plant material. The
minerals are usually present in low amounts, though they can
influence flammability (Philpot 1970). Extractives are the
high energy resins, waxes, oils, and other fatty acids involved
in the early phases of combustion due to their low relative
molecular masses and ability to volatilize at low temperatures
(Philpot and Mutch 1971; Rundel 1981). Terpenes are the
main constituents of plant essential oils and resins and in-
clude all chemically modified forms such as terpenoids, also
known as isoprenoids. They make up the majority of what
are known as volatile organic compounds and are classified
based on the number of isoprene units in their chemical
structure, with monoterpenes having two isoprene units
(Goldstein and Galbally 2007). Terpenes have a wide array
of uses both ecologically and commercially and are known
to play important roles in plant defenses against insect herbi-
vores (Gershenzon and Dudareva 2007). They are also highly
flammable both in their pure form and within wildland fuels
(Ormeño et al. 2009).
The term flammability has been variously defined, inter-

preted, and measured using an array of equipment and meth-
odologies (White and Zipperer 2010). Anderson (1970)
quantified flammability in terms of three basic components
of fire ignition and combustion: ignitability, sustainability,
and combustibility. Martin et al. (1994) added the term, con-
sumability, to describe a fourth basic component, the amount
of fuel consumed during combustion. There is currently no
standard methodology for determining flammability, but sev-
eral researchers have used these four components to test and
classify plants and their parts (Alessio et al. 2008; Ormeño et
al. 2009; White and Zipperer 2010). The characteristics that
affect plant flammability are relatively well known and can
be divided into physical or structural elements and physiolog-
ical or cellular elements (Rundel 1981). The physiological el-
ements that affect plant flammability are moisture content
(Gill et al. 1978), silica-free mineral content (Mutch and Phil-
pot 1970), volatile compounds and ether extractive content
(Philpot and Mutch 1971; Susott 1982; Ormeño et al. 2009),
cellulose content (Rundel 1981), and phosphorous content
(Philpot 1970).
Although substantial progress has been made in recent

years in understanding the interactions between bark beetle
caused tree morality and subsequent changes in fire behavior,

numerous challenges remain. The applicability and accuracy
of crown fire behavior models to disturbance-altered fuel
complexes remain in question because many were developed
based on live healthy crown fuel and do not have the ability
to incorporate changes in the physical and chemical proper-
ties of altered crown fuel (Jenkins et al. 2012). For example,
one of the most widely used crown fire initiation relation-
ships described by Van Wagner (1977) may be affected by
changes in the flammability characteristics of foliage because
the relationship was based in part on an experimental fire in
a live red pine (Pinus resinosa Aiton) plantation in eastern
Canada. In a recent critique of the use of crown fire behavior
models in simulation studies, Cruz and Alexander (2010)
questioned the validity of using Van Wagner’s (1977) crown
fire initiation model in insect-damaged stands without verify-
ing the need for appropriate adjustments.
The work presented here describes changes to the chemis-

try and flammability of lodgepole pine foliage when trees
have been attacked by the MPB. The specific objectives of
the study were (i) to compare the changes in fuel moisture,
chemical composition, and flammability of foliage from
lodgepole pine trees currently infested by MPB (green in-
fested, GI), infested one year earlier (yellow, Y), and infested
more than two years earlier (red, R) with uninfested (green,
G) trees, and (ii) to determine the relative importance of fuel
moisture and chemical composition, including terpene emis-
sions, on foliage flammability using correlation and regres-
sion based analyses.

Methods
USDA Forest Service Forest Health Monitoring insect and

disease aerial detection maps and ground reconnaissance
were used to identify potential study areas within the Inter-
mountain Region of the western United States. We selected
a study area located near our laboratory in Logan, Utah, that
had adequate numbers of uninfested and recently infested
lodgepole pine trees. The area chosen was located approxi-
mately 5 km west of Alpine Junction, Wyoming, on the Pal-
isades Ranger District of the Caribou–Targhee National
Forest (43°8′14″N, 111°3′44″W). Within the study area, we
selected a sampling site of approximately 1 km2 in size at an
elevation of 1768 m above mean sea level. The site had an
average slope of 2% and was dominated by a mixture of
lodgepole pine, Douglas-fir (Pseudotsuga menziesii (Mirbel)
Franco), and subalpine fir (Abies lasiocarpa Nutt.), with an
average tree density between 3000 and 5000 stems per hec-
tare and a stand basal area of 10 to 20 m2·ha–1. The habitat
type was classified as subalpine fir – common snowberry,
and the age of the stand was approximately 100 years. The
site has been subject to MPB-caused tree mortality since
2004 (Robertson 2011).
The general study design consisted of the repeated sam-

pling of individual trees over the summer of 2011 during the
historically significant portion of the fire season, from July
through September. We categorized potential sample trees ac-
cording to four crown condition classes based on Jenkins
(2011): G, green, unattacked but susceptible to attack (i.e.,
≥20 cm diameter at breast height, dbh); GI, green, currently
infested; Y, yellow, attacked the previous summer; and R,
red, more than two years after infestation. We used a combi-
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nation of physical inspection of the tree bole (e.g., pitch
tubes, frass) and needle color, similar to Klutsch et al.
(2009), to identify time since attack. Specific trees were se-
lected, in order of importance, (i) based on their suitability
for repeated field sampling (i.e., presence of branches within
reach of equipment), (ii) to minimize between-tree variation
(i.e., sample trees had similar diameters and heights), and
(iii) to facilitate the logistical needs of sampling (e.g., dis-
tance to road or trail).

Field sampling
Field sampling occurred each week from the beginning of

July to the end of September. In total, we sampled 30 trees,
12 G trees, six GI trees, six Y trees, and six R trees; how-
ever, only 24 trees were sampled throughout the entire study
period. An additional six G trees were sampled only during
the month of July as the GI trees were not yet available; these
extra G trees were dropped from sampling starting the first
week in August. The mean dbh (standard error) of selected
G, GI, Y, and R trees were 29.1 (2.15), 30.7 (2.44), 33.8
(4.04), and 32.2 cm (1.67 cm), respectively. Due to logistical
and time constraints, we sampled 12 trees each week, three
trees in each of the four crown condition classes, except dur-
ing the month of July when the additional G trees were
sampled. The remaining 12 trees were sampled the following
week. This process was repeated throughout the field season,
with each tree (minus the extra six G trees) sampled a total of
six times. Sampling occurred on the Monday of each week
from the hours of 1000 to 1600 local time. Air temperature
and relative humidity were measured with a sling psychrom-
eter before each sampling period. Temperatures ranged from
12.2 to 23.3 °C and relative humidities ranged from 46% to
90%. Individual tree sampling consisted of the removal of
three subsamples of approximately the 30 cm apical part of
lower branch and foliage material from the lower one-third
of each crown and the collection of about 100 g of litter be-
neath each tree. Although changes in moisture content and
foliage chemical composition are expected at different crown
locations within live conifers (White 1954; Hinckley et al.
1978), these changes are relatively minor compared with ex-
pected differences among crown condition classes, and crown
locations outside of the crown base are not as important in
terms of crown fire initiation. Collected samples were placed
in separate plastic bags and labeled for transport back to the
laboratory. All sampling was completed by 1600 h, after
which samples were returned to the laboratory for further
processing and analyses.
Volatiles were collected once each month (during the first

two weeks) on each sample tree using portable volatile col-
lection systems comprised of automated vacuum pumps en-
closed in a waterproof case (Volatile Assay Systems,
Rensselaer, New York). For each tree, approximately 70 cm
of the apical part of a lower branch was enclosed in a clear
Teflon bag (50 cm wide × 75 cm deep; American Durafilm
Co., Holliston, Massachusetts) and the air was pulled out
through a side port (0.5 L·min–1) through volatile traps con-
taining 30 mg of the adsorbent HayeSep-Q (Restek, Belle-
fonte, Pennsylvania). Volatile emissions were collected for
30 min from each tree. Once collections were completed, the
enclosed portion of branch and foliage was clipped and

placed into a plastic bag for transport back to the laboratory
to obtain the fresh mass.

Laboratory analyses
Once the bagged samples reached the laboratory, they were

processed for further analyses. The needles were separated
from the branches, and the branches were trimmed to retain
material less than 0.64 cm in diameter because these fuels
can contribute to crown fire activity (Call and Albini 1997).
The needles were then subdivided by separating current
year’s needle growth from older needles using visual indica-
tors of color, texture, and location of the previous year’s ter-
minal bud. Fuel moisture was the only measured variable on
current year’s needles, whereas the older needles were used
for all other analyses, as they usually make up the majority
of tree foliage. To determine fuel moisture content, 15 to
40 g of each sample were weighed and placed in a forced-air
drying oven set at 60 °C rather than 105 °C, as recommend
by Matthews (2010), to dry for 24 h to minimize the loss of
volatiles (Englund and Nussbaum 2000).
During the first two weeks of each month, an additional

~70 g of the fresh foliage and the volatile traps were shipped
to external laboratories for chemical analyses. The foliage
samples were shipped to a forage testing laboratory where
they were analyzed to determine the chemical composition
using the wet chemistry method for the fiber and nonfiber
determinations (AgriAnalysis 2012). Acid detergent fiber
(ADF) was measured following AOAC (Association of Offi-
cial Analytical Chemists) standard 973.18 in which the sam-
ples were extracted using a quaternary detergent solution
(AOAC 1990). Neutral detergent fiber (NDF) was measured
using a combination of the ANKOM filter-bag technique
(ANKOM Technology 2012) and the amylase procedure
(Undersander et al. 2011). Crude fat content was determined
using an ANIKOM fat extractor, and ash content was meas-
ured following AOAC standard 942.05 by subjecting samples
to 600 °C for 2 h in a furnace (AOAC 1990; AgriAnalysis
2012). The nonfiber carbohydrates (NFC) represented the re-
maining fraction of dry matter after subtracting NDF, crude
fat, protein, and ash content. NDF includes the hemicellulo-
ses, cellulose, and lignin portions of the foliage. ADF is a
subset of NDF and includes the lignin and cellulose portions
of the foliage. NFC represents primarily the starches and
sugar portion of the foliage. The crude fat characterizes the
ether extractable portion of the foliage, which includes com-
pounds such as triglycerides, alcohols, waxes, terpenes, and
resins (Barnes et al. 2007).
The volatile collection traps were shipped to the Rocky

Mountain Research Station laboratory in Bozeman, Montana,
for analysis of volatile emissions, based on methods adapted
from Runyon et al. (2008). Volatiles were eluded from traps
with 200 µL of dichloromethane using 500 ng of n-octane
and 1000 ng of n-nonyl-acetate as internal standards. Sam-
ples were analyzed using an Agilent 7890A gas chromato-
graph (GC) coupled with a 5975C mass spectrometer and
separated on a HP-1ms (30 m × 0.25 mm inside diameter,
0.25 µm film thickness) column; hydrogen was used as the
carrier gas. The GC oven was maintained at 35 °C for 3 min
and then increased by 5 °C·min–1 to 125 °C, then 25 °C·min–1
to 250 °C. Quantifications were made relative to internal
standards using ChemStation software (Agilent Technologies,
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Wilmington, Delaware), and identifications of compounds
were confirmed by comparing retention times and mass spec-
tra with commercial standards. We lacked internal standards
for identification of some compounds, which we labeled as
unknown terpenes 1 through 6. All measurements of volatile
emissions (ng·h–1·g–1) were on a fresh mass basis.

Flammability testing
Flammability testing was accomplished in the laboratory

using an epiradiator, adapted to work with a scale, and a
bomb calorimeter. The laboratory setup was comprised of a
heat source, type K thermocouple, and pilot ignition source,
set over a scale to measure the rate of mass loss (Fig. 1).
Mass loss information, as well as temperature, were recorded
using a Campbell Scientific CR800 data logger. The heat
source consisted of a 500 W silica epiradiator with a
100 mm diameter disk producing approximately 6 W·cm–2 of
radiation at the surface. The sample was placed 4 cm below
the epiradiator on top of a stand to protect the scale from ex-
cessive heat. A type K thermocouple probe was set approxi-
mately 1.5 cm above the middle of the sample to record
temperature. The pilot ignition source was provided by a
Bunsen burner, the center of which was placed 3 cm above
and at the edge of the sample. The pilot flame was 2.5 cm
long with a 1.5 cm long inner flame core (cf. Dimitrakopou-
los and Papaioannou 2001). The individual samples were
placed under the middle of the epiradiator in a 7 × 8 cm
wire mesh holder. The experimental setup was similar to
those of other studies that have used an epiradiator for flam-
mability testing of wildland fuels (e.g., Alessio et al. 2008;
Ormeño et al. 2009). It is recognized that the heating regime
produced by the epiradiator in this study does not replicate
the potential heat flux observed in crown fires and that the
level of heat flux can affect the influence of fuel properties
on flammability, especially moisture content (Fletcher et al.
2007; Fernandes and Cruz 2012). However, the relatively
low heat flux levels used in this study are important for de-
termining the influence of fuel properties during the transi-
tion from a surface fire to a crown fire. At heat flux levels
near this critical transition threshold, differences in the intrin-
sic fuel properties could potentially have important implica-
tions on the likelihood for the onset of crowning. A bomb
calorimeter was used to measure the high heat of combustion
of oven-dried foliage samples. All calorimeter samples were
tested following ASTM D standard 1989-96, with corrections
for the fuse wire, aqueous sulfuric acid, and nitric acid
formed during the bomb reaction.
Flammability testing with the bomb calorimeter started

during the first week in July, whereas the epiradiator-based
testing began during the first week in August. One sample
from each tree was tested with the bomb calorimeter each
week, whereas two samples per tree, fresh and oven-dried,
were tested with the epiradiator each week. Fresh foliage
samples were tested first during each sampling period fol-
lowed by oven-dried foliage. The epiradiator samples were
prepared for testing by placing the needles evenly across the
entire holder surface to a depth of approximately 1.5 cm. Due
to the significant variation in foliage moisture content, the
fresh samples had different initial masses; however, the dry
foliage samples were all tested at a mass of 3.0 g ± 0.1 g.
Once a sample was prepared, it was placed on top of the

stand and the epiradiator was lowered into position. The data
logger was set to collect mass and temperature continuously
throughout the experiment every 0.1 s, with a date and time
stamp for each recorded observation. The time of initiation of
flaming and the end of flaming were recorded to the nearest
second. Samples were allowed to smolder until the rate of
mass loss was negligible. This process was repeated for each
sample until all tests were completed.

Measures of flammability
Ignitability, the amount of time that it takes a material to

ignite given an external heat source and (or) the minimum
temperature or heat flux required for ignition, was assessed
using time to ignition and temperature at ignition (Anderson
1970). Time to ignition was measured from when the temper-
ature of the thermocouple reached 60 °C until the first ap-
pearance of flame, rounded to the nearest second. The
temperature at ignition was recorded at the initiation of flam-
ing. Temperatures at ignition reported here do not represent
the actual fuel temperature obtained at ignition because the
thermocouple was 1.5 cm above the material. Combustibility,
which is a measure of how rapid or intensely a fire burns,
was the maximum temperature obtained during each test and
the maximum rate of temperature increase during flaming
combustion (°C·s–1) (Anderson 1970; White and Zipperer
2010). Consumability, or the quantity and completeness of
combustion, was judged using time profiles of mass loss, as
well as the maximum rate of mass loss (g·s–1) (Martin et al.
1994; White and Zipperer 2010). To smooth the mass loss
rate profiles, the 5 s running mean was calculated and used
to determine the maximum mass loss rate. Sustainability, the
amount of time that materials will combust with or without a
heat source, was recorded as the duration of flaming (in sec-
onds) and the high heat of combustion (kJ·kg–1). The high
heat of combustion is the total amount of heat released by a
fuel when it is completely consumed to water and carbon di-
oxide without reductions for moisture, radiation, or incom-
plete combustion. A low heat of combustion or net heat of
combustion, which incorporates a reduction based on the la-
tent heat absorbed when the water of reaction is vaporized, is
usually used in fire behavior applications (Byram 1959;
Alexander 1982). However, when comparing the potential
heat available under field conditions, a further correction is
used to account for the heat required to evaporate the mois-
ture in the fuel, termed heat yield (Van Wagner 1972). In
this study, we report the high heat of combustion, but we re-
fer to heat yield when discussing potential energy release
among crown condition classes.

Statistical analysis
Repeated measures analysis of variance was used to com-

pare mean responses between crown condition classes for
each of the response variables. The fuel moisture and flam-
mability data were grouped by the two-week intervals for
which we had data for each of the trees measured. This
grouping resulted in comparisons of six different two-week
time periods for the fuel moisture and bomb calorimeter data
and four two-week periods for the epiradiator-based flamma-
bility testing. The chemical analysis data, both volatile emis-
sions and foliage chemistry, were grouped by the month in
which they were collected, for a total of three unique time

1634 Can. J. For. Res. Vol. 42, 2012

Published by NRC Research Press



periods. The three subsamples of fuel moisture collected
from each tree were averaged by tree for analysis. Square-
root and natural logarithm transformations were used where
needed to meet assumptions of normality and equal varian-
ces. Post hoc means comparisons using the Tukey–Kramer
method to control the experiment-wise error rate were used
when a significant difference among crown conditions classes
was identified (Zar 1999). When the assumptions of normal-
ity and equal variance were not satisfied with transforma-
tions, the nonparametric Kruskal–Wallis test (Zar 1999) was
used to compare ranks followed by multiple comparison tests
among crown condition classes using the technique described
by Elliott and Hynan (2011). Pearson’s correlation coeffi-
cients (r) were used to identify linear relationships between
the flammability parameters and the various chemical attrib-
utes. Multiple linear regression analysis with stepwise selec-
tion was also used to evaluate linear relationships between
time to ignition and the chemical attributes for fresh foliage
to account for the influence of fuel moisture. SAS software
(version 9.3, SAS Institute, Inc. 2010) was used for all statis-
tical analysis. Significance for all tests was identified using
a = 0.05.

Results

Fuel moisture
Foliar moisture content varied substantially by crown con-

dition class (Fig. 2). The moisture content of new foliage for
G trees was well above 200% of oven-dried mass during the

early part of July and dropped to near 150% by the end of
September; new foliage moisture content of GI trees followed
a similar trend. Older foliage moisture content was the same
for G and GI trees (P = 0.2970) when averaged over all sam-
pling periods, with means of 113% and 115%, respectively
(Table 1). The moisture content of G foliage was nearly con-
stant over time, with a peak during early August of 125%.
During early July, the foliage from Y trees had a mean mois-
ture content of 43%, which was less than the G mean of 99%
(P < 0.0001) and greater than the R mean of 10% (P =
0.0019). However, by the end of July, the moisture content
of Y and R foliage did not differ (P = 0.3533) and stayed
the same throughout the remaining sampling periods. The
mean foliar moisture content of 113% for the G trees, aver-
aged over all sampling periods, was greater than the mean fo-
liar moisture content of both the Y (24%; approximately five
times greater) and R (13%; approximately nine times greater)
trees (P < 0.0001) (Table 1). Moisture content of litter and R
foliage was the same throughout all sampling periods (P =
0.6531). The moisture content of twig fuel was similar to
that of the foliage (Fig. 3). The G and GI twig moisture con-
tents did not differ (P = 0.8749) and were greater than the Y
and R twig moisture contents (P < 0.0001). Mean litter and
R twig moisture contents were the same for all sampling pe-
riods (P = 0.8890). The peak in moisture content of mean
litter, R foliage, and twigs during early August is attributed
to a high relative humidity (90%) during sampling. The mini-
mum mean foliar moisture content recorded for G trees was
99%, which occurred during early July (Table 1). The mini-

Fig. 1. Experimental setup for laboratory flammability testing: (a) type K thermocouple probe; (b) 500 W silica epiradiator; (c) pilot ignition
source; (d) sample holder; and (e) data logger connected to scale and thermocouple.
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mum moisture contents for Y and R foliage, which both oc-
curred in September, were 12% and 9%, respectively.

Chemical analyses
Chemical analysis of the foliage in each of the four crown

condition classes revealed significant differences in NDF,
ADF, NFC, crude fat, and mineral content (Table 2). For all
compounds, comparison of the mean levels of G and GI foli-
age and of Y and R foliage were the same (P > 0.05). The
mean level of NDF for G foliage across all three months,
43%, was less than the mean level of both Y foliage, 67%
(P < 0.0001), and R foliage, 69% (P < 0.0001). Mean ADF
levels for Y and R foliage were also greater than G foliage
over all sampling periods. The mean proportion of NFC in
G foliage was 38%, which was greater than the mean levels
for Y foliage, 18% (P < 0.0001), and R foliage, 14% (P <
0.0001). The proportion of phosphorus in R foliage was
higher than in G foliage when averaged over all sampling pe-
riods (P = 0.0441) and during the month of July (P =
0.0335). Levels of magnesium were also different, with
higher proportions in GI foliage than in Y foliage (P =
0.0371) when averaged over all sampling periods. The pro-

portion of crude fat was significantly greater in G foliage
than in Y foliage (P = 0.0008) and R foliage (P = 0.0098),
with mean levels of 8.7%, 5.9%, and 6.5%, respectively. The
most significant changes over time occurred in the chemical
makeup of Y foliage. The mean proportion of ADF increased
in Y foliage each month of sampling but was only significant
when comparing July with September (P = 0.0003). The pro-
portion of crude fat also decreased in Y foliage from July to
September (P = 0.0481).
Analysis of volatile emissions revealed large variation in

emission rates within crown classes and significant differen-
ces both in mean total and individual emission rates (Fig. 4).
In total, 16 different terpenes were identified, with nine of
the compounds significantly correlated with flammability
(see results below). The mean total volatile emissions aver-
aged over all sampling periods for Y foliage was greater
than the mean emission rates for R foliage (P = 0.0079). No
other significant differences were detected. However, several
of the individual terpene emissions were greater in Y foliage
than in the other crown condition classes when averaged over
all sampling periods (Fig. 4). Unknown terpenes 2 and 6, p-
cymene, E-b-ocimene, and b-myrcene had higher emission

Fig. 2. Mean foliar moisture content for new foliage and old foliage and the mean litter moisture content for all sampling periods (July–
September (E, early; L, late)), with associated standard error bars, for each of the crown condition classes (G, green; GI, green infested;
Y, yellow; R, red).

Table 1. Mean (± standard error (SE)) percentage of oven-dried fuel moisture content, averaged over all sampling periods
(July–September), for old foliage and twigs < 0.64 cm in diameter and the minimum mean values (Min.) recorded for each
crown condition class (G, green; GI, green infested; Y, yellow; R, red).

Crown condition

G GI Y R

Type Mean ± SE Min. Mean ± SE Min. Mean ± SE Min. Mean ± SE Min.
Old foliage (%) 113±2a 99 115±2a 110 24±3b 12 13±2b 9
Twig < 0.64 cm (%) 107±3a 99 100±5a 91 19±3b 9 15±3b 9

Note: Means followed by a different letter within a row are significantly different (a = 0.05).
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rates in Y foliage than in R foliage. The emission rates of un-
known terpene 2, E-b-ocimene, b-myrcene, a-pinene, p-cymene,
tricyclene, and camphene were higher in Y foliage than in
G foliage.

Ignitability
Time to ignition for fresh foliage differed among crown

condition classes (Fig. 5A). Mean time to ignition for G and
GI foliage was 216 and 232 s, respectively, which was longer
than the mean times for Y and R foliage, 79 and 66 s, respec-
tively (P < 0.0001). Mean time to ignition for dry foliage
among G (28 s), Y (34 s), and R foliage (32 s) (P = 0.6733)
was not significantly different. Multiple linear regression
analysis indicated that fuel moisture and collection date were
the most significant predictors of time to ignition for fresh
foliage, which together explained 77% of the total variation.
Fuel moisture alone accounted for 65% of the total variation
in time to ignition of fresh foliage. After accounting for the
effects of fuel moisture, the proportion of protein (P =
0.009) and potassium (P = 0.0157) had significant negative
relationships with time to ignition, which increased the pro-
portion of total variation explained to 82% (Table 3). Individ-
ual correlation analysis of the volatile terpene compounds
with time to ignition for fresh foliage indicated that two com-
pounds had significant negative correlations (Table 4): E-b-
ocimene and tricyclene. The strongest relationship was with
E-b-ocimene, with an r of –0.366.
The differences between temperatures recorded at ignition

for fresh foliage were similar to the results for time to igni-
tion (Fig. 5C). The temperatures between G and GI foliage
(P = 0.3519) and between Y and R foliage (P = 0.9936)
were not different. The mean temperature at ignition for G
foliage of 279 °C was higher than the mean temperatures for
Y of 195 °C (P < 0.0001) and for R of 198 °C (P = 0.0001)
fresh foliage. Mean temperature at ignition of dry foliage for

G trees of 131 °C was lower than the mean temperatures for
Y of 159 °C (P = 0.0024) and for R foliage of 150 °C (P =
0.0228) (Fig. 6B). Correlations of individual terpene com-
pounds with temperature at ignition for fresh foliage indi-
cated that E-b-ocimene had a negative relationship, with a r
of –0.304 (Table 4). Correlations of dry foliage with the
chemical compounds indicated that NDF, ADF, NFC, and
crude fat had significant linear relationships with temperature
at ignition (Table 5). NDF and ADF had positive relation-
ships, whereas NFC and crude fat content had negative rela-
tionships with temperature at ignition.

Combustibility
The mean maximum temperature obtained during the

flammability testing of fresh foliage was highest for GI foli-
age (460 °C), which was greater than Y (413 °C) (P =
0.0201) and R (410 °C) (P = 0.0122) foliage (Fig. 5D).
Mean maximum temperatures among G, Y, and R fresh foli-
age were not different (P = 0.2292). Mean maximum temper-
atures of dry foliage were not significantly different among
crown condition classes. Comparisons of the maximum rate
of temperature increase among crown condition classes indi-
cated no significant differences for fresh or dry foliage
(Fig. 5F).

Consumability
Comparisons of the time series of mass loss rates of dry

foliage for each of the crown condition classes suggested
similarity both when the mass loss rates were averaged over
all sample periods and during individual sampling periods.
The mean level of mass loss for dry G foliage was higher
than those for the other crown condition classes, but when
the 95% confidence intervals were included, the mass loss
rates overlapped substantially among all crown classes.

Fig. 3. Mean twig (<0.64 cm in diameter) moisture content for each of the crown condition classes (G, green; GI, green infested; Y, yellow;
R, red) and the mean litter moisture content for all sampling periods (July–September (E, early; L, late)), with associated standard error bars.
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The mean maximum rates of mass loss obtained from the
flammability testing with fresh foliage did not differ among
crown condition classes (Fig. 5E). Correlations of emission
rates of total and individual terpene compounds with maxi-
mum rate of mass loss for fresh foliage indicated that there
were significant positive linear relationships (Table 4). The
compounds a-pinene, b-pinene, b-myrcene, E-b-ocimene, p-
cymene, camphene, unknown terpenes 1, 2, and 6, and total
emissions had significant positive relationships with maxi-
mum rate of mass loss. The strongest relationship was with
unknown terpene 2, with a r of 0.357. Maximum rates of
mass loss among crown condition classes with dry foliage
were not significantly different.

Sustainability
Measurements of the duration of flaming for fresh foliage

indicated that there were no significant differences among
crown condition classes (Fig. 5B). For dry foliage, the mean
duration of flaming for GI foliage of 64 s was longer than the
means for Y foliage of 49 s (P = 0.0010) and for R foliage of
55 s (P = 0.0352) (Fig. 6A). The mean duration of flaming
for G foliage of 56 s was not different from those for GI (P =
0.1353), Y (P = 0.2007), or R (P = 0.9809) foliage. Correla-
tions of duration of flaming with the chemical attributes for
dry foliage indicated that several of the chemicals had signif-
icant linear relationships (Table 5). NDF and ADF had nega-
tive r values, –0.344 and –0.471, respectively, with duration

Table 2. Mean proportion of foliage chemical composition for each sampling period across all crown condition classes (G, green;
GI, green infested; Y, yellow; R, red).

Crown condition July August September Overall
Protein (%) G 7.8±0.33a 7.8±0.32a 8.1±0.48a 7.9±0.21a

GI n/a 7±0.34a 7.5±0.37a 7.2±0.25a
Y 6.9±0.22a 6.9±0.34a 7±0.15a 6.9±0.13a
R 8.1±0.37a 7.8±0.52a 7.9±0.41a 7.9±0.24a

Acid detergent fiber (%) G 35.8±0.46a 35.5±0.57a 34.7±0.91a 35.4±0.35a
GI n/a 37.6±1.45a 36.3±0.92a 36.9±0.84a
Y 48±1.8b 51.7±1.98b 54.7±1.41b 51.5±4.91b
R 52.4±1.48b 52.5±1.19b 54.1±1.1b 53.0±3.02b

Neutral detergent fiber (%) G 44.2±1.53a 42±0.59a 41.7±1.1a 43±0.84a
GI n/a 47±3.47a 42.3±1.58a 44.6±1.95a
Y 62.8±4.16b 70.7±1.08b 66.5±1.25b 66.7±1.6b
R 70.7±0.91b 69.6±1.42b 67.2±1.34b 69.2±0.76b

Nonfiber carbohydrates (%) G 36.2±1.25a 40±0.66a 40.3±0.75a 38.2±0.77a
GI n/a 34.1±3.32a 39.2±1.24a 36.6±1.86a
Y 21.1±4.21b 14.4±0.62b 19.1±1.37b 18.2±1.56b
R 12.4±0.76b 13.1±1.61b 15.8±1.46b 13.8±0.8b

Calcium (%) G 0.43±0.04a 0.39±0.05a 0.34±0.02a 0.4±0.02a
GI n/a 0.58±0.11a 0.44±0.05a 0.51±0.06a
Y 0.43±0.05a 0.31±0.04a 0.36±0.04a 0.37±0.03a
R 0.34±0.03a 0.38±0.05a 0.4±0.03a 0.37±0.02a

Phosphorus (%) G 0.1±0.01a 0.08±0.01a 0.1±0.01a 0.1±0.005a
GI n/a 0.09±0.01a 0.1±01a 0.1±0.005ab
Y 0.12±0.01ab 0.11±0.02a 0.1±0.01a 0.11±0.01ab
R 0.14±0.01b 0.1±0.01a 0.11±0.01a 0.12±0.01b

Potassium (%) G 0.44±0.03a 0.46±0.07a 0.38±0.05a 0.43±0.03a
GI n/a 0.46±0.12a 0.45±0.11a 0.46±0.08a
Y 0.49±0.07a 0.45±0.06a 0.32±0.03a 0.42±0.04a
R 0.49±0.05a 0.5±0.06a 0.36±0.03a 0.45±0.03a

Magnesium (%) G 0.15±0.01a 0.15±0.01ab 0.13±0.01a 0.14±0.01ab
GI n/a 0.2±0.02a 0.15±0.02a 0.18±0.02a
Y 0.15±0.01a 0.12±0.01b 0.12±0.01a 0.13±0.01b
R 0.14±0.01a 0.16±0.02ab 0.14±0.004a 0.15±0.01ab

Crude fat (%) G 9.5±0.42a 8±0.51ab 7.8±0.46a 8.7±0.31a
GI n/a 9.1±0.65a 8.6±0.2a 8.8±0.33a
Y 6.6±0.74b 5.8±0.71b 5.2±0.63b 5.9±0.4b
R 6.4±0.27b 6.6±0.28ab 6.5±0.28ab 6.5±0.15b

Total ash (%) G 2.3±0.11a 2.2±0.13a 2.2±0.06a 2.2±0.06a
GI n/a 2.9±0.26a 2.5±0.12a 2.7±0.15a
Y 2.5±0.21a 2.1±0.14a 2.2±0.11a 2.2±0.1a
R 2.4±0.27a 2.9±0.48a 2.6±0.19a 2.6±0.19a

Note: Values are mean ± standard error. All values are percent dry mass. Means followed by a different letter within a column are significantly
different (a = 0.05).
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of flaming. Calcium, magnesium, and crude fat had signifi-
cant positive linear relationships with the duration of flam-
ing, with r values of 0.311, 0.430, and 0.536, respectively.
Differences in high heat of combustion among crown con-

dition classes were found (Table 6). G foliage had higher heat
of combustion than Y (P = 0.0091) and R (P = 0.0136) foli-
age averaged over all sampling periods. High heats of com-
bustion between G and GI foliage (P = 0.7814) and R and
Y foliage (P = 0.9881) were not different. Measured heats
of combustion did not change over time for GI, Y, or R foli-

age. However, the heat of combustion for G foliage dropped
from early July to late August (P = 0.0277) but increased to
early July levels by late September (P = 0.9763). When the
overall mean high heats of combustion were adjusted for the
latent heat of water during combustion and for moisture con-
tent, the mean heat yield of Y foliage (18 610 KJ·kg–1) and R
foliage (18 900 KJ·kg–1) was higher than the heat yield of G
foliage (17 070 KJ·kg–1). There were several significant cor-
relations of high heat of combustion with the chemical attrib-
utes (Table 6). NDF and ADF had negative relationships with

Fig. 4. Mean volatile terpene emission rates separated by compounds that were significantly correlated with flammability by crown condition
class (G, green; GI, green infested; Y, yellow; R, red) for all months (July–September), with associated standard error bars; letters on bars
indicate significant differences within sampling period. The individual terpene compounds are stacked according to the order in the legend.
Comparisons of individual terpenes are for mean emission rates across all sampling periods, and significance is indicated in the legend in
parentheses after each compound (condition class in bold followed by corresponding significance letter(s)). The crown condition classes in the
legend are arranged from highest to lowest mean values, and bars and terpene names with a different letter have means that are significantly
different at the a = 0.05 level.
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heat of combustion, with r values of –0.459 and –0.451, re-
spectively. Proportions of protein, NFC, and crude fat had
significant positive relationships with the high heats of com-
bustion. The strongest relationship was with the proportion of
crude fat, with a r of 0.520. A summary of all results is pre-
sented in Fig. 7.

Discussion

Our results indicated that MPB attack significantly alters
the chemistry and flammability of lodgepole pine foliage.
The moisture content and chemical makeup of foliage from
the most recently attacked trees (GI) did not substantially dif-

Fig. 5. Box-and-whisker plots of the flammability test results for fresh foliage, including (A) time to ignition, (B) duration of flaming,
(C) temperature at ignition, (D) maximum temperature, (E) maximum (Max.) rate of mass loss, and (F) maximum (Max.) rate of temperature
change for each of the crown condition classes (G, green; GI, green infested; Y, yellow; R, red), averaged over all sampling periods. The
diamond represents the mean, the horizontal line is the median, the lower and upper box ends represent the lower and upper quartiles, and the
whiskers are the minimum and maximum values, respectively. Bars with a different letter have means that are significantly different at the a =
0.05 level. n.s., nonsignificant.
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fer from G foliage. It has been suggested by Jolly et al.
(2012) that the foliar moisture content of recently attacked
trees may decrease during the summer of attack. Beetle flight
on our site began during the last week in June and was not
complete until mid- to late July. Other sites at lower latitudes
and elevations may experience beetle flight sooner, possibly
affecting the potential for significant decreases in moisture
content during the summer of attack. As a result of the simi-
larities between G and GI foliage, the measured flammability
parameters for ignitability, combustibility, consumability, and
sustainability were equivalent.
The substantial differences in moisture content detected

among G, Y, and R foliage had clear implications on flam-
mability. The bulk of moisture loss in the transition from the
GI to Y crown condition class occurred during the winter and
spring months, outside the main fire season when we
sampled. This is similar to the results of Gibson and Negrón
(2009), who reported substantial decreases in foliar moisture
during the early spring and summer following the summer of
attack. This decrease in moisture content substantially altered
the ignitability and sustainability flammability parameters of
foliage. Mean times to ignition of fresh Y and R foliage
were more than 2.5 times shorter than for G foliage. Like-
wise, the mean temperature at ignition for Y and R foliage
was almost 1.5 times lower than G foliage. The shorter times

to ignition suggest that stands composed of significant pro-
portions of Y and R foliage may have lower transition thresh-
olds for crown fire development, as proposed by Knight
(1987) and Jenkins et al. (2008), both diurnally and season-
ally compared with healthy stands. The measured high heats
of combustion for G and GI foliage were within the range re-
ported by others for live foliage (Hough 1969; Williamson
and Agee 2002). However, by adjusting the high heat of
combustion to heat yield, we found that the heat yields of Y
and R foliage were higher than the heat yield of G foliage,
suggesting that once crown fire activity begins, there may be
higher fire intensities in stands with Y and R trees than sim-
ilar healthy stands.
The increase in the structural compounds of foliage (NDF

and ADF) and the decrease in the starches and sugars (NFC)
and crude fat in Y and R foliage had significant influences
on flammability, particularly ignitability and sustainability.
The increase in temperature at ignition of dry Y and R foli-
age compared with G foliage may be the result of increasing
portions of lignin, cellulose, and hemicellulose and decreas-
ing proportion of crude fat content. Lignin, which has a rela-
tively high relative molecular mass, is known to be more
thermally stable and therefore less volatile than cellulose or
carbohydrates (Kitao and Watanabe 1967; Shafizadeh 1971).
In contrast, carbohydrates, and especially ether extractable

Table 3. Parameter estimates and goodness-of-fit statistics for the best linear
regression model obtained using stepwise selection regressing time to igni-
tion of fresh foliage on the chemical composition variables.

Variable Coefficient Standard error P value
Intercept 9.24 2.42 0.0001
Collection date 0.64 0.13 <0.0001
Moisture content 7.01 0.51 <0.0001
Protein (%) –0.74 0.272 0.009
Potassium (%) –3.99 1.59 0.0157
R2 0.823
Adjusted R2 0.806
Mean square error 3.1

Note: The response variable is the square root of the time to ignition, n = 48.

Table 4. Pearson’s correlation coefficients (r) and associated P values among the flammability parameters time
to ignition, temperature at ignition, and maximum rate of mass loss with individual terpene compound emission
rates (ng·h–1·g fresh mass–1) for fresh foliage.

Time to ignition* Temperature at ignition* Maximum rate of mass loss†

r P value r P value r P value
a-Pinene† –0.227 0.1215 –0.148 0.3157 0.325 0.0257
b-Pinene† –0.104 0.4815 –0.047 0.7515 0.305 0.0371
b-Myrcene† –0.110 0.4554 –0.114 0.4403 0.301 0.0398
E-b-Ocimene† –0.366 0.0106 –0.304 0.0354 0.302 0.0391
p-cymene† –0.177 0.2296 –0.158 0.2840 0.295 0.0443
Camphene† –0.275 0.0590 –0.181 0.2171 0.311 0.0331
Tricyclene† –0.285 0.0500 –0.192 0.1914 0.319 0.0289
Unknown T2† –0.222 0.1286 –0.199 0.1760 0.357 0.0138
Unknown T6† –0.049 0.7440 –0.028 0.8517 0.345 0.0187
Total† –0.163 0.2697 –0.139 0.3473 0.309 0.0345

Note: Significant correlations are presented in bold.
*Variables transformed using the square-root function.
†Variables transformed using natural logarithm. n = 48 for all correlations except n = 47 for maximum rate of mass loss

correlations.
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compounds (crude fat), have low relative molecular mass and
are known to be relatively more volatile and flammable (Sha-
fizadeh et al. 1977; Susott 1980). These changes in foliar
chemistry indicate that the inherent ignitability of Y and R
foliage is lower than that of G foliage, but our results con-
firm that the effect of fuel moisture overwhelmed these appa-
rent decreases in ignitability.

The duration of flaming of dry foliage for all crown condi-
tion classes was negatively related to the proportions of lig-
nin, cellulose, and hemicellulose but positively related to the
proportions of calcium, magnesium, and crude fat. Again, it
appears that the high relative molecular mass of the structural
compounds of lignin and cellulose reduced the ability of the
fuel to sustain flaming combustion, whereas the low relative

Fig. 6. Box-and-whisker plots of the flammability test results for dry foliage, including (A) duration of flaming and (B) temperature at igni-
tion for each of the crown condition classes (G, green; GI, green infested; Y, yellow; R, red), averaged over all sampling periods. The dia-
mond represents the mean, the horizontal line is the median, the lower and upper box ends represent the lower and upper quartiles, and the
whiskers are the minimum and maximum values, respectively. Bars with a different letter have means that are significantly different at the a =
0.05 level. ○, outliers.

Table 5. Pearson’s correlation coefficients (r) and associated P values for duration of flaming, temperature at ignition,
and high heat of combustion with the chemical composition groups for dry foliage.

Duration of flaming Temperature at ignition High heat of combustion

r P value r P value r P value
Protein 0.098 0.5381 –0.216 0.1694 0.270 0.023
Acid detergent fiber –0.471 0.0016 0.488 0.001 –0.451 <0.0001
Neutral detergent fiber –0.344 0.0258 0.507 0.0006 –0.459 <0.0001
Nonfiber carbohydrates 0.300 0.0536 –0.485 0.0011 0.413 0.0003
Ca 0.311 0.0451 –0.119 0.4513 –0.034 0.7765
P –0.141 0.3714 0.293 0.0596 0.001 0.9962
Mg 0.430 0.0045 –0.081 0.6117 0.019 0.873
Crude fat 0.536 0.0003 –0.317 0.0405 0.520 <0.0001

Note: Significant correlations are presented in bold; n = 48.
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molecular mass and high energy compounds in crude fat ex-
tended the period of flaming. The high heats of combustion
also had positive linear relationships with crude fat content
and the proportion of starches and sugars and negative rela-
tionships with the proportions of lignin, cellulose, and hemi-
cellulose. The importance of crude fat content on heat of
combustion has been demonstrated by others (Philpot 1969;
Philpot and Mutch 1971). However, the negative relationship
between the proportion of lignin and cellulose with high heat
of combustion appears contrary to the results of White
(1987), who found increasing high heats of combustion with
increasing lignin content. Determining the nature of the dis-
crepancy is difficult because our measure of lignin (ADF) is
confounded with cellulose; thus we were unable to make a
direct comparison between high heat of combustion and lig-
nin content to ascertain the reason for the observed drop in
heat of combustion.
The results from the volatile terpene measurements indi-

cated significant changes in both total and individual terpene
emission rates among Y, R, and G foliage. The mean total
emission rate of volatiles in Y foliage was consistently higher
during each month of sampling, but due to high variability,
the only significant increase detected was between the mean
emission rate for Y foliage and the mean rate for R foliage.
However, several of the individual terpenes related to flam-
mability had higher emission rates in Y foliage compared
with G foliage. Both of the terpenes identified as negatively
correlated with time to ignition and temperature at ignition
were emitted at higher rates in Y foliage than in G foliage.
Likewise, all but two of the nine compounds positively corre-
lated with the maximum rate of mass loss were emitted at
higher levels in Y foliage than in G foliage. Terpenes have
previously been shown to be an important predictor of flam-
mability for some wildland fuels (Owens et al. 1998; Ormeño
et al. 2009) but not for others (Bunting et al. 1983; Alessio et
al. 2008). Our results imply that the higher emission rates of
some of the terpenes in Y foliage may have contributed to
the increased ignitability observed in Y versus G foliage,
although the strongest relationship observed was still rela-
tively weak (r = –0.366) compared with the effect of fuel
moisture. The cause for the increase in volatile emissions in
Y foliage may be related to the decomposition, breakdown,
and drying of plant material. The mobilization of water
through drying likely supported terpene transport from within
the needle to the surface, which, when followed by evaporation,
may have produced increased emission rates (Banerjee 2001).

Conclusion
The foliage of lodgepole pine trees recently affected by

MPB undergoes significant changes in moisture status and
chemical composition over the course of tree decline and
death. Beginning during the first summer following attack,
the flammability of infested tree foliage significantly in-
creases and remains high throughout the red crown condition
class stage. The most prominent flammability characteristics
enhanced in recently infested foliage are ignitability and sus-
tainability, with beetle-affected foliage igniting more readily
than healthy foliage and having more potential net energy
under field conditions to sustain and promote fireline inten-
sity. The primary factor increasing flammability is decreased
moisture content, which overwhelms the inherent decreasesT
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in flammability of recently affected foliage caused by de-
creases in starches, sugars, and crude fat and increases in lig-
nin, cellulose, and hemicellulose. Considerable quantities of
volatile terpenes are present in dead and dying foliage, with
trees attacked one year prior (Y) having higher emission rates
of those terpenes that promote increased flammability.
Although not described here, physical changes in foliage at
the individual needle scale were observed that could influ-
ence flammability. Observations of Y and R needle foliage
compared with G foliage clearly suggest structural differences
in the surface area to volume ratio of the needles. Cross sec-
tions of individual G needles of lodgepole pine are best de-
scribed as cylinders, whereas R foliage has a flattened,
concave structure resembling a blade of grass. The work of
Lopushinsky (1970) and Brown (1970) showed differences
in the surface area to volume ratio between fully turgid
lodgepole pine needles (46.1·cm–1; Lopushinsky 1970) and
air-dried lodgepole pine needles (64.7·cm–1; Brown 1970),
suggesting enhanced heat transfer to dried-out needles.
Although the period of increased flammability may be rel-

atively short for individual trees (i.e., less than five years),
mortality generally occurs over a period of several years
within an individual stand, and therefore all stages (G, Y,
and R) may occur together for long periods of time. During
this window of time, fire managers and firefighters should be
aware of the possibility of increased potential for crown fire
initiation in affected stands and the prospect for rapid
changes in fire behavior as fires move in and out of beetle-
affected areas. Future research should focus on documenting
wildfire behavior in beetle-affected stands to verify the en-
hanced flammability predicted here and to gain a better
understanding of applicability of current empirical and
physics-based models of fire behavior.
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