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Given that resource managers rely on computer simulation models when it is difficult or expensive to 
obtain vital information directly, it is important to evaluate how well a particular model satisfies appli­
cations for which it is designed. The Forest Vegetation Simulator (FVS) is used widely for forest manage­
ment in the US, and its scope and complexity continue to increase. This paper focuses on the accuracy of 
estimates made by the Fire and Fuels Extension (FFE-FVS) predictions through comparisons between 
model outputs and measured post-fire conditions for the Cold Springs wildfire and on the sensitivity 
of model outputs to weather, disease, and fuel inputs. For each set of projected, pre-fire stand conditions, 
a fire was simulated that approximated the actual conditions of the Cold Springs wildfire as recorded by 
local portable weather stations. We also simulated a fire using model default values. From the simulated 
post-fire conditions, values of tree mortality and fuel loads were obtained for comparison to post-fire, 
observed values. We designed eight scenarios to evaluate how model output changed with varying input 
values for three parameter sets of interest: fire weather, disease, and fuels. All of the tested model outputs 
displayed some sensitivity to alternative model inputs. Our results indicate that tree mortality and fuels 
were most sensitive to whether actual or default weather was used and least sensitive to whether or not 
disease data were included as model inputs. The performance of FFE-FVS for estimating total surface fuels 
was better for the scenarios using actual weather data than for the scenarios using default weather data. 
It was rare that the model could predict fine fuels or litter. Our results suggest that using site-specific 
information over model default values could significantly improve the accuracy of simulated values. 

1. Introduction 

Resource managers rely on computer simulation models when 
it is difficult or expensive to obtain vital information directly. In 
the United States, for example, a suite of simulation tools, includ­
ing fire behavior models, are routinely used in support of wildfire 
management activities. Firefighter safety and incident contain­
ment objectives require that pertinent information on potential 
fire behavior be synthesized and made available immediately. Sim­
ulation models are also used to evaluate a variety of ecological 
phenomena and the effects of managing them, including the effects 
of disturbance on forest dynamics at varying spatial scales and in 
different forest types (Barreiro and Tome, 2011); interaction of fire 
and insects on forest structure (Hummel and Agee, 2003; james 
et al., 2011 ); capacity of stream habitats to support salmonids 
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(Lichatowich et al., 1995), and tradeoffs in fire threat and late-sera! 
forest structure (Calkin et al. 2005 ). 

Given the widespread use of model output, it is responsible to 
assess model performance (Regan et al., 2002; Pielke and Conant, 
2003 ). In other words, it is important to evaluate how well a partic­
ular model satisfies applications for which it is designed. We are 
mindful of the aphorism 'all models are wrong, but some are useful' 
(Box and Draper, 1987). Describing when a model falls short and 
when it performs satisfactorily is informative. Nonetheless, it is 
rarely done. The development of tools for model assessment has 
lagged behind model development (McElhany et al., 201 0). One rea­
son is a lack of data and another is a lack of resources. After a tool 
like a forest growth model or a fire simulation model is created, 
available resources are often invested in using the tool rather than 
in evaluating it. This is not surprising, perhaps, because the need to 
evaluate a large number of parameters and parameter combina­
tions can make assessing model performance difficult and 
time-consuming. A single formula for analyzing model sensitivity 
does not exist. The same model, for example, might be evaluated 
in multiple ways to reflect multiple management needs (e.g., Steel 
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et at., 2009). Complex simulation models can have linked compo­
nents and a large number of internal parameters. even within one 
variant of the model. There may be interactions between parame­
ters or inputs that are unknown. While an evaluation of the full 
potential model domain may be impossible, an evaluation of 
sub-domains is often possible. Of particular importance for evalua­
tion are the model applications and outputs used in making deci­
sions about forest management or the use of public funds. 

One simulation model used widely in the US is the Forest Veg­
etation Simulator (FVS) (Dixon, 2010). The FVS model, which orig­
inated in part from an earlier forest growth model called 
"Prognosis" (Stage, 1973), is publicly available and maintained by 
employees of the USDA Forest Service (Crookston and Dixon, 
2005; Forest Management Service Center (FMSC), 2011a). There 
are protocols for evaluating FVS that recommend sensitivity anal­
ysis prior to validating model performance (Cawrse et al., 2010). 
Evidence is scarce, however, that these protocols are routinely fol­
lowed to evaluate the full scope of the model. Instead, analyses 
that use FVS for other purposes have yielded insight into model 
performance (e.g. Ager et al., 2007, johnson et at., 2011) or model 
performance has been evaluated for a limited domain (Hood 
et al., 2007). Training on FVS is given annually around the country 
to audiences that include the staff of state, tribal, and federal re­
source management agencies (FMSC, 2011b). Such training can 
be important, because regional variants of the model exist and cal­
ibration for local conditions is often necessary. The demand for 
training also suggests the ongoing addition of new FVS users. Fur­
thermore, the scope and complexity of the FVS model continues to 
expand. In the decades since the original base model was created, 
different extensions have been developed. including western root 
disease (RD) (Frankel tech co-ord, 1998), fire (FFE) (Rebain camp, 
2010), western spruce budworm (Crookston et al., 1990), dwarf 
mistletoe (OM) (David, 2005). Outputs of the FVS model and its 
extensions are used in planning, management decisions, and re­
search and as input to other analysis tools (e.g. Dixon. 2010). De­
spite its widespread use, model performance is not well 
understood and is infrequently documented. 

Methods such as sensitivity analysis and multi-criteria analysis 
can aid in describing the domain over which a model is adequate 
(e.g., Reynolds and Ford, 1999). To be most helpful a model assess­
ment should reflect how a model is actually used. Both the FVS 
base model and FFE-FVS are used in an array of management deci­
sions. Modeled estimates of tree basal area and mortality derived 
from FVS have been used to guide silvicultural activities or antici­
pate their effects, for example, and model output has been used to 
select and document management choices among different alter­
natives (e.g. USDA, 2003, 2010). When combined with information 
about tree size and species killed or injured by fire, knowledge 
about mortality levels can affect decisions about reforestation 
(e.g. how many seedlings and of which species to order), salvage 
(e.g. how much merchantable volume deteriorating how quickly), 
and dead tree management (e.g. retain for habitat or fell for safety). 
Modeled estimates of forest fuel by size class are also used in both 
pre-and post-fire decisions because they affect fire behavior which, 
in turn influences both firefighter safety and post-fire forest condi­
tions. If multiple model outputs are routinely considered in making 
decisions about forest management, then a model performance 
assessment should include them. Indeed, in complex biological 
systems like forests we think it can be more informative to com­
pare modeled outputs of key variables simultaneously rather than 
individually (Kennedy and Ford, 2011 ). 

In our study area FVS, together with its disease and fire exten­
sions, has been used in previous management and research appli­
cations because the structure of the models and the input 
requirements matched project needs (Hummel and Barbour, 
2007). Specifically, FVS can recognize the contribution of individual 

trees to forest structure at both within-stand and among-stand 
(landscape) scales and can track residual stand structure following 
silvicultural treatments or disturbance (e.g., Crookston and Stage, 
1991 ). The model accounts for harvested trees by size and species 
and can be linked to a spatial database. As well, it is publically 
available and nationally supported by the USDA Forest Service 
(Hummel and Barbour, 2007). Data that form the starting point 
of this analysis were originally used by the local Ranger District 
to evaluate alternative management scenarios and to select a pre­
ferred action for forest density management and fuels reduction 
activities (USDA. 2003). 

Our analysis contributes to the literature on performance of the 
FFE-FVS model. We identified a unique opportunity to assess the 
performance of one variant of the model when a site for which veg­
etation and fuels data were collected in 2001 (Hummel and Calkin, 
2005) was subsequently burned by the Cold Springs wildfire in 
2008. The fire originated from a lightning strike near the eastern 
boundary of the Gifford Pinchot National Forest (GPNF) in Wash­
ington State. Due to its size (>3300 ha) and because it burned 
across multiple ownerships, extensive information was generated 
during the fire, including daily weather records and observations, 
that enabled assessments of model performance with actual 
weather conditions. 

We sought to understand how stand-scale predictions of post­
fire tree mortality generated by FFE-FVS compared to observed 
post-fire tree mortality within the Cold Springs fire perimeter. 
We focused on the stand-scale because it is the spatial scale at 
which FVS is commonly run and its outputs used to inform man­
agement planning on public land. We had two goals in our analysis, 
namely to evaluate model accuracy across suites of model outputs 
and to evaluate the sensitivity of the model to weather, disease, 
and fuel inputs. In particular, we were interested in the accuracy 
of tree mortality and fuel load estimates. The innovations of the 
analysis are (1) the comparison of post-fire field measurements 
to model simulations based on pre-fire data for the same site and 
(2) the simultaneous evaluation of multiple model outputs. 

2. Methods 

2.1. Site description 

The study area is located in the Cascade Range of Washington 
(WA) and covers the southeastern flank of Mt. Adams (T.7 N., R. 
10 E) at the eastern border of the GPNF (Fig. 1 ). Elevation ranges 
from about 1000-2000 m and annual precipitation from 90-
165 em (Topik. 1989). Forests are predominantly within the grand 
fir (Abies grandis) series (Franklin and Dyrness, 1988), with higher 
elevations in mountain hemlock (Tsuga mertensiana) (Diaz et at., 
1997). An administrative unit, the Gotchen late-successional re­
serve ( Gotchen LSR), was established in the area as part of the 
Northwest Forest Plan (USDA and USDI 1994) (Fig. 1 ). In 2001 aer­
ial photos were used to delineate and classify the ca. 6000 ha forest 
reserve into 159 polygons, or stands. Approximately seventy per­
cent of the area was typed as Douglas-fir/grand fir (Pseudotsuga 
menziesii/A. grandis) (Hummel and Calkin, 2005 ). In contrast, at ele­
vations above about 1375 m subalpine fir predominates. 

In june 2008, a fire was ignited by lightening at approximately 
1300 m in the northwestern area of the reserve. It smoldered until 
it was located by district patrols on the morning of july 13. Within 
12 h, the locally named "Cold Springs" fire, which was moving due 
east/southeast, had increased in size to over 1600 ha and, within 
24 h, the perimeter had nearly doubled. By the time containment 
was declared in September 2010, approximately 3600 ha had 
burned. The fire originated on federal land, which also accounted 
for the largest area burned among all the affected land ownership 
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Fig. 1. Map of the study area. The numbered polygons represent the six stands in which pre-fire (2001) and post-fire (2009) vegetation and fuels data were collected. 

classes (Fig. 1 ). The data used in this analysis are from federal land 
within the Cold Springs fire. 

The burned area is a swath oriented from west-to-east within 
an elevation band of ca 1170-1816 m. The lower portion of this 
band, in the eastern Cascades grand-fir zone ( 1100-1500 m) 
(Franklin and Dyrness, 1988), has a fire regime that is intermediate 
between those of upper and lower elevation forests. A variable 
severity regime helps maintain the dominance of grand fir associ­
ates like lodgepole pine (Pinus contorta), Douglas-fir (Pseudotsuga 
menziesii), or ponderosa pine (Pinus ponderosa) (Agee, 1993). Root 
pathogens and insects contribute to the patchy structure of forests 
in the grand-fir zone. Above 1500 m, in the subalpine forest, fire is 
the primary large-scale disturbance agent. Fires are often weather­
driven, which complicates estimating fire behavior (Agee, 1993). 
Many fires are stand replacement events, however. because major 
tree species (subalpine fir: Abies lasiocarpa and lodgepole pine) lack 
resistance to high heat. 

2.2. Pre-fire field sampling (2001) 

In 2001, measurements of forest stand structure and composi­
tion were made in the Gotchen LSR (details in Hummel and Calkin 
(2005) ). Twelve stands were selected for field sampling by using 
probability proportional to size; the selected polygons were visited 
between june-August 2001. A systematic sample of vegetation was 
made by following stand exam protocols from Region 6 of the For­
est Service and incorporating a random starting location within 
each sampled stand. The allowable error in measurements ranged 
from 0% to 10%, depending on the variable. In addition, estimates of 
downed wood were made on each plot at the request of the 
wildlife biologist and the fire management officer on the Mt. 
Adams Ranger District of the Gifford Pinchot National Forest. 

Two methods were used to estimate downed wood on each plot. 
First, a photo series code was recorded that corresponded best to 
the visual condition of the plot and then the code was converted 
directly to 1, 10, 100, and 1000 h fuel classes (Maxwell and Ward, 
1980). Additionally, measurements were recorded for all logs 
>12.7 em diameter that intersected a 22.8 m down wood transect 
established from plot center using a random compass azimuth 
(after Bullet al. (1997)). These additional "tally" data on 1000-h 
coarse woody debris were converted to metric tons/hectare by 
using equations in Waddell (2002) together with species-specific 
wood density values in FFE-FVS and decay-class adjustment factors 
for softwoods (after Bull et al. (1997)). The original sample plot 
locations were mapped, but not geo-referenced. 

2.3. Post -fire field sampling (2009) 

The six 2001 stands whose boundaries intersected with, or were 
contained by, the Cold Springs fire perimeter were visited again a 
year after the fire origin Uuly 2009) (Fig. 1 ). In all six stands the 
sample of the pre-fire forest was dominated by grand fir (Fig. 2, 
Table 1); average tree diameter (Fig. 3) and quadratic mean diam­
eter (QMD) were approximately 55 em (20") (Table 1 ). The QMD of 
ponderosa pine and Douglas-fir trees in the sample was generally 
larger than this average, which is consistent with forest stand 
dynamics in a mixed-severity fire regime. The vegetation and fuels 
were re-sampled by using the same measurement protocols and 
field personnel. Five of the stands had 20 sample plots and one 
stand had 10 sample plots. The location of specific plots differed 
from the 2001 measurement, but the same number of plots were 
measured in each stand so their density was the same in each sam­
ple. We refer to the 2009 measured field data as the "post-fire" ob­
served data. Most of the re-measured stands lie within the Abies 
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Fig. 2. The number of trees (live. dead, and advance regeneration <12 em) by species in the six polygons shown in Fig. 1. Data represent pre-fire (2001) forest conditions. The 
trees per hectare (TPH) value was estimated by FVS using the sample data. 

Table 1 
Pre-fire conditions in each of the six polygons. Stands 1-9 correspond to the six polygons shown in Fig. 1. BA • basal area; n • measured trees; QMD • stand QMD (em). 
AF • subalpine fire; DF • Douglas-fir; ES = Englemann spruce; GF =grand fir; LP =lodgepole pine; and PP =ponderosa pine. 

Stand BA QMD AFQMD %Of 
(m2

/ (em) (em) stand 
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Fig. 3. The diameter distribution of all trees measured (excluding advanced regeneration) in the six sample polygons shown in Fig. 1. Data represent pre-fire (2001) forest 
conditions. 
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grandis/Carex geyeri (grand fir/elk sedge) plant association (five of 
six stands). The remaining stand is in the Tsuga mertensiana (mt. 
hemlock/big huckleberry/beargrass) plant association. 

2.4. Simulating fire effects using FFE-FVS 

The pre-fire data were formatted for use in the East Cascades 
(EC) variant of the Forest Vegetation Simulator (FVS) (Stage, 
1973). The FVS model is frequently used deterministically (Hamil­
ton, 1991 ), which is the default setting. In the deterministic setting 
multiple runs with the same tree list will generate the same re­
sults. However a single FVS projection is only one of several possi­
ble outcomes for the growth and corresponding structural and 
compositional development of a forest stand. To explore the effects 
of variation within FVS on the results it simulates, the model can 
instead be run in a stochastic mode. This is done by seeding a ran­
dom number into each simulation run by using the "RANNSEED" 
keyword. Random effects are then incorporated in the FVS model 
via the distribution of errors associated with the prediction of 
the logarithm of basal area increment (Hoover and Rebain, 2010). 
In the EC variant, including random effects in a simulation alters 
the model equations for diameter growth and crown ratio. The 
model equation for height growth is not directly affected although 
indirect effects on height growth are possible. By using RANNSEED 
and analyzing the same simulation under different random num­
bers, it is possible to report output distributions for any metric 
estimated by FVS. For this analysis we ran the model in a stochastic 
mode. 

The distribution of our simulated data tended to be skewed and 
non-normally distributed; no data transformations remedied the 
distributions. In such an instance, statistical measures such as 
the mean and confidence interval are problematic. We therefore 
chose non-parametric measures based on ordered statistics for 
our summary and analysis. The median simulated value is a mea­
sure of central tendency that is less sensitive to skewed data and 
outliers than the mean value. The interquartile range (IQR) is a 
non-parametric measure of variability in a distribution. For exam­
ple, McGarvey et al. (201 0) used the interquartile range of simu­
lated values for a fish density model to compare simulated 
distributions to observed fish densities. By using ordered statistics 
we no longer relied on distributional assumptions that were vio­
lated by the simulated data. This less powerful test makes our 
comparisons between simulated and observed data more conser­
vative than if distributional statistics were used. 

To use the FVS model, information about the initial condition of 
a stand must first be formatted into a tree list. A tree list is created 
from a sample of stand conditions and is the basis for projecting 
the development of vegetation in FVS. At a minimum, the diameter 
and species of each tree on a sample plot are required. If more de­
tailed information such as tree height is available it can also be 

2001 2008 

used (Dixon, 2010). Model users typically create tree lists from 
information collected on many sample plots within a stand during 
forest management planning; these "stand exam" data are then 
combined to create a file that represents a composite condition 
with respect to tree size and species (Dixon, 201 0). Hence, at least 
two sources of error exist in FVS projections: variation in the equa­
tions and parameters that comprise the model and variation in the 
sample data used to build the tree lists (Gregg and Hummel, 2002). 
Additional sources of variation are added with each model exten­
sion, as a result of both new input data and additional internal 
parameters. 

We used the 2001 pre-fire data to estimate tree mortality and 
fuel loads in the six re-measured polygons by using FVS together 
with disease and fire extensions. The pre-fire tree lists were first 
projected for seven years (2001-2008) by using the East Cascades 
variant of FVS and different sources of fuel and disease information 
(Fig. 4). After FVS predicts values for forest growth and mortality 
and before it applies the values to tree records, an extension like 
the western root disease model simulates the dynamics of disease 
and then adjusts the predicted growth and mortality values 
accordingly (Frankel tech co-ord, 1998, David, 2005 ). 

For each set of projected, pre-fire stand conditions, a fire was 
simulated in 2008 by using FFE-FVS. The simulated fire approxi­
mated the actual conditions of the Cold Springs fire as recorded 
by the local portable weather station (RAWS) on july 14. This 
was the date on which the fire expanded significantly via an east­
ward run across the federal land which comprised the sample 
stands. We used the maximum temperature value in late afternoon 
(14.00-16.00 h) and the maximum wind speed value, adjusted for 
the height of the weather station. As described below, we also sim­
ulated a fire using model default values. The FFE-FVS extension 
uses the FVS tree list and information on stand history and cover 
or habitat type to select one (or more) fuel models that represent 
fuel conditions (Rebain comp, 2010). The east Cascades variant 
uses the Anderson (1982) fire behavior fuel models. In this analy­
sis, fuel model selections were made by allowing FFE-FVS to deter­
mine a weighted set, which included number 8 (closed timber 
litter) and 10 (timber litter/understory) (Rebain comp, 2010). The 
selected fuel model was then used to predict fire behavior. From 
the simulated post-fire conditions, values of tree mortality and fuel 
loads were obtained for comparison to the post-fire, observed val­
ues by using the same methods (Fig. 4). 

We designed eight scenarios to evaluate how model output 
changed with varying input values for three parameter sets of 
interest: fire weather, disease, and fuels (Table 2 ). The scenarios in­
cluded initial conditions that represented combinations of actual 
weather versus default weather, actual disease versus no disease, 
and fuel loads estimated either from both quick (photo series) 
and measured (transect "tally") sources or from the tally alone. A 
three-digit code for each scenario identified which weather, 

Pre~Fire 
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Fire Conditions Post-Fire 

Observations 

PI'Ojectsstand 
cond1toos based 

on input data 
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• Tree list 

FFE-FVS 
Chooses fuel models 
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and effects 
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Conditions ~ 

• Fuel loads 
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Fig. 4. Flow chart of the process for using 2001 sample data, together with FVS and its extensions, to generate estimates of tree mortality and fuel loads for comparison with 
post-fire field observations. 
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Table 2 
Scenario design and model evaluation results for model outputs describing tree mortality and fuels. Scenarios designed to evaluate how model output changed with three types of 
inputs: fire weather (W), disease (D), and fuels (F). The first four scenarios. names begin with "W", used weather data recorded during the Cold Springs fire. The other four 
scenarios, names begin with a 0. used the default settings for weather in the East Cascades variant of the FFE-FVS model. OM = Dwarf mistletoe; RD = Root disease. Photo indicates 
that a photo series code was recorded to describe fuel conditions. Tally indicates that estimates of fuel from individual logs along a transect were also used as model inputs. 
Results for model outputs describing tree mortality are the number of stands which met the binary selection criteria for mortality outputs, summarized as either basal area or as 
trees per acre (tpa). Results for model outputs describing fuels are the number of stands for which met the binary selection criteria for fuels of different size classes and for total 
fuels. 

Scenario design 

Scenario Weather Disease Fuels 
name 

Moisture Wind Mistletoe Root disease 
speed (OM) (RD) 

WDF Dry II mph On On Photo Tally 

woo Dry II mph On On Photo 
WOF Dry II mph Off Off Photo Tally 
woo Dry 11 mph Off Off Photo 
ODF Very dry 20mph On On Photo Tally 
ODD Very dry 20mph On On Photo 
OOF Very dry 20mph Off Off Photo Tally 

000 Very dry 20mph Off Off Photo 

disease, or fuel information was included; a "W" for actual weath­
er, otheiWise "0"; a "0" for disease included, otheiWise "0"; and a 
"F" for fuels from both photo series and tally estimates, otheiWise 
"0" for photo alone. Hence. the "WOF" code was actual weather, 
disease included, and fuel estimates derived from the photo series 
and augmented with the tally data, the "000" code was default 
weather. disease included, and fuel estimates from photo only, 
the "WOO" code was actual weather, disease omitted, and fuel esti­
mates from photo only. Table 2 depicts all combinations made by 
following this established coding system. 

Four of the scenarios were simulated with wind speed (20 mph) 
and fuel moisture values that would have been selected as the de­
fault values for fire and vegetation conditions in the east Cascades 
variant of FFE-FVS. The remaining four scenarios were simulated 
using wind speed ( 11 mph) and fuel moisture values derived from 
the actual conditions recorded by the RAWS station located near 
the fire on july 14, 2008. Within each group of actual weather 
and default weather scenarios we also varied both the disease lev­
els and source data of fuels. Infection levels of root disease (RO) 
(Armillaria spp., Phellinus spp.) and dwarf mistletoe (OM) (Arceuth­
obium spp.) were calibrated by including information recorded for 
each sampled polygon in 2001 (Hummel and Calkin. 2005) or by 
excluding RO and OM from the FVS simulations. Sampled RD was 
severe (level 4), but OM infection was light (<25% trees per acre 
(TPA). Site calibration values of fuel loads in FVS were done in 
two ways. For one set of scenarios, the tonsfha estimates of all fuels 
by size class from the photo series code (Maxwell and Ward. 1980) 
were augmented with the tons/ha estimates of 1000-h fuels from 
the "tally" method. In the other, the photo series conversion alone 
was used for estimating fuel load in the pre-fire environment 
(Fig. 4). 

Once each of the eight scenarios was developed by using cus­
tomized keyword files and output tables, the FFE-FVS model was 
run for each of the six stands. We used the RANNSEED keyword 
and ran the model 500 times for each of the six stands and eight 
scenarios to generate the median and lQR of all model outputs of 
interest: tree mortality, expressed both as basal area (BA) and 
TPA. dead TPA by size class and species, surface fuels by size class, 
crown characteristics. torching and crowning indices, canopy cov­
er. merchantable cubic foot volume, and stand density index. A 
subset of these variables became our model assessment criteria. 
To create comparable variables for the 2009 observed data. we 
used FFE-FVS and the same customized keyword files and output 
tables. We assumed that these 2009 data represent true post-fire 
conditions. 

Tree mortality Fuels 

Mortality (basal Mortality Pareto 10-h 100-h Litter Total 
area) (tpa) rank 0.25-1" 1-311 

2 0 3 0 3 
0 2 0 2 I 
I I 0 2 0 
0 2 0 2 I 

2 0 0 0 0 
2 0 0 0 
2 0 0 0 

0 0 0 

2.5. Analyzing and ranking multiple model runs 

2.5.1. Model sensitivity 
We examined the sensitivity of multiple model outputs to alter­

native types of input data. Specifically, we made three comparisons 
of model performance: ( 1) default weather versus actual weather; 
(2) fuel transects + photo series ("tally") versus photo series alone 
("photo"): and (3) disease (OM and RO) presence or absence (Ta­
ble 2). Including all possible combinations of weather, disease 
severity, and fuel was outside the scope if this analysis. 

Our evaluation included two types of model output, which we 
termed either "measured" or "derived." The former term refers 
to model output that was the same or similar to variables mea­
sured in the field. Examples of measured variables included the 
number of live grand fir trees 1 0-20" dbh or dead ponderosa pine 
trees 20-30" dbh. In contrast, derived variables refer to model out­
put not directly measured, but instead calculated by the model 
based on measured input. Examples of derived criteria included 
merchantable volume of wood in cubic feet and torching index 
(the wind speed required for a surface fire to ignite the crown 
layer). 

FFE-FVS model output was generated for the same set of six 
measured and seven derived variables for each of the eight scenar­
ios. For each variable of interest we then compared all 28 possible 
pairs of scenarios. If, for a given pair of scenarios, the IQR of a spe­
cific variable did not overlap, we considered the model sensitive to 
the differences between the inputs used for the two scenarios. For 
example, we may have compared scenarios that differed only in 
the use of actual versus default weather conditions. If the IQR for 
'simulated torching index' did not overlap across these two scenar­
ios, we concluded that 'simulated torching index' was sensitive to 
weather parameters. The total sensitivity of each variable was cal­
culated as the proportion of scenario pairs for which their IQR did 
not overlap. A value of 1 means that the model output was sensi­
tive for all scenario pairs; whereas a value of 0 means that the 
model output was not sensitive in any of the scenario pairs. 

2.5.2. Model accuracy 
We were interested not just in how the model responded to 

different inputs (sensitivity), but also in which inputs produced 
output that adequately matched our observed data (accuracy). 
For the accuracy assessment we evaluated how stand-scale model 
predictions of post-fire tree mortality and fuel loads compared to 
tree mortality and fuel loads sampled after the fire in the same 
burned stands. Binary criteria have been recommended for such 
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an evaluation (Hornberger and Cosby, 1985, Reynolds and Ford, 
1999) rather than minimization of error between the model output 
and some target value. To create binary criterion a target range 
must be chosen in advance for a given variable. If a corresponding 
model output value falls within the target range the model is as­
sumed to satisfy that criterion (it adequately replicates that vari­
able; it is given a 1 ). If the model output value falls outside of 
the target range then the model is assumed not to satisfy that cri­
terion (the model is deficient with respect to that variable; it is gi­
ven a zero). We elected to use binary selection to compare model 
output for multiple variables simultaneously. As our target range 
we chose the IQR, a non-parametric estimate of variability across 
plots (for normally distributed data with a sample size of 10 this 
would be equivalent to a 95% confidence interval). To assess model 
adequacy, we checked whether the median simulated value for the 
stand fell within the inter-quartile range of plot-scale values 
(Fig. 5 ). There is no existing standard for evaluation; our criterion 
answered whether or not the simulated value fell within what 
we considered to be a "reasonable" range of observed values for 
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each stand. We defined a performance level based on the number 
of stands that satisfied the evaluation criteria for a particular mod­
el output: <3 stands= poor; 3-4 stands= fair; 5-6 stands • good. 

2.5.3. Simultaneously evaluating multiple output metrics 
Many model evaluation techniques use a single value (or crite­

rion), such as a goodness-of-fit statistic, to measure model perfor­
mance. These single-variable techniques have been adapted to 
accommodate multiple model outputs by combining the multiple 
measures of model fit into a single value, usually a weighted sum 
(i.e. select the model scenario that minimizes the sum of good­
ness-of-fit statistics). Weighting across measures can be arbitrary, 
however, and when multiple measures of model fit are combined 
the information each measure contributes individually to model 
performance is obscured. 

We chose to evaluate FFE-FVS with respect to Pareto optimality. 
By using the concept of Pareto improvement we could undertake a 
multivariate assessment of model output without pre-assigning 
weights to specific criteria of interest, such as tree mortality and 
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Fig. 5. Boxplots for two measured variables: the basal area of all dead trees and total surface fuels ; and two derived variables: torching index and merchantable cubic foot 
volume and four stands (1. 2. 3, and 9). Each panel shows the relation of the plot data (far left of the panel) to the simulated values for that variable in each scenario. 
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fuel loads. Pareto improvement is directly related to the economic 
theory of Pareto efficiency, and has been applied to ecological mod­
el evaluation (Reynolds and Ford, 1999: Komuro et al., 2006: Tur­
ley and Ford, 2009; Ford and Kennedy, 2011 ), environmental 
management and decision-making (Kennedy et al., 2008; Thomp­
son and Spies, 2010), and optimality studies (Rothley et aL. 1997; 
Schmitz et al., 1998; Vrugt and Robinson, 2007; Kennedy et aL. 
2010). 

We compared model output for our criteria of interest across 
the 28 total scenario pairs that our 8 scenarios made possible. 
For example, we compared the model outputs of WDF and WOO 
for four variables (10-h fuels, 100-h fuels, litter, and total surface 
fuels).lfWDF performed better than WOO for all of the outputs, gi­
ven our selection criteria, then it represented an improvement in 
accuracy. If, however, WDF performed better for two of the outputs 
and WOO performed better for the other two, then it was not pos­
sible to judge which scenario performed better for all of the crite­
ria. We used this process of comparison to identify the set of 
scenarios for which no further improvement was possible and 
termed these "rank 1" scenarios. Hence, the best performing sce­
narios are rank 1, followed by 2, 3, etc. We continued in the same 
manner for all our output variables of interest and for every sce­
nario pair until all of the scenarios were ranked. 

3. Results 

3.1. Overall results 

The early stages of our analysis provided insight into the data 
and a general overview of the sensitivity of model output to 
changes in input values. For example, the boxplots for total surface 
fuels in stand 2 and stand 9 reveal sensitivity between the scenar­
ios using actual weather data (WDF, WOO, WOF, WOO) and those 
using the defaults for weather (ODF, 000, OOF, 000) (Fig. 5 ). Results 
differed by stand. Stand 2, for example, showed little sensitivity to 
disease or fuel inputs across the four scenarios using actual weath­
er data. In contrast, stand 9 displayed sensitivity to the inclusion of 
the more detailed fuel data. 

We also observed that variability in plot-scale measurements 
was at times greater than variability in the simulated outputs 

Table 3 

and that the derived values appeared less variable than measured 
ones (Fig. 5). 

3.2. Evaluating model performance for a suite of measured and derived 
variables 

All tested model outputs displayed some sensitivity to alterna­
tive model inputs across scenarios. The degree of sensitivity de­
pended on the variable. The proportion of scenario pairs whose 
inter-quartile ranges did not overlap was calculated for each stand: 
mean sensitivity was calculated as the mean of those six propor­
tions (Table 3). A higher sensitivity value indicates a variable 
whose value was more sensitive when changing from one scenario 
to another. The measured variables, as shown in Table 3 had mean 
sensitivity values ranging from 41.7 to 91.1. The measured variable 
dead Douglas-fir trees (20-30" dbh or DTDF20) was less sensitive 
than the other measured variables. In contrast, derived variables 
had mean sensitivities that ranged from 25.0 to 76.2 (Table 3). 
These derived variables tended to be less sensitive than the mea­
sured variables: four of the six derived variables showed no sensi­
tivity at all (0.0) in some stands (Table 3). Exceptions were 
merchantable cubic foot volume (MCuFt) and stand density index 
(SOl), both of which exhibited sensitivity commensurate with the 
suite of measured variables (>70). 

Our results suggest that the suite of model outputs we exam­
ined was most sensitive to whether actual or default weather 
was used and least sensitive to whether or not disease data were 
included as model inputs. In Fig. 6 we illustrate a comparison be­
tween the mean sensitivity of model outputs to fuels tally versus 
no fuels tally and the mean sensitivity of outputs to disease pres­
ence versus absence. There are thirteen points on the plot, one 
for the mean sensitivity for each variable (six measured plus seven 
derived). The line overlain on the plot is of a 1-1 relationship. If the 
sensitivity to fuels tally were equal to disease data, then the mean 
sensitivity would fall on the line. If the sensitivity to fuels tally 
were greater than the sensitivity to disease data, the mean sensi­
tivity would fall above the line. We found that the sensitivity to 
whether fuel tallies were included tended to be greater than the 
sensitivities to whether disease data were included (Fig 6a). We 
also found that sensitivities to using actual versus default weather 

Mean sensitivity of each output variable by stand (measured variables are shown to the left of the broken line and derived variables are shown to the right of it}. (LTPA_all • all 
live trees per acres: DTPA_GE5 =dead trees per acre greater than or equal to 5": DTDF_20 =dead Douglas-fir trees 20-30" dbh; LTG FlO= Jive grand fir trees 5-l 0" dbh; 
DBA_all • basal area of all dead trees: FUELCO =total surface fuels; Torch= torching index: crndx =crowning index: CrBAs =crown baseheight: CRblk =crown bulk density; 
cancov • canopy cover; MCuFt =merchantable cubic foot volume; SDI =stand density index}. Higher mean sensitivity values suggest the variable was more sensitive when 
changing from one scenario to another. The dots under each column illustrate the mean value of that column relative to the others. It is evident that those to the right of the 
broken line are comparatively insensitive. 

Measured Derived 

StandiD LTPA_ALL DTPA_GE5 DTDF20 LTGF10 DBA_ALL FUELCO TORCH CRNDX CRBAS CRBLK CANCOV MCuFt SDI 

1 75.0 78.6 0.0 75.0 85.7 85.7 0.0 0.0 0.0 0.0 0.0 75.0 75.0 

2 78.6 92.9 0.0 78.6 96.4 89.3 60.7 64.3 64.3 64.3 78.6 78.6 75.0 

3 71.4 92.9 78.6 0.0 89.3 89.3 42.9 46.4 42.9 46.4 42.9 75.0 75.0 

7 71.4 92.9 0.0 75.0 92.9 85.7 0.0 0.0 0.0 0.0 0.0 75.0 71.4 

8 71.4 85.7 85.7 71.4 89.3 57.1 0.0 0.0 0.0 0.0 0.0 75.0 57.1 

9 75.0 92.9 85.7 71.4 92.9 85.7 46.4 46.4 42.9 46.4 42.9 78.6 75.0 
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Fig. 6. A comparison of the mean sensitivity of model outputs to fuel tally versus no tally and disease versus no disease (""pest""). There are thirteen points on the plot. one for 
the mean sensitivity for each variable (six measured plus seven derived). The line overlain on the plot is of a 1-1 relationship. If the sensitivity to fuels tally were equal to 
disease data. then the mean sensitivity would fall on the line. If the sensitivity to fuels tally were greater than the sensitivity to disease data. the mean sensitivity would fall 
above the line. See Table 3 for abbreviations. 
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were greater than the sensitivities to whether fuel tallies were in­
cluded (Fig 6b). 

3.3. Evaluating model perfonnance for tree mortality output 

3.3.1. Overall mortality 
When accuracy of modeled tree mortality was considered, the 

third scenario (WOF: actual weather /fuel tally) was the only sce­
nario that achieved a Pareto rank 1. It was the only scenario eval­
uated able to achieve the best level of performance for tree 
mortality expressed as both basal area and by TPA (Table 2 ). When 
mortality was expressed as basal area, the best performers among 
the scenarios satisfied two out of the six stands (WOO, WOF and 
WOO all achieved two stands). When mortality was expressed as 
TPA all scenarios except WOO and WOO were able to achieve one 
stand. Scenarios 2 (WOO) and 4 (WOO) were able to satisfy two 
of the stands for basal area mortality, but satisfied none of the 
stands when mortality was expressed as TPA. All of the default sce­
narios were able to satisfy one stand for mortality expressed as 
TPA; however, none of them were able to satisfy the basal area 
mortality criterion for two stands. 

3.3.2. Basal area mortality by tree species and diameter class 
We evaluated model performance in predicting mortality across 

35 species * diameter size class combinations. The model per­
formed consistently across the scenarios for the simulated values 
of mortality by species and size class (Table 4 ). When the scenarios 
were ranked across all species and size classes, six of the eight sce­
narios were assigned rank 1; only OOF and 000 scenarios assigned 
rank 2. For the criteria in which there were differences among the 
scenarios, the scenarios with actual weather data generally per­
formed better than the scenarios with default weather data (Ta­
ble 4). To further summarize the results we calculated for each 
species the proportion of diameter classes for which the model 
achieved a fair or good classification (>3 stands satisfied), and for 
each diameter class the proportion of species for which the model 
achieved a fair or good classification (>3 stands satisfied). 

We evaluated model performance for predicting tree mortality 
across species (Table 4). The dominant tree species in the six 
stands we evaluated in our analysis was grand fir (Fig. 2), and for 
grand fir, across all of the size classes, WOF was the only scenario 
assigned a Pareto rank 1, implying that this scenario (actual weath­
er, no disease, fuel tally) performed best when simulating grand fir 
mortality across all diameter size classes (Table 4 ). Overall, results 
for model performance in predicting grand fir by size class were 

Table 4 

mixed, with the model able to meet the binary selection criterion 
for basal area mortality for as few as one stand (the 30-40'' dbh 
diameter class) to as many as five stands (over 50" dbh diameter 
class) (Table 4). For grand fir in the 10-20" dbh diameter class, 
which represents the average diameter in the sample, half of the 
stands (3) met the selection criterion. Overall for grand fir, the 
model achieved a fair or good classification (> 3 stands satisfied) 
for 4/6 of the diameter classes (a proportion of 0.6). The number 
of times the model achieved a fair or good performance for basal 
area mortality in the 10-20" dbh size class was 4/5 species (includ­
ing grand fir, a proportion of 0.8). 

We also evaluated model performance for predicting tree mor­
tality across size classes (Table 4). In some instances where few or 
no dead trees existed in a particular diameter class (e.g. ponderosa 
pine 5-10" or subalpine fir >50"), all of the stands met the selection 
criteria. For Douglas-fir, the model did not replicate the observed 
number of dead trees for all of the stands in any of the diameter 
classes. For a given stand, this means that no scenario estimated 
the basal area mortality of Douglas-fir in each individual diameter 
class to a level that met our selection criteria. Furthermore, no sce­
nario estimated the basal area mortality of Douglas-fir in all diam­
eter classes to a level that met our criteria, despite several 
scenarios meeting the criteria for individual diameter classes (5-
10, and all larger than 30"). The model performed best for the 
smallest and largest diameter size classes and for lodgepole pine. 

With respect to Pareto ranks, all scenarios were assigned rank 1 
for subalpine fir and for the all diameter, 5-1 0'' and 30-40" size 
classes, implying no differences in performance among the scenar­
ios. When there were differences in performance among the sce­
narios. OOF and 000 were never assigned rank 1, and ODF and 
ODO are assigned rank 1 only for lodgepole pine. The remaining 
rank 1 assignment was given to various combinations of the sce­
narios that used actual weather data. 

3.4. Evaluating model perfonnance for fuel outputs 

The performance of the model for estimating total surface fuels 
was better for the scenarios using actual weather data than for the 
scenarios using default weather data (WDF, WOF and WOO were as­
signed Pareto rank 1 ), although the model only achieved a fair or 
good classification for two of the four fuels classes ( 1 00-h and total 
dead surface fuels; Table 2). For fine fuels and litter it was rare that 
any stand met the selection criterion. The best scenarios were sce­
narios with actual weather and disease data (regardless of whether 
the fuel tally was included: WDF, WOO), as well as the actual weath-

Mortality table: species x diameter class. For cases when there was a different performance among scenarios, those that performed better than the rest are identified in the table. 
Otherwise, all scenarios performed identically. For the criteria in which there were differences among the scenarios. the scenarios using actual weather data generally performed 
better than the scenarios using default weather data. To further summarize the results we calculated for each species the proportion of diameter classes for which the model 
achieved a fair or good classification (>3 stands satisfied), and for each diameter class the proportion of species for which the model achieved a fair or good classification (>3 
stands satisfied). 

Diameter class Ponderosa Lodgepole pine Douglas-fir Subalpine Grand fir Proportion Best performing 
(") pine fir scenarios (rank 1) 

All 2 (WOO. 3 0 2 2 (WDF. WOF, ODF, 000, 0.2 All scenarios 
WOO) OOF. 000) 

5-10 6 4 5 3 4 1.0 All scenarios 
10-20 3 3 3 2 3 (WOO, WOF. WOO) 0.8 WOO, WOF, WOO 
20-30 2 (WDF, WOO, 3 2 (WOO, WOF, WOO) 0.2 woo 

ODF, 000) 
30-40 2 6 4 6 0.6 All scenarios 
40-50 2 (WOO, 6 3 6 4 0.8 woo. woo 

WOO) 
50+ 5 (WOO) 6 4 (WOO, WOF, 6 5 1.0 woo 

WOO) 
Proportion 0.4 0.9 0.7 0.7 0.6 
Rank 1 scenario(s) WOO WDF, WOO, ODF. WOO, WOF, WOO All scenarios WOF 

000 
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er scenario without disease data and without the fuel tally (WOO). 
This is not unexpected, as 1000-h fuel data from the tally method 
do not drive fire behavior in FFE-FVS. In our analysis, the model 
performed fairly for total surface fuels and poorly for fine fuels and 
litter (Table 2). The model performed best in predicting fuels when 
actual weather data were included, but whether including the fuels 
tallies improved performance depended on the fuel class. Including 
the fuel tallies improved performance for total surface fuels and 100-
h fuels, but not for litter and 1 0-h fuels (Table 2 ). There was no dif­
ference in model performance between including the disease data 
and not including it (disease and no tally performed the same as 
no disease and no tally). Mortality from DM was estimated by FVS 
to be < 1% over the 7 year simulation period prior to the fire. The con­
tribution of OM brooms to the actual fire cannot be determined and 
is not considered in FFE-FVS simulations. 

4. Discussion 

Our combination of sensitivity and accuracy assessments pro­
vided insight into performance of the east Cascades variant of 
the FVS-FFE model at the site of the Cold Springs wildfire. While 
a sensitivity analysis shows whether model outputs are sensitive 
to changes in an input variable, model accuracy describes the rela­
tion of model output to observed, post-fire sample data. The results 
for tree mortality indicate that none of the scenarios we designed 
satisfied the selection criteria for a majority of stands. Indeed, for 
most of the stands the median simulated value for mortality fell 
outside of the interquartile range of plot data. Depending on the in­
tended use of output, a model user may be more concerned about 
ways to improve the accuracy of predictions than about the sensi­
tivity of output to changes in input values. If accuracy is a key con­
sideration, our results suggest that using site-specific information 
over model default values could significantly improve the accuracy 
of simulated values. If understanding model sensitivities is most 
important, then this analysis offers a framework upon which to 
build. In particular, useful future steps for analysis would be to ex­
plore variation in model sensitivity across model variants, and for 
other fuel bed and weather conditions. 

The peer-reviewed literature on performance assessments for 
FVS and its suite of extensions is sparse. Our study, while limited 
by the use of one variant and a small data set for a limited domain, 
therefore offers a contribution. Namely, that model users need to 
be mindful of the sufficiency of default values for their individual 
applications and to consider the potential effects of model sensitiv­
ities and insensitivities on the output values they use or report. In 
this section, we consider these points in turn. 

4.1. Model sensitivity and accuracy 

The East Cascades variant of the FFE-FVS model was sensitive to 
input values for weather and fuels, but not for disease (Fig. 6). The 
model performed better when actual data on weather and fuels 
were used as input values than when default values were used. 
The sensitivity of model outputs to model inputs differed by model 
outputs and by stand (Table 3), implying that model performance 
may vary by stand. 

The East Cascades variant of the FFE-FVS model was more accu­
rate when estimates for tree mortality were expressed on a basal 
area basis versus TPA. None of the scenarios, however, satisfied 
our binary accuracy criterion for tree mortality or fuels for a major­
ity of our six stands (Table 2). The accuracy of predicted basal mor­
tality of grand fir, the predominant species in our stands, was 
slightly better (Table 4) than for the other species. 

By exploring model sensitivity and accuracy we can glean 
insight into both forest ecology and model performance. For 

example, our analysis revealed that the estimate of total surface 
fuels was more sensitive to whether actual weather conditions 
were entered into the model or whether the default conditions 
were accepted than was torching index. Two main explanations 
exist. Either the total surface fuels in a stand after a wildfire truly 
were sensitive to the weather conditions during the fire or the 
sensitivity of the model output to weather reflects the mathemat­
ical or process structure of FVS. Torching index in the FFE-FVS 
model is a calculation designed to represent the wind speed at 
which a surface fire is expected to ignite the crown layer, which 
depends on the fuels, fuel moisture, canopy base height, and topog­
raphy (slope steepness). johnson et al. (2011) found thatthe torch­
ing index estimated by FFE-FVS was insensitive to the application 
or absence of a surface fuel treatment after thinning. The insensi­
tivity of modeled output to changes in input data can reflect coarse 
thresholds or categorizations within the internal mathematics of 
the model. When FFE-FVS aggregates measured fuels information 
into a discrete fuel model, the model becomes insensitive to 
changes in on-the-ground fuels because relatively broad fuel con­
ditions could occupy a single fuel model. Such insensitivity does 
not necessarily reflect a real world lack of response but, rather, 
gaps in our knowledge of how fine-scale differences in inputs 
might best be propagated through the model. 

The combined findings may reveal limitations in the use of dis­
crete fuel model classes as input to FFE-FVS. Stand conditions that 
might produce variable fire behavior and effects get lumped into 
one fuel class which, in turn, produces identical predictions. Simi­
lar explanations may explain why derived variables that depend on 
fuel estimates are less sensitive to changing scenarios than the 
measured variables in our analyses. If so, our results suggest how 
changes in the structure of key input variables might be able to im­
prove model performance. Like model sensitivity, model insensi­
tivity may reflect a true lack of relationship in the real world or 
it may result from a missing or poorly-specified mathematical rela­
tionship in the model. 

4.2. Model domain 

Models are useful for developing hypotheses and/or making 
decisions. Assessing their performance can improve their utility. 
The design of a model performance assessment, including which 
criteria are chosen, directly defines the scope of inference for an 
evaluation. The full potential domain of a model such as FVS is 
enormous, especially when the extensions are taken into account. 
The adequacy of a large model can be defined over a smaller do­
main constrained by a discrete set of data and questions. This 
understanding can aid in building the set of domains over which 
a model is adequate, the kinds of questions that it can answer, 
and the context in which a question can be answered. 

The approach we adopted was to evaluate FVS at a local, stand­
scale. The full domain of model parameters is difficult to evaluate, 
so we chose a relatively small set over which to evaluate model 
performance across model scenarios. The domain of our analysis 
was the east Cascades variant of the model for tree mortality and 
fuels. In so doing, we have begun to piece together the applicable 
domain of FFE-FVS, which requires both definition of when the 
model performs well and when the model performs poorly. A mod­
el is expected to fail outside of its applicable domain (Rykiel, 1996), 
yet if that space is not delineated then it is likely the model will be 
used in contexts for which it can be expected to fail. Although we 
cannot recommend that these results be extrapolated to all appli­
cations of FFE-FVS, our analyses did reveal conditions under which 
the model worked best and conditions for which the model per­
formed poorly. We expect other studies will provide additional 
information until a clearer picture exists of model performance 
across the domain of FFE-FVS. 
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4.3. Plot -scale data versus stand-scale model 

Scale is a consideration in applying any model. FVS and FFE-FVS 
are stand level forest growth and fire effects models that have been 
used to simulate stand-scale dynamics for decades. These models 
are generally run at the stand scale by pooling input data from 
plots within the stand. Variability across plots can be incorporated 
into analyses in different ways (Hummel and Cunningham, 2006), 
but is not commonly done. Where plots are quite variable, we 
might not expect the stand average to be similar to what is 
observed on any one plot. In our analysis, we used the range of ob­
served plot-scale data to bound the range for which we considered 
the model to provide accurate predictions. We observed for several 
of our metrics that the variability of the metric based on observed 
data was greater than the range of simulated metrics using the 
stochastic component of FFE-FVS (RANNSEED) (Fig. 5). This 
discrepancy might simply suggest increasing variability in the 
RANNSEED function to better reflect on-the-ground conditions. 
The increased variability of the observed data might also reflect 
patterns of fire behavior that are not yet captured in FFE-FVS. 
The Cold Springs fire burned stands unevenly, which increased 
the variance across plots within a stand. When the FFE-FVS model 
is run at the stand level, as is common in management applica­
tions, it does not capture such within-stand variation. A perfor­
mance analysis at a plot level would produce different results. 
but not reflect the way FVS and FFE-FVS are commonly used. 

Variability in plot-scale data will also be affected by the size of 
the plot. Within our analyses, all plots were the same size. How­
ever, if researchers were to use significantly smaller plots, they 
should expect even greater variability in observed data. Larger 
plots should reduce variability in observed data across plots. 
How field data are collected, including plot size and number, will 
therefore impact how well model outputs might be expected to 
compare to observed data. 

4.4. Management implications 

Whether model performance can be considered adequate de­
pends on several factors. A model performance assessment needs 
to be consistent with model use. The decision about what output 
to evaluate or what criteria to use should be linked to expectations 
and needs about model performance. We selected metrics for a na­
tional, federally supported, individual tree forest growth and fire 
effects model that were related to a previous analysis for the study 
area that used the same model. Results from that previous analysis 
suggested that most of the trees removed by silvicultural treat­
ments designed to support fire and habitat objectives in the forest 
reserve, while generating enough revenue to break-even, would be 
medium-sized shade tolerant conifers like grand fir (Hummel and 
Barbour, 2007). Results from our current analysis indicate that 
model performance was at least fair for these species, in these size 
classes. This is important, because management decisions were 
made that authorized density reduction treatments (USDA, 
2003). The treatments focused on removing trees less than 
25 em. For trees of this size class, our results indicate that the mod­
el performed well, and that model performance was relatively 
insensitive to the use of particular model inputs (Table 4). 

Our results suggest that using site-specific information over 
model default values could significantly improve the accuracy of 
simulated values. In particular, recording and inputting actual 
weather data is likely to improve model performance. Since the 
model was less sensitive to the inclusion of detailed fuels tallies, it 
may be more useful to collect quick fuels data (i.e. recording which 
photo best corresponds to visual inspection) over several plots than 
to collect labor-intensive fuels data at fewer plots. Of course there 

may be other compelling reasons to collect detailed fuels data. The 
small size of our sample means it would be incautious to extrapolate 
our results to other forest conditions, field situations. and model 
variants without additional performance assessments. 
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