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Abstract 

Aims Postfire logging recoups the economic value of 
timber killed by wildfire, but whether such forest 
management activity supports or impedes forest 
recovery in stands differing in structure from historic 
conditions remains unclear. The ain1 of this study was 
to determine the impact of mechanical logging after 
wildfire on soil bacterial and fungal communities and 
other measures influencing soil productivity. 
Methods We compared soil bacterial and fungal 
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communities and biogeochemical responses of 1) 
soils compacted, and 2) soils compacted and then 
subsoiled, to 3) soils receiving no mechanical 
disturbance, across seven stands, 1-3 years after 
postfrre logging. 
Results Compaction decreased plant-available N on 
average by 27% compared to no mechanical distur­
bance, while subsoiling decreased plant-available P 
(Bray) on average by 26% compared to the com­
pacted and non-mechanically disturbed treatments. 
Neither bacterial nor fungal richness significantly 
differed among treatments, yet distinct separation by 
year in both bacterial and fungal community compo­
sition corresponded with significant increases in 
available N and available P between the fust and 
second postharvest year. 
Conclusions Resul ts suggest that nutrients critical to 
soil productivity were reduced by mechanical appli­
cations used in timber harvesting, yet soil bacteria and 
fungi, essential to mediating decomposition and 
nutrient cycling, appeared resilient to mechanical 
disturbance. Results of this study contribute to the 
understanding about impacts of harvesting frre-killed 
trees and bear consideration along with the recovery 
potential of a site and the impending risk of future fue 
in stands with high densities of fue-killed trees. 

Keywords Postflre salvage logging · Wildfrre . 
T-RFLP· Soil bacterial and fungal communities· Soil 
chemical and physical properties . Community level 
physiological profiles 
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Introduction 

The effects of mechanical disturbance that occur with 

logging operations, such as compaction and subsoil­

ing, on soil productivity and forest recovery are of 

concern worldwide, and depend upon severity, time 

since disturbance, and site factors (Grigal 2000; 
Marshall 2000; Rab 2004; Bassett et al. 2005; Yildiz 

et al. 2007, 2010; Hartmann et al. 2009). Successful 

forest regeneration following logging operations may 

rely upon natural forest regeneration or upon success­

ful reforestation from nursery stock (Bassett et al. 

2005; Yildiz et al. 2007, 2010; Lindenmayer et al. 

2008; Perry et al. 2008). Similarly, disturbance from 

fire, whether prescribed or natural, varies within 

forest ecosystems, depending on intensity and length 

of time since fire (Barcenas-Moreno and Baath 2009; 
Keeley 2009 ; Yildiz et al. 2010). Re-establishment of 

understory plant diversity and ecosystem functions of 

natural forest communities with herbs, shrubs, and 

tree species mixtures may be important in sustaining 

long-term productivity (Fisher and Binkley 2000; Fox 

2000; Rothe and Binkley 2001; Rothe et al. 2002; 
Talkner et al. 2009). 

Fire effects upon forest ecosystems have long been 

of interest in understanding forest recovery and 

subsequent management and sustainability of forests 

worldwide (Kauffman and Uhl 1990; Attiwill and 

Adams 1993; Fox 2000; Fisher and Binkley 2000; 
Cochrane and Laurance 2002; Boerner et al. 2008, 
2009; Perry et al. 2008). Forest wildfires have been a 

universal concern, including in the western United 

States. This has prompted the need to evaluate the 

effect of postfire treatments on forest ecosystem 

recovery (Cochrane et al. 1999;  McIver and Starr 

2000; Beschta et al. 2004; Sessions et al. 2004; 
Lindenmayer et al. 2008; Perry et al. 2008). It is well 

established that severe wildfire negatively impacts 

soil nutrient pools (Neary et al. 1999 ;  Knicker 2007; 
Bormann et al. 2008; Hebel et al. 2009); however, the 

effect of postfire timber removal on soil produc­

tivity is not well understood and its application 

remains highly controversial among land managers, 

scientists, and the interested public (Lindenmayer 

et al. 2008 ). Postfire logging, currently underway in 

forests to salvage the economic value of timber 

killed by wildfire, may reduce bum severity to soils 

in the event of reburning by removing large, dead 

wood (Poff 1989); may increase the risk of fire 
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(Donato et al. 2006) or fire severity (Thompson et 

al. 2007); or may decrease the amount of carbon (C) 
for long-term storage (DeLuca and Aplet 2008; 
Mitchell et al. 2009 ). 

Forest harvesting equipment, including that used in 
postfire logging, frequently results in soil compaction, 

reducing soil pore size and decreasing oxygen 

availability and water and nutrient movement to tree 

roots (Dick et al. 1988; Page-Dumroese et al. 2006; 
Craigg and Howes 2007; Hartmann et al. 2009). To 

alleviate compaction, the practice of subsoiling or 

deep tillage is used to fracture the lower soil strata. 

Based on results from agricultural soils, tillage may 

degrade soil structure, adversely affecting microbial 

biomass and diversity by loss of macro-aggregates 

(Lupwayi et al. 2001). In forest soils, as a remedial 

treatment for soil compaction, subsoiling may actually 

ameliorate the more severe soil structure degradation 

from compaction. Disruption of the belowground 

component has immediate and potentially long­

lasting effects on the below- and aboveground 

ecosystem (Froehlich et al. 1985; Perry et al. 1989; 
Neary et al. 1999;  Beschta et al. 2004). However, in 

the case of soil compaction, subsoiling as a remedial 

treatment has been found to increase rooting volume, 

decrease bulk density, and increase aeration porosity, 

potentially having a positive effect on soil productiv­

ity (Otrosina et al. 1996; Carlson et al. 2006). 
Soil microbes can indirectly influence soil produc­

tivity by enhancing nutrient availability for plant 

uptake, or reducing plant productivity through com­

petition for nutrients with plant roots by promoting 

nutrient loss via leaching (Wardle et al. 2004; van der 

Heijden et al. 2008). For example, beneficial rhizo­

sphere microorganisms, including mycorrhizal fungi 

and plant growth-promoting rhizobacteria (pGPR), 

such as Rhizobium and certain Pseudomonas species, 

can increase the availability of nutrients or plant 

growth substances to plants or suppress parasitic and 

nonparasitic pathogens (Schippers et al. 1987; Smith 

and Read 2008; Courty et al. 2010). Disturbances 

such as fire and harvesting can impact the abundance, 

activity, and composition of soil microbial communi­

ties (Smith et al. 2005; Smith et al. 2008; Kennedy 

and Egger 2010), thereby contributing to changes in 
nutrient cycling, organic matter decomposition rates, 

and ecosystem C accrual (Pietikiiinen and Fritze 

1995; Neary et al. 1999). While some studies in pine 

and mixed-conifer forests have reported minimal or 
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no modification of the mineral soil microbial com­
munity size or activity (Dick et al. 1988; Chow et al. 
2002; Shestak and Busse 2005; Busse et al. 2006), 
another has shown deep and long-lasting effects of 

organic matter removal and soil compaction on 
microbial community structures (Hartmann et al. 
2009). Understanding soil microbial tolerance to 
levels and thresholds of disturbance severity is critical 
to long-term forest productivity (Marshall 2000). 

Our objective was to compare microbial commu­
nities in soils compacted and decompacted (subs oiled) 
by mechanical equipment to soils receiving no 
mechanical disturbance after a wildfire in a mixed 
conifer forest in central Oregon. In this forest, we 
investigated the structure, metabolism, and function 
of soil bacterial and fungal communities in relation to 
physicochemical properties. Studies incorporating 
approaches for assessing both structural and function­
al diversity in examining microbial response to 
wildfire (Yeager et al. 2005), soil compaction (Axelrood 
et al. 2002a, b; Shestak and Busse 2005; Busse et al. 
2006; Hartmann et al. 2009), or both (Kennedy and 
Egger 2010) are varied in their approaches and 
responses. We hypothesized that post-fire mechanized 
salvage logging would compact surface soils resulting 
in restricted microbial- and invertebrate-habitable pore 
space. This would reduce organic matter turnover and 
nutrient (N,P) mineralization. Restricted microbial 
grazing by soil invertebrates would stabilize microbial 
populations and increase diversity in compacted soils. 
Subsoiling would ameliorate these effects by increas­
ing microbial access to nutrients, but result in a loss of 
microbial diversity due to an increase in predation 
from microbivores. 

Materials and methods 

Study area 

This study was conducted within the Booth and Bear 
Butte (B&B) Fire Complex, located on the east side 
of the Cascade Mountains of Oregon in the Deschutes 
National Forest. The B&B Fire burned 36,733 ha in 
the summer of 2003. Timber sales approved prior to 
the B&B Fire and subsequently harvested 1 year after 
the fire provided a unique and timely opportunity to 
study the impacts of postfire logging without the 
uncertainty surrounding the approval of proposed 
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postfire-logged stands. Timber harvest and subsoiling 
o f  portions of the compacted areas occuned in 
summer 2004. Subsoiling (on approximately 17% of 
a stand) was completed on all stands within a 3-day . 
period. Compacted areas occupied approximately 2% 
to 5% of a stand. Stands, ranging in size from 5 to 
12 ha (Table 1), were thinned from below with a feller 
buncher operation that consists of a shear machine 
used to cut and place trees into a trail, and a rubber 
tire skidder machine that pulls the trees to a landing. 

Stands within the study are characterized by a 
dominant overstory of ponderosa pine (Pinus ponder­

osa Doug!. ex Laws) and Douglas-fir (Pseudotsuga 

menziesii Mirb. Franco) with white fir (Abies con color 

Gord. & Glend., Lindl. ex Hildebr.) or grand fIT (Abies 

grandis Doug!. ex D. Don, Lind!.) occurring as co­
dominants (Simpson 2007). Before logging, stands 
were comprised mainly of second-growth trees. Nearly 
all stands contain a few large, 100 to 200-year-old 
trees, and dense shrubs typifying early successional 
stages after fire and subsequent logging. Stands contain 
an understory of snowbrush ceanothus (Ceanothus 

velutinus Dougl.), dwarf rose (Rosa gymnocGlpa 

Nutt.), common snowbeny (Symphoricarpos albus 

[L.] Blake), dwarf Oregon-grape (Mahonia nervosa 

[pursh] Nutt.), trailing blackbeny (Rubus ursinus 

Cham. and Schlecht) and red hucklebeny (Vaccinium 

parvtfolium Sm.). Soils are Vitricryands and Vitrixer­
ands with sandy loam texture (Table 1). Elevations of 
all stands are about 1,000 m (Table 1). Average air 
temperatures range from -1 DC in the winter months to 
20DC in the summer months. Average annual precip­
itation ranges from 50 to 150 cm. About 70% of the 
precipitation falls during November through April. 
During the driest months (July, August, and 
September), the average monthly precipitation is 
less than 2.5 cm. 

Study design 

The study was a randomized genuine replicate block 
design (GRBD) (Hinkelmann and Kempthorne 2008) 
consisting of seven stands representing a mix of burn 
severities, including one stand that occurred within 
the perimeter of the B&B Fire, but was spared from 
fire. Since most fires are spatially heterogeneous, 
leaving unburned or low severity burned areas as well 
as more severely bumed areas, all seven stands were 
included in the study. The study was designed to 
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Table 1 Stand locations and characteristics 

Stand Unit # Unit size Elevation Slope Aspect Soil family Location 

(ha) (m) % 

TD 3 7  1 0. 1  1 030 4 SSE Ashy-skeletal , frigid Typic Vitricryands N 44°3 1 '46, W 2 1  °42'29 

UN 54 6.9 955 6 NNE Ashy over medial-skeletal, frigid Alfic Vitrixerands N 44°29'25 ,  W 2 1  °42' 1 5  

MS 8 3  6.7 1 000 6 E Ashy over medial-skeletal, frigid Alfic Vitrixerands N 44°29'46, W 2 1 °43'48 

Big 8 5  1 1.7 970 2 1  NNE Ashy, frigid Typic Vitricryands N 44°29'26, W 21°42'38 

SP 1 1 8  7.3 970 3 E Ashy over medial-skeletal, frigid Alfic Vitrixerands N 44°00'00, W 2 1 °42'45 

AKA 140 7 . 1  955 4 SE Ashy over medial-skeletal, frigid Alfic Vitrixerands N 44°32'05, W 2 1 °40'56 

FT 143 5 . 3  1 030 1 2  SE Ashy-skeletal, frigid Typic Vitricryands N 44°3 1 '35, W 21°42'39 

compare the effects on soil of mechanical harvesting 
to non-mechanically disturbed areas. Within each 
replicate stand, several areas representing each of the 
three treatments were identified: 1) compacted (com­
paction from heavy ground-based equipment), 2) 
subsoiled (compaction followed by subsoiling), and 
3) no mechanical disturbance (Fig. 1). 

A sampling grid with grid points every 4-6 m was 
established within each stand (Fig. 1). Grid points 
were marked with a wooden stake and all stake 
locations were recorded with the Global Positioning 
System (GPS). A 10 m buffer zone within the 
perimeter of each stand was not sampled to avoid 
potential edge effects. Compacted and subs oiled 
treatments were based on visual indications of soil 
disturbance with heavy equipment using a classifica­
tion system similar to those of Craigg and Howes 
(2007) and Frey et al. (2009) in which the compacted 
treatment was identified by topsoil displaced in lateral 

Compacted. 
SUbsoBed II 
Non-mech 0 
disturbed 
Tree I stump. 
Grid marker /::; 

Fig. 1 Genuine replicate block study design with three 
discontinuous treatments with in a stand I) compacted 
(compaction from heavy ground-based equipment), 2)  sub­
soiled (compaction followed by subs oiling), and 3 )  no 
mechanical disturbance. Three plots from each treatment 
were randomly selected for soil analyses (7 stands x 3 
treatments x 3 plots = 63 plots) 
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berms, and the subsoiled treatment as areas where 
fractming of the compacted soil was evident. Visual 
classification systems of soil disturbance have been 
successfully used by the British Columbia Ministry of 
Forests and are currently under developmental use in 
the U.S. Forest Service Region 6 (pacific Northwest) 
(Curran et al. 2005). Treatment designations were 
further assessed by the ease or difficulty of pounding 
stakes into the ground and validated with a combina­
tion of soil strength and bulk density measurements 
(described below). Within each stand, plots were 
established at 3 grid points randomly selected from 
each treatment type for sampling soil physical, 
chemical, and biological properties (Table 2). Grid 
point plots were treated as genuine replicates because 
of  their random placement on multiple discontinuous 
treatment areas within a stand (Hinkelmann and 
Kempthome 2008) (Fig. 1). When measurements 
were made through time (more than one season and 
year), these data were treated as repeated measures 
and analyzed using the appropriate split-plot design. 
For the responses for which we did not composite the 
replicates we fit a mixed linear model that included 
fixed effects for treatment (df=2) and season (df=5). 
We included random effects for site (df=6) and for 
replicates within treatment areas within sites (df=54) 
and the residual error (df=300). For responses for 
which we composited the material from the 3 
replicates for each treatment within each site we also 
fit a mixed linear model with fixed effects for 
treatment and season. The random effects included 
site (df=6), variation among site by treatment 
combinations (df= 12) and the residual error (df= 
90). All models were fit using SAS's PROC MIXED 
(SAS Institute 2003). There were seven stands with 



Plant Soil (20 1 2 )  3 50:3 93-4 1 1  397 

Table 2 Soil physical, chemical, biochemical, biological, and biodiversity response variables measured for each stand 

Soil response variable 2005 2006 2007 

Summer Fall Spring Summer Fall Spring Summer 

Texture I" 

Soil resistance (MPa) Ib 
Bulk density (g cm -3) Ib Ib Ib 
Moisture (%) 3c 3 c 3 c 3c 3c 3c 

CEC (c molc kg-I) 3 c 3c 3 c 

C:N 3c 3c 3c 

pH 3c 3c 3c 

Total C (g kg-I) 3 c 3c 3c 

Total P (mg kg-I) 3c 

Available P (P-Bray) (mg kg-I) 3c 3c 3c 

Total N (g kg-I) 3 c 3c 3 c 

Anaerobic net N mineralization �-N (mg kg-I) 3 c 

Anaerobic incubation NH4-N (mg kg -I) 3c 

Bacterial richness 3" 3 " 3" 3" 3" 3" 

Fungal richness 3" 3 " 3" 3" 3" 3" 

Bacterial functional diversity 3 c 

Respiration (iJlIlol m -2 s -1) 3" 3" 3a 3" 3" 3" 

Phosphatase activity (J.!mol g -I h -I) 3c 

Numerals indicate the number of times a variable was measured per treatment per stand for season(s) indicated 
"Treatments x stand-I 

b Selected stake x treatmenCI x stand-I 

c Combined samples within treatment x stand-I 

three treatments each and three plots of each 
treatment, for a total of 63 plots; each plot was 
sampled over seven seasons: summer and fall 2005; 
spring, summer, and fall 2006; and spring and 
smnmer 2007. The response variables were selected 
based on their ability to influence and measure soil 
microbes and their processes. 

Soil physical properties 

Soil physical properties were measured at various 
times and replications, as shown in Table 2. Differ­
ences in soil strength were measured at each stand in 
one plot per treatment in the fall of 2005 (Table 2) 
using the Rimik 4011 recording soil penetrometer 
(Rimik International Pty Ltd, Queensland, Australia) 
at 2.5 cm increments. Five measurements at each 
sampling point were taken to a maximum depth of 
60 cm. Bulk density was assessed in the fall of 2005 
(0-5 cm) and the springs of 2006 (5-10 cm) and 2007 

(0-5 cm, 5-10 cm). Gravimetric water content (% 
moisture) was measured in each plot during each 
sampling period to calculate water-filled pore space, 
an attribute critical to mass flow of nutrients ,  as well 
as to limits to biological activity. 

Soil chemistry, N mineralization, and incubation N 

Mineral soils for chemical analysis, N mineralization, 
and incubation N were collected to a 10 cm depth, 
using a garden trowel on each plot during each 
summer sampling period (Table 2). Soil samples were 
combined by treatment per stand and then sieved 
(2.0 mm) and air-dried before being analyzed. Total C 
and N were analyzed by the dry combustion tech­
nique (Bremner 1996; Nelson and Sommers 1996) 
using a Flash EA1l2 NC soil analyzer (Thermo 
Electron Corporation, Milan, Italy). Cation exchange 
capacity (CEC) was estimated using the sum of 
exchangeable cations (Robertson et al. 1999) for the 
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summer 2005 and 2006 samplings, and the ammoni­
um acetate method (Rhoades 1982) for the summer 
2007 soils. Soil pH was measured employing the 1:2 
(soi1:water) dilution method using deionized water 
(Robertson et al. 1999). Plant available P was 
analyzed using the dilute acid-fluoride method (P­
Bray) (Kuo 1996) at the Oregon State University 
Central Analytical Lab (OSU CAL). Total P was 
measured at the OSU CAL using a Kjeldahl digestion 
(Bremner 1996; Taylor 2000), followed by P deter­
mination on an ALPKEM auto analyzer (Technicon 
Instruments, Saskatoon, Canada). 

Nitrogen mineralization potential, the conversion 
of organic N in microbial biomass to inorganic N 
under laboratory conditions, is considered a potential 
estimate of biologically available N (Myrold 1987; 
Perry et al. 2008). Anaerobic incubation N and net 
minerlizable N were measured in summer 2007 at the 
OSU CAL· using the procedure of  Bundy and 
Meisinger (1994). After incubation at 40°C for 7 days, 
50 ml of 2 M KCl was added to extract NHcN for 
1 h. The extracted NH4 was determined on an 
ALPKEM auto analyzer (Technicon Instruments,  
Saskatoon, Canada). 

Genetic analysis of samples 

Bacterial and fungal richness was measured at each 
plot within each stand for the first 6 sampling periods 
(Table 2). At each plot, a sparse litter layer of pine 
needles was removed and the mineral soil sampled to 
a depth of 10 cm and put in a 50 ml tube. Samples 
were placed in a cooler, transported to the lab and 
stored in a -80°C freezer until further processing. 
Small pebbles and vegetation (not including roots) 
were removed from the sample prior to DNA 
extraction. A MoBio Power Soil™ DNA isolation 
kit was used to extract total genomic DNA from 
approximately 0.5 g of each soil sample (MoBio 
Laboratories, Carlsbad, CA, USA). 

Soil bacteria DNA was amplified using 16S 
rDNA gene primers 8F (PAM) and 907R (Edwards 
et al. 1989; Muyzer et al. 1995) in a 50 /-ll reaction 
mix containing: Ix PCR buffer, 2 mM MgCI2, 
0.2 mM dNTPs, 0.2 /-lM Primer, 0.064% BSA. Each 
soil DNA extract was run twice under the following 
conditions: 95°C for 3 min, followed by 30 cycles at 
95°C for 30 s, 55°C for 1 min, noc for 45 s, and 
ending with an extension step of noc for 7 min. 
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Once amplified, the two products were pooled to 
capture the diversity more fully. These pooled 
products were then purified using a MoBio Ultra 
Clean DNA Clean Up kit (MoBio Laboratories, 
Carlsbad, CA). Restriction enzyme MspI was select­
ed over AluI for terminal restriction fragment length 
polymorphism (T-RFLP) community analysis after 
comparison trials on replicate samples revealed its 
ability to identify the greatest amount of variation. 
MspI consistently is considered a top performing 

. restriction enzyme for T-RFLP of bacterial samples 
(Liu et al. 1997; Engebretson and Moyer 2003). 
Digests were run according to the manufacturer's 
specifications by incubating the restriction digest for 
3 h at 37°C. Restricted samples were submitted to 
Oregon State University Center for Gene Research 

and Biotechnology for analysis using an ABI Prism 
3100 Genetic Analyzer (Applied Biosystems Inc., 
Foster City, CA, USA) to run capillary gel electro­
phoresis. Approximately 1 ng of amplified DNA was 
submitted for analysis for each sample. The analysis 
produced one community profile for each sample, 
where a profile consists of peaks of varying height 
and base pair length. The peaks (operational taxo­
nomic units or OTUs) can be used to determine the 
richness of a given sample (Liu et al. 1997). Length 
and fluorescence of the terminal restriction frag­
ments (TRF) were determined using GeneScan 
version 2.5 and Genotyper version 3.7 software 
(Applied Biosystems Inc., Foster City, CA). OTUs 
were binned to 1 bp in width. 

Methods for identifying soil fungi were followed 
as stated above with the following exceptions. The 
fungal ITS spacer region was amplified using ITS­
If (Gardes and Bruns 1993) and ITS-4 (FAM) 
(White et al. 1990) and the reaction mixture and 
thermo cycling program of Dickie et al. (2002). 
Restriction enzyme HinjI was selected over HaeIII 
for T-RFLP community analysis after comparison 
trials on replicate samples revealed its ability to 
identify the greatest amount of variation. Both HinjI 

and HaeIII are widely used in fungal T-RFLP 
profiling (Avis et al. 2006; Dickie and FitzJohn 
2007; Alvarado and Manjon 2009). GeneMapper 
software 4.0 (Applied Biosystems Inc. ,  Foster City, 
CA) was used to determine fragment fluorescence, 
OTUs were binned to 1 bp in width, and a binary 
analysis of presence or absence was performed 
following the methods of Rinehart (2004). 
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Community level physiological profiles 

Soils for CLPPs were collected and processed in 

spring 2006 to a 10 cm depth at each plot. Soil 

samples were combined by treatment per stand, 

sieved (2.0 mm) and approximately 10 g was placed 

in small envelopes, and stored at 4°C until processing. 

The physiological potential, an estimate of functional 

diversity of the bacterial community, can be deter­

mined through the utilization patterns of various C 

sources (Garland 1996; Garland et al. 1997) but 

obviously is biased towards culturable, aerobic and 

fast-growing bacteria. The CLPPs were qualitatively 

assessed using Biolog EcoPlates™ (Biolog Inc., 

Hayward, CA, USA) following the method described 

in Sinsabaugh et al. (1999). Plates were incubated at 

room temperature and color development was deter­

mined using a BioTek PowerWave X 340 spectropho­

tometer (BioTek Instruments, Winoski, VT, USA) at a 

wavelength of 596 inn. Absorbance values were 

recorded at 24 h intervals for 5 consecutive days 

(Sinsabaugh et al. 1999). The data used in this 

analysis are from the day 3 readings and have been 

standardized to the water control. The water column 

values (all zeros) were removed and all resulting 

negative values were changed to zero. 

Soil respiration 

Soil respiration was measured at 3 plots per treatment 

in each stand for the first six sampling periods 

(Table 2). Soil respiration data were obtained follow­

ing the methods in Law et al. (2001) using a LI6200 

infrared gas analyzer (LiCor, Lincoln, NE, USA). Soil 

respiration rates were expressed as J.1ll1ol m -2 s -1 of 

CO2, using the same convention and quantification as 

Sulzman et al. (2005). 

Phosphatase enzyme activity 

Phosphatase enzyme activity was assayed from soil 

samples collected in spring 2007 using the p-nitro­

phenyl-phosphate (p-NPP) assay of Tabatabai (1994) 
as modified by Caldwell et al. (1999). After soils were 

sieved «2 mm), slurries were prepared with deion­

ized water, and 1 ml of slurry was incubated with 1 ml 
of 50 mM p-NPP at 30°C. These assays were run 

without conventional buffers to measure enzyme 

activity under actual soil matrix conditions (PH, 
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cation concentrations), rather than to estimate poten­

tial enzyme activities present at optimum pH with 

increased ionic strength. After 1 h, 0.5 ml of 0.5 M 
CaCh was added and reactions were terminated by 

adding 2 ml of 0.5 M NaOH to the assay. Controls 

consisted of slurry without substrate and substrate 

without slurry. After centrifugation, supernatant p­

nitrophenol (p-NP) concentrations were measured at 

410 nm, and enzyme activities were calculated on a 

dry weight basis (Caldwell et al. 1999). 

Statistical analyses 

The mean responses for soil properties (Table 3) 

were compared among treatments, and when appro­

priate, among seasons and years. No significant 

treatment by season interactions were detected for 

any of the measured response variables; therefore, 

only main effects are presented. Results were 

considered significant at P=0.05 and were consid­

ered a statistical trend at P=O.I. The variability 

inherent in field studies with smaller sample numb­

ers, such as when soil samples were composited in 

this study, affords practical value for using statistical 

trends at P=O.l (Steel et al. 1997). The F statistic 

and (X level of significance are presented in the text 

when not included in a table. 

Multivariate statistical analyses were performed 

using PC-ORD version 5.0 (McCune and Grace 

2002). Sample community profiles were examined 

using nonmetric multidimensional scaling (NMS) 

with the S0rensen distance measure. The medium 

NMS autopilot mode was selected, with 200 maxi­

mum iterations, 0.0001 instability criterion, 15 real 

runs, and 30 randomized runs. The final model 

dimensions were chosen by comparing the NMS runs 

with real data to Monte Carlo simulations with 

random numbers. The proportion of variation repre­

sented by each axis was assessed by calculating the 

coefficient of determination (R2) between distances in 

the ordination space and S0Tensen distances in the 

original distance matrix. The relationships between 

plots in ordination space and their corresponding 

environmental variables were assessed by over laying 

the variables as a joint plot. Preliminary ordinations 

were examined and the data set further modified, first 

by excluding peaks occurring in fewer than five 

samples and then by an arcsine square root transfor­

mation of each response in order to normalize the data 
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Table 3 Effects of management treatments on soil physical, biochemical, chemical, biological and biodiversity response variables, 
with means and AN OVA results 

Soil response variable Treatment 

Compacted 

Bulk density at 5 em depth (g em -3) 0 .98 (0.04) 

Bulk density at 10 em depth (g em -3) L02 (0.04) a 

Moisture (%) 1 7.6 1 ( 1 . 37 )  

CEC (c  mole kg-I) 1 8 . 6 1  (L0 1 ) 

C:N 20. 6 1  (055) 

pH 6 .76 (0.08) 

Total C (g kg-I) 3 1 .4 (2.8) 

Total P (mg kg-I) 1 189 .54 (73.89) a,b 

Available P (P-Bray) (mg kg-I) 9 . 57  (0.66) a 

Total N (g kg-I) L6 (0. 1 )  

Anaerobic net N mineralization NHcN 28 . 1 1  (4.22) a 
(mg kg-I) 

Anaerobic incubation NH4-N (mg kg-I) 295 1  (4 .4 1 )  a 

Mean # bacterial OTUs (MspI) 24.43 (0.99) a 
Mean # fungal OTUs (HinfI) 20.29 ( 1 .38) 

Cumulative # bacterial OTUs (MspI) 52 . 1 7  (3 .98) 

Cumulative # fungal OTUs (Hin.fI) 38 . 1 7  (2.6 1 )  

Respiration (flmol m-2 S-I) 2 .45 (0. 1 9) a 

Phosphatase (fJ.ffiol g-I h-I) 28 .08 (3 .32)  a,b 

Subsoiled Non-mechanically Disturbed 

0 .95  (0 .04) 0.90 (0.04) 

0.85 (0.04) b LOO (0.04) a 
1 8 .44 ( 1 . 3 7) 20.60 ( 1 . 37) 

1 9 .06 (LO l )  1 9 .64 (LO l )  

1 9 .82 (0.55)  20 .53  (055) 

6 .69  (0.08) 6.86 (0.08) 

30.2 (2,8) 3 1 .5 (2.8) 

1 1 52 .09 (73 .89) a 1296 .24 (73.89) b 

7 .29  (0.66) b 9 .80 (0.66) a 

L6 (0. 1 )  1 . 6  (0. 1 )  

32 . 73  (4 .22) a,b 38.03 (4 .22) b 

3 5 .19  (4 .4 1 )  a,b 40.47 (4.4 1 )  b 

2LOO (0.99) b 22 .36  (0.99) b 

1 7.67 ( 1 .38) 1 8.38 ( 1 .38) 

43 .83 (3 .98) 47.3 1 (3 .98) 

3 2 .40 (2.6 1 )  3 6 . 1 2  (2 .6 1 )  

2 .3 6 (0. 1 9) a 2.93 (0. 1 9) b 

22.74 (3 . 32) a 32.63 (3 .3 2) b 

F[df.df] 

2 .7 1 [2.121 

5. 1 7[2.121 

2.02[2.12] 

0.62[2.12] 

0.87[2.12] 

2. 1 3[2,12] 

0. 1 4[2.12] 

2.86[2,12] 

1 3 .69[2,12] 

0. 10[2,12] 

6 .53[2,12] 

6 .65[2.12] 

3 .00[2.12] 

1 .38[2,12] 

1 . 1 1  [2.12] 

L25[2.]2] 

2 .55[2,54] 

2 .77[2.54] 

P 

0.08 

0.02 

0. 1 8  

0.56 

0.44 

0, 1 6  

0.87 

0. 10 

<0.01 

0.90 

0.01 

0.01 

0.09 

0.29 

0.36 

0.32 

0.09 

0.07 

Means are listed with standard errors in parentheses .  The F statistic is testing the null hypothesis of no difference among treatment 
means. Within a column, means with a common lowercase letter are not different at 0'=0. 1 .  Means differing at 0'=0.05 are shown in 
bold 

set. Using the blocked multiresponse permutation 

(MRBP, Euclidean distance, treatments or year/season 

as groups) and unblocked multiresponse permutation 

(MRPP, S0renson distance, treatments or year/season 

as groups) procedures, the strength and statistical 

significance of group membership was tested. If data 

contained repeated measures, MRBP was used, 

otherwise MRPP was used. The P-value and A 

statistic (A) describing within-group heterogeneity 

compared to the random expectation, were recorded 

for each MRBP and MRPP analysis. Similarities of 

each of the bacterial and fungal communities among 

treatments were assessed using a nested PerMANOVA 

with S0renson distance where samples were nested 

within site. Soil biogeochemical properties were 

correlated with community compositional ordinations 

to investigate links between community composition 

and functional capability for the six seasons. 
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NMS, where samples were ordinated in C-substrate 

space, was used to analyze the Biolog™ spectropho­

tometer data for bacteria. The data needed no further 

transformation after looking at initial ordinations for 

normalization. For outlier analysis, MRPP and Per­

MANOVA S0rensen distance was used. 

Diversity was estimated using the Shannon-Wiener 

index (ll): H= -L: Pi (In Pi), where Pi is the ratio of 

the number of OTUs for bacteria or fungi found in 
each sample to the total number of peaks for bacteria 

or fungi found in all samples for the OTU data 

(Magurran 1988). BiologTM substrate diversity was 

similarly calculated, except that Pi was the ratio of 

average well color development (AWCD) on each 

substrate to the sum of all A WCD on all substrates. 

Evenness was calculated for the OTU data using: E = 

H'/Hmax = H'lln S, where H is the Shannon-Wiener 

. diversity index, S is the total number of peaks found 
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in all samples, and E is a number between 0 and 

(Magunan 1988). 

Results 

Soil physical properties 

Overall, soil strength was greatest in the compacted 
treatment and least in the subsoiled treatment (Fig. 2). 
Soil strength measurements revealed distinct differ­
ences among all treatments at most 2.5 cm increments 
between 7.5 and 17.5 cm and distinct differences 
between compacted and other treatments at all incre­
ments to a depth of 17.5 cm (Fig. 2). At levels deeper 
than 17.5 cm, compacted and non-mechanically 
treated soils did not differ in soil strength; however, 
the subsoiled treatment showed distinctly less resis­
tance compared to those treatments at depths of 25-
35 cm (Fig. 2). Bulk density at 10 cm taken more than 
1 year after harvesting was 15% lower, on average, in 
the subsoiled treatment (95% (Confidence Interval 
(CI)=6-24%)) (Table 3). 

Percent moisture was up to 85% lower in surmner 
compared with fall and spring (95% CI=70-93%, 
95% CI=74--94%, respectively) (F(2, 111]=119.69, 
P<O.OOOI), but differences among treatments were 
not observed (P=0.18) (Table 3). 

Soil Resistance (MPa) 
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Fig. 2 Soil strength measurements by treatment. Measurements 

were taken at 2 .5  em increments to a maximum depth of 60 em. 
Differences in soil strength were seen to a depth of 1 7.5 em for 
most measurements. Error bars represent 1 SE 
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Soil chemistry, N mineralization, and incubation N 

Differences were not observed among treatments for 
soil CEC, C:N, pH, total C, total N (P>O.l) (Table 3). 
Soil CEC was higher in summer 2005 compared to 
swnmers 2006 or 2007 (F [2,36]=16.63, P<O.OOOl). 
Plant-available P (Bray) was up to 26% lower in the 
subsoiled treatment compared to the compacted or 
non ... mechanically disturbed treatments (95% CI=9-
39%,95% CI=11-41%), respectively (P<O.OOl) with 
a similar tendency for total P (P=0.1, 95% CI =-1.2-
24%) (Table 3). Plant-available P (Bray) was higher in 
surmner 2006 than in smnmers 2005 or 2007 (F[2, 36]= 
18.76, P<O.OOOl). Compaction decreased anaerobic 
incubation NH4-N by 26% (95% CI=3.5-51%) and 
net mineralizable (anaerobic) � by 27% (95% CI= 
2-50%) compared to the non ... mechanically dis­
turbed treatment (P= O.Ol for both) (Table 3). Total 
N (F[2, 36]=27.58, P<O.OOl) was higher in summer 
2006 than in summer 2005. Increased N in the second 
surmner led to lower CN (F[2. 36]=47.78, P<O.OOOl) 
in surmner 2006 compared to surmners 2005 and 2007. 

Soil microbial communities 

A total of 275 OTUs for soil bacteria were detected. 
Compaction tended to increase the mean number of 
bactelia OTUs, on average, by 9% and 14% when 
compared to both the non-mechanically disturbed and 
subsoiled treatments (95% CI=-0.5-19%, 95% CI= 
5-25%), respectively (P=0.09, Table 3). Shannon­
Wiener indices for bacteria OTUs among treatments 
(4.0 to 4.1) suggest that bacteria OTUs in our samples 
were equally distributed and showed high community 
complexity, and evenness values of 0.70 to 0.73 
suggest that OTU s were equally abundant. The 
average number of soil bacteria OTU s differed with 
respect to sampling period (F[s. 90]= 11.53, P<O.OOOl) 
(Fig. 3). Similarly, Shannon ... Wiener indices were 
higher in year 1 (summer 2005, fall 2005, spring 
2006) (4.0 to 4.1, with evenness values of 0.71 to 
0.73) compared to year 2 (surmner 2006, fall 2006, 
spring 2007) (3.6, with evenness values of 0.63 to 
0.65). 

A total of 160 OTUs for soil fungi were detected . 
There were no detected differences in the average 
number of fungi OTUs among treatments (F [2. 12]= 
1.38, P=0.29) but differences were detected among 
s ampling periods (F[5. 90]=51.39, P<O.OOOl) (Fig. 3). 
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Fungal richness in all treatments declined after the 

first sampling season (summer 2005) and increased in 
the last sampling season (spring 2007) (Fig. 3). 
Similarly, Shannon-Wiener indices were higher in 
the first and last sampling seasons (4.0 and 4.2, 
evenness 0.81 and 0.83, respectively) compared to 
the other sampling seasons (3.4 to 3.6, evenness 
0.67 to 0.72). 

There were no observed differences in the cumula­
tive number of bacteria and fungi OTUs among treat­
ments (P= O.3 for both) (Table 3). All treatments 
showed a gradual increase in the cumulative mean 
number of bacteria and fungi OTUs over time (Fig. 4). 

Variation in bacterial community composition was 
not detected among treatments (perMANOVAF[2, 105]= 
0.61, P= 0.76). NMS ordinations of the average 
nwnber of OTUs showed differences in the bacterial 
community composition between year 1 (summer 
2005, fall 2005, spring 2006) and year 2 (swnrner 
2006, fall 2006, spring 2007) (MRPP P<O.OOOl, A= 
0.13) and among seasons (perMANOVA F[2,123]= 4.9l, 
P= 0.0002). Responses of CEC and percent moisture 
helped explain the variation in the soil sample 
community from summer 2005, spring 2006, and 
spring 2007 (Table 4). In addition to these variables, 
available P explained separation of the bacterial 
community in summer 2006 soil samples. No environ­
mental measures explained variation in either of the 
fall measurement periods (Table 4). 

Variation in fungal community composition was 
also not detected among treatments (perMANOVA F 
[
2

,105]= l.27, P= 0.23). NMS ordinations showed dif­
ferences in the fungal community composition be­
tween year 1 (summer 2005, fall 2005, spring 2006) 

Fig. 3 Mean number of a 
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and year 2 (summer 2006, fall 2006, spring 2007) 
(MRPP P<O.OOOl, A= 0.12), and among seasons 
(PerMANOVA F[2.123]=5.41, P= 0.0002). Responses 
of CEC, total C, and percent moisture (Table 3) 
helped explain the variation in the soil sample 
community from fall 2005 and summer 2006 
(Table 4). No environmental measures explained 
variation in summer 2005, fall 2006, or either spring 
measurement periods (Table 4). 

Community level physiological profiles 

Variation in functional diversity, as measured by 
absorbance values, was not detected among treat­
ments (MRBP P= O.ll, A=0.022) (Table 4). Differen­
tiation in Shannon-Wiener indices for CLPPs for 
bacteria was not observed among treatments (3.0 in 
compacted, 2.9 in both the subsoiled and non­
mechanically disturbed treatments). Ordinations of 
the CLPP data in species space showed that C 

substrate groups, arnines/amides, amino acids, and 
carbohydrates significantly correlated with the varia­
tion in species composition in spring 2007 (Table 4); 
amines/amides were more correlated with axis 3 (R2= 
0.460), amino acids with axis 1 (R2= 0.634), which 
explains more variation than axis 3, and carbohy­
drates with axis 2 (R2= -0.456). Proportion of 
variation (R2) explained by each axis was 0.63, 0.16, 
and 0.21, respectively. 

Soil respiration and phosphatase activity 

Soil respiration rates tended to be higher in the non­
mechanically disturbed treatment compared to both 
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Fig.4 Cumulative mean number of a bacterial (MspI) and b fungal (Hinj'f) OTUs by season and treatment. All treatments showed a 
gradual increase in the cumulative mean number of bacteria and fungi OTUs over time 

the compacted and subsoiled treatments (P= 0.09) 
(Table 3). Soil respiration rates were, on average, 
more than 20% lower in fall compared to summer or 
spring (95% CI= 26-42%, 95% CI= 14-33%, respec­
tively, P<O.Ol for both). Evidence suggested that 
phosphatase activity was, on average, 30% lower in 
the subsoi1ed treatment compared to the non­
mechanically disturbed treatment (P= 0.07, 95% CI= 
10-51%) (Table 3). 

Discussion 

Following forest ecosystem disturbances, such as 
wildfires and logging, soil microorganisms, including 
fungi, bacteria, and protozoans, facilitate decomposi­
tion processes for both abovegrOlmd forest floor and 
wood residues, and for belowground components, 
such as fme and coarse roots (Stark 1972; Richards 
1987; Perry et al. 2008). These important soil biota 
help to sustain forests by re-establishing nutrient 
cycling processes following forest disturbance, while 
also facilitating establishment of trees and understory 
vegetation components, which depend upon both 
free-living and symbiotic microbes for nutrient uptake 
(paul and Clark 1996; Dighton 2003; Perry et al. 
2008; Smith and Read 2008; Simard 2009; Courty et 
al. 2010). 

The net mineralizable N mean values for all of our 
treatments (Table 3) shows that most of the available 
mineral soil N pool is being maintained in microbial 
tissues, based upon research used to develop the 

anaerobic N mineralization method employed in our 
study (Myrold 1987; Bundy and Meisinger 1994; 
Perry et al. 2008). The soil microbial biota, such as 
bacteria and fungi, also are important in taking up 
other key nutrient elements, including P and base 
cations from soil mineral and organic matter sources 
(Stark 1972; Cromack et al. 1975; Entry et al. 1992; 
Tiessen et aL 1994; Smith and Read 2008). 

Soil organic matter is a primary source of soil N 

required for the decomposition of residual forest floor 
and woody components aboveground and fine and 
coarse roots below ground (Richards 1987; Tiessen et 
aL 1994; Dighton 2003). Fungi, due to their ability to 
create hyphal networks through long-lived fungal 
rhizomorphs and mycelial strands (Treseder et al. 
2005), facilitate translocation of important nutrients 
such as N and P from soil sources into the residual 
forest floor aboveground woody components. Similar 
fungal networks are created by ectomycorrhizal fungi 
of trees, including Douglas-fir and ponderosa pine 
(Simard 2009; Courty et aL 2010), enabling N to be 
mobilized from a variety of soil organic matter 
sources (Lilleskov et al. 2010), soil P from organic 
and inorganic soil sources (Entry et al. 1992; Perry et 
aL 2008; Smith and Read 2008), and soil water from 
transport by ectomycorrhizal fungi to tree seedlings 
(Warren et al. 2008). 

Soil N availability studies have provided a useful 
comparative basis in forest productivity studies 
(Fisher and Binkley 2000) and for evaluating forest 
management activities, such as thinning, fertilization 
or prescribed burning (Waring et aL 1992; Monleon et 
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Table 4 Statistical outcomes for NMS ordinations for each season, and MRBP and PerMANOVA results showing no community 
differences for bacteria (MspI) and fungi (Haem) by treatment (TRT) 

Season Microbe NMS MRBP-TRT PerMAN OVA-TRT Vectors 

Summer 2005 Bacteria 'Stress = 1 0 .80  A=-0.004 P=OA6 CEC 
Instability= O.OOOOO I P=0.60 

Fungi bStress = 3 8.74 A =-O .O I l P=0 .88  None 
Instability=O .OO 1 070 P= 0 .80  

Fall 2005 Bacteria 'Stress=9 .77  A =-0.005 P=0.53 None 
Instability=O.OOOOOI P=0.56 

Fungi CStress= 9.54 A =-0 .005 P=0. 1 5  % Moisture 
Instability= O.OOOOO l P= 0 .58  

Spring 2006 Bacteria CStress= 1 0 .75 A=0 .023 P=0.29 None 
Instability=O.OOOOO I P=0.09 

Fungi cStress =9 .08  A=0 .047 P=0.02 None 
Instability=O .OOOOO I P=0.05 

Summer 2006 Bacteria CStress =9 .34 A = 0.005 P=0.29 P-Bray, CEC, % Moisture 
Instability= O.OOOOO I P=0.36 

Fungi CStress=4.2 1 A =0.005 P=0. 3 1 CEC, Total C 
Instability= O.OOOOO I P=0 .39  

Fall 2006 Bacteria CStress= I 0 .07 A=0 .0 1 2  P=OA3 None 
Instability= 0 .00000 I P= 0.22 

Fungi "Stress = 1 3 .56  A=-0.033 P= 0.52 None 
Instability= 0 .000090 P=0.93 

Spring 2007 Bacteria CStress= 8 . 3 04 A =-0 .0 1 04 P=0.57 % Moisture 
Instability= O. 00000 1 P= 0.70 

Fungi bStress = 32 .24 A = 0.0 1 8  P= O. l l  None 
Instability=O.OOOO l O  P=0.20 

CLPP cStress = 8 .3 0  A=0 .022 P=OAI Aminesl Amides, Amino Acids, Carbohydrates 
Instability=O .OOOOO 1 P=O. l1 

The "Vectors" column contains variables that showed a significant correlation (R2 ) with the bacterial, fungal, and functional 
community structure 
" Denotes 2-D solution 
b Denotes I -D solution 
c Denotes 3 -D solution 

al. 1997; Velazquez-Martinez and Perry 1997; Jones et 
al. 2010). In support of our hypothesis, compaction 
decreased plant-available N by 27%, on average, and 
�-N and N mineralization by 26%, on average, 
comp ared to the non-mechanically disturbed treat­
ment. Similarly, Lindo and Visser (2003) found 
decreased NHcN after c1earcut harvesting, whereas 
DeLuca and Zouhar (2000) reported an increase in the 
levels of NH4-N and potentially mineralizable N 
immediately following harvesting and p rescribed fire. 
The anaerobic N availability index values in our study 
were similar to values reported by Myro1d (1987) and 
Hebel et al. (2009) for other central O regon forest 
sites (Table 3). Myrold (198 7) also found a highly 
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significant correlation (R2= 0. 731) between anaerobic 
mineralizable N and microbial biomass N, using data 
from seven sites across Oregon. Based upon results of 
that research (Myro1d 198 7), the significantly higher 
net mineralizable anaerobic N on the non­
mechanically disturbed treatment in our study 
(Table 3) may indicate that there was a greater 
microbial biomass N pool present under that treat­
ment. Breland and Hansen (1996) postulated that N 
mineralization in compacted soil was reduced by 
increased physical protection of organic materials 
and microbial biomass against attack by micro­
bivores. Busse et al. (2006) suggested that a decrease 
in pore size that benefits microbial community 
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stability may reduce plant nutrient availability. These 
observations are in agreement with several other studies 
on how soil structure affects habitable pore space for 
microorganisms and the turnover of soil organic matter 
and nutrients, such as N (Elliott et a1. 1980; Battigelli et  
a1. 2004; Li  et  a1. 2004; Coleman 2008). 

In suppOli of our hypothesis, soils subjected to 
mechanical harvesting equipment after wildfire , and 
measured 1 year after  harvesting, exhibited increased 
soil resistance compared to soils receiving no me­
chanical disturbance (Fig. 2). H owever, there were no 
observed differences in bulk density at 10 cm between 
the compacted and non-mechanically disturbed treat­
ments 1 and 3 years after harvesting. Page-Durnroese 
et a1. (2006) reported that in coarse-textured soils, 
bulk density measurements change relatively quickly 
with time and at the 10 cm depth may indicate 
recovery not reflected in soil strength measurements 
after 1 and 5 years. Frey et a1. (2009) found no 
difference in bulk density at 10 cm between their 
lightly compacted and undisturbed treatments or 
between their moderately compacted and undisturbed 
treatments in two of three study sites, even though 
moderate compaction was characterized as topsoil 
displaced in lateral or side berms. Furthermore, Frey 
et a1. (2009) reported that the physical effects of 
different levels of compaction from heavy logging 
machinery significantly changed the bacterial com­
munity structure in their severely c ompacted soil 
(approximately 32% increase in bulk density relative 
to undisturbed soil) and resulted in only minimal 
changes in bacterial OTU abundance in moderately 
(18% increase in bulk density) and lightly (3% 
increase in bulk density) compacted soils. In contrast, 
we did not observe variation in bacterial community 
composition among treatments. 

In contrast to our hypothesis that subsoiling may 
alleviate nutrient loss due to compaction, we observed 
that plant-available P (Bray) was up to 26% lower in 
the subsoile d treatment compared to the non­
mechanically disturbed and compacted treatments. 
This decrease would be expected  to lead to decreased 
plant growth; however, subs oiling improved tree 
seedling growth compared to the c ompacted and 
non-mechanical ly disturbed treatments (JE Smith, 
lmpublished data). Subsoiling also tended to decrease 
total P by 11 %, on average , compared to the non­
mechanically disturbed treatment. The decrease in 
plant-available and total P in the subsoiled treatment 
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in this study may be linked to fractions of the organi c 
matter that were not measured.  Some P stored in plant 
residues becomes associated with the active and 
passive fractions of soil organic matter, where it can 
be stored for future release and very slowly converted 
to soluble inorganic forms that plants can use (Brady 
and Weil 2002) . 

The decrease in plant-available P (Bray) could be 
related to the 30% reduction in phosphatase activity 
that we detected in the subsoiling treatment, which 
mineralizes this P from organic forms. Dick et  a1. 
(1988) found that compaction in skid trails lowered 
phosphatase by 41% (and all enzyme ac tivities 
assayed by 41-75%) in the 10-20 cm depth .  
However, there was a consistent trend that enzyme 
activities in the top 10 cm were lower in the 
compacted treatment compared to the control, but 
differences were small and not significant. Dick et a! . 
(1988) did not detect differences in phosphatase 
between subsoiled treatments and the control. Boerner 
e t  al. (2008) found that fire and the combination of 
fire and mechanical treatment from harvesting low­
ered phosphatase activity compared to the mechanical 
treatment alone in a dry mixed conifer forest in 
O regon. They further noted that phosphatase activity 
was reduced by treatments that included fire in the 
maj ority of fire and fire sUlTogate sites in the western 
United States. In c ontrast, phosphatase activity in our 
study did not differ between the one stand that 
escaped fire and the others that burned. 

Contrary to our hypothesis, salvage logging soil 
disturbance did not appear to have an effect on  
microbial diversity; however, compaction tended to 
increase the mean number of bacterial OTU s by 9% 
and 1 4% when compared to the non-mechanically 
d isturbed and subsoiled treatments, respectively. Var­
iation in fungal ri chness was not detected between 
mech anical ly disturbed treatments and the non­
mechanically disturbed treatment. However, the ordi­
nation approach we used revealed distinct separation 
in both the bacterial and fungal community compo­
sition between the first and second postharvest year 
that cOlTesponded with significant increases in total 
and available N and available P. Tree mortality from 
fire and the removal of trees in our study may have 
led to a shift from root and rhizosphere associated 
bacteria and fungi to saprotrophic dominated com­
mumtIes. Studies suggest that overstory harvesting 
and the presence of living trees  more greatly 
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influences soil microbial communities than an intact 
fores t  floor (Busse et a1. 2006; Kennedy and Egger 
2010) . Disruption of root C transport after tree 
girdling or root severing leads to changes in both 
fungal and bacterial communities (Ho gberg and 
Ho gberg 2002; Brant et al. 2006; YalWood et a1. 
2009) and induces the rapid growth of opportunistic 
s aprophytic fungi that utilize dying mycorrhizal 
mycelia (Lindahl et a1. 2010). 

A trend over s ix sampling seasons suggested that 
the compacted s oil contained a s lightly greater 
cumulative mean number of bacterial OTUs (Fig. 4) . 
A decrease in pore size may have led to less predation 
on the bacterial community, as suggested for com­
pacted conditions in s imilar fores t  types (Shestak and 
Busse 2005; Busse et a1. 2006). S oil compaction 
alters pore size dis tribution and may benefit the 
bacterial commmuty by increasing the volume of 
habitable pores and decreasing the pore s pace 
available to larger microbivores such as nematodes 
and protozoa (van der Linden et a1. 1989; Hass ink et 
al. 1993; Breland and Hansen 1996). Moldenke et a1. 
(2000) found that compaction caused by skid trails in 
the Deschutes National Fores t  in central Oregon 
contributed to a shift in the food web to one that 
utilized primarily bacteria. 

S oil res piration is a direct measure of both 
microbial and root activity. In our s tudy, compaction 
tended to reduce respiration rates and this effect was 
not alleviated by subsoiling. Lindo and Visser (2003) 
found that c1earcutting s ignificantly reduced s oil 
respiration in the fores t  floor. In contras t, Concilio et 
a1. (2005) reported increased soil respiration with 
selective harvesting. Ma et a1. (2004) found that 
thimung resulted in nominal impact on soil respira­
tion, but that burning s ignificantly reduced s oil 
respiration. These varied responses may be attributed 
to the influence of understory vegetation on soil 
moisture and temperature. For examp le, Ma et al. 
(2004) reported that soil respiration was reduced 
s ignificantly in burned ceanothus patches, but in­
creased in unburned but thinned ceanothus patches. 
Law et a1. (2001) showed that s oil surface CO2 
effluxes were lowest for bare soil, and highes t near 
shrubs , some of which were N2 fixers with higher 
photosynthetic rates. The increased activities shown 
by res piration and by phosphatas e in the non­
mechanically disturbed treatment, for example, may 
indicate the effects of increased ceanothus and other 
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unders tory plant recovery and colonization. Thus, 
there may be greater microbial activity with more 
plants, such as ceanothus, but not necessarily greater 
bacterial div ers ity than is being shown in the 
compacted treatment. The more compacted s oil may 
have shown greater bacterial genetic diversity, yet less 
activity for respiration and phosphatase. 

Varied responses of microbial communities and soil 
physicochemical properties to compaction and other 
s oil disturbances may be explained by the complexity 
of soil dis turbances that occur during mechanized 
harvesting and to levels of soil disturbance (Shestak 
and Busse 2005; Busse et a1. 2006; Boerner et a1. 
2009; Frey et a1. 2009). Busse et a1. (2006) s uggested 
that soil microbial response to compaction is typically 
more pronounced in s tudies with additional impacts 
of soil displacement and mixing such as that which 
occurs with the creation of skid trails. Recent s tudies 
in 100-year-old mixed-conifer forests (Shestak and 
Busse 2005) and in younger pine and mixed-conifer 
p lantations (Li et a1. 2003, 2004; Busse et al. 2006) 
reported little or no effect of compaction on microbial 
community s ize, activity, or function. Nevertheless, 
negative res pons es by microbial communities to 
compaction in fores t  ecosystems abound (Dick et a1. 
1988 ;  van der Linden et a1. 1989; Torbert and Wood 
1992; Li et a1. 2003; Tan et a1. 2005, 2008 ) and can be 
long-lasting (Hartmann et al. 2009), emphasizing the 
need for s crutiny and thoughtful interpretation when 
investigating soil microorganism response to dis tur­
bance and its relation to soil processes .  

Conclusions 

Postfire logging in a dry, mixed conifer forest with 
sandy loam volcanic s oils appeared to have minimal 
effects on s oil microbial richness. However, this short­
term s tudy revealed decreased plant-available N and P 
in the soil after postfire logging disturbances that could 
have long-lasting effects in a system that already is 
nutrient limited. A s hift in bacterial communities 
corresponding with an increase in plant available N 
and P suggests that s oil microbes in these postfire 
landscapes are resilient to mechanical disturbance. 
Clearly, effects of pos tfire timber harvesting on soil 
microbes , nutrients, and processes warrant longer term 
investigation. Management decisions about whether or 
not to harvest fire-killed trees should be balanced with 



Plant Soil (20 1 2) 3 50 : 3 93-4 1 1  

the recovery potential of a site, and the potential for high 
densities of fire-killed trees to increase the area of 
severely burned soil in the event of future fire. 
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