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Abstract

Major power outages have risen over the last two decades, largely due to more extreme

weather conditions. However, there is a lack of knowledge on the distribution of power out-

ages and its relationship to social vulnerability and co-occurring hazards. We examined the

associations between localized outages and social vulnerability factors (demographic char-

acteristics), controlling for environmental factors (weather), in Washington State between

2018–2021. We additionally analyzed the validity of PowerOutage.us data compared to fed-

eral datasets. The population included 27 counties served by 14 electric utilities. We devel-

oped a continuous measure of daily outage burden using PowerOutage.us data and

operationalized social vulnerability using four factors: poverty level, unemployment, disabil-

ity, and limited English proficiency. We applied zero-altered lognormal generalized additive

mixed-effects models to characterize the relationship between social vulnerability and daily

power outage burden, controlling for daily minimum temperature, maximum wind speed,

and precipitation, from 2018 to 2021 in Washington State. We found that social vulnerability

factors have non-linear relationships with outages. Wind and precipitation are consistent

drivers of outage occurrence and duration. There are seasonal effects that vary by county-

utility area. Both PowerOutage.us and federal datasets have missing and inaccurate outage

data. This is the first study evaluating differential exposure to localized outages as related to

social vulnerability that has accounted for weather and temporal correlation. There is a lack

of transparency into power outage distribution for those most vulnerable to climate impacts,

despite known contributions by electric utilities to climate change. For effective public health

surveillance of power outages and transparency, outage data should be made available at

finer spatial resolution and temporal scales and/or utilities should be required to report differ-

ential exposure to power outages for socially vulnerable populations.
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Introduction

Major power outages (POs) have risen recently in the United States because of insufficient

investment in aging infrastructure [1] and more frequent and severe extreme weather events

due to climate breakdown [2–4]. In the last 20 years, 46%-53% of major POs were related to

severe weather [2,5] and over the last decade, weather-related outages have increased by 78%

[6]. POs pose public health risks due to the disruption of temperature regulation, refrigeration,

air purification, water pumps, emergency response, communication systems, and the use of

medical equipment [7–10]. Documented PO impacts include increased all-cause mortality and

morbidity, respiratory, cardiovascular, and renal disease hospitalizations, and pregnancy com-

plications [7,8,11,12]. Recent studies have shown that socially vulnerable populations experi-

ence longer and more extensive POs [13–19]. This is especially concerning because these same

populations often possess fewer financial and institutional resources to cope with POs [20].

The power industry has traditionally focused on the role of energy infrastructure in vulner-

ability to POs, but there is growing interest in the role of social vulnerability in the exposure to

and impact of POs [14,21]. In disaster management, social vulnerability is conceptualized as a

multidimensional process that emphasizes the role of social, institutional, political and eco-

nomic systems that shape future experiences of disasters [22–25]. These processes result in dis-

advantages for some groups and advantages for others [23]. Knowledge of the link between

social vulnerability and POs could provide energy regulators, electric utilities, and emergency

managers with evidence needed to apply equity and justice concerns in planning and decision-

making. However, a lack of consensus and interpretability of PO measures pose challenges to

their application.

Most ecological studies of the health and social impacts of POs have focused on large-scale

events such as the Northeast Blackout of 2003 [26–29], Winter Storm Uri of 2021 [15,17], and

numerous hurricanes [11,18,30,31]. The substantial number of studies on major events indi-

cates interest in understanding resilience, including power infrastructure, health system, and

community resilience in the context of escalating climate change. The Institute of Electrical

and Electronics Engineers (IEEE) has developed guidelines for identifying major events and

separating them from routine reliability metrics [32]. Thresholds for major events are calcu-

lated based on the normal operation for each electric utility by identifying statistical outliers in

the distribution of daily natural log-transformed System Average Interruption Duration Index

(SAIDI) values [32]. When the overall reliability of a utility declines, the threshold for major

events increases. As a result, definitions distinguishing between major and non-major outages

are based on statistical distributions and are inconsistent. Further, they do not identify or

define non-major events (localized POs that are not widespread) of public health significance,

overlooking moderate or even small POs that pose serious health threats or hardships for

socially vulnerable residents.

There have been some studies on the health impacts or exposure to localized POs, or

smaller scale POs [7,11,12,14,33]. These studies identified POs through a daily median thresh-

old rather than the start of a major event, ranging from 0.37% to 2.2% of affected customers,

based on the distribution of daily PO coverage [7,11,12]. The intensity of these POs were then

defined according to the quantile of PO coverage and the number of consecutive days

[7,11,12]. There is a lack of evidence for defining localized POs according to statistical distribu-

tions, however, and this practice might lead to spurious findings and difficulty comparing

results across studies. Furthermore, most studies of localized POs have been conducted in

New York State due to the availability of data provided by the Department of Public Service

[7,11,12,34]. None of these studies have described differences in exposure to localized POs

according to social vulnerability factors.
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In a nationwide study of localized POs and social vulnerability between 2018–2020 using

PowerOutage.us data, Do et al. defined a medically-relevant PO as 0.1% of customers affected

for 8 hours, and based the threshold on the 90th percentile out per hour [13]. Like PO studies

conducted in New York State, the validity of such a threshold remains unclear. The authors

reported that counties in the highest quartile of Social Vulnerability Index (SVI) experienced

more medically-relevant outages. Conversely, counties in the highest quartile of durable medi-

cal equipment (DME) use among Medicare beneficiaries had fewer such POs than other coun-

ties. Notably, disability increases with DME use and is included as a component of the SVI

[13], underscoring the difficulty of interpreting overall SVI scores. Furthermore, PowerOu-

tage.us data has been used recently in several ecological studies [13,15,16,30], it has not been

validated or compared with other data sources.

In this study, we examine the relationship between social vulnerability factors and county-

level outage burden across Washington State between 2018 and 2021, controlling for weather

variables, including wind, rain, and temperature. We chose to use the daily SAIDI value as a

continuous metric of county-level outage burden because it is a standardized metric in the

power industry often reported annually and allows for the validation of outage metrics by

comparison with established federal datasets [35,36]. Defined as the average outage duration

among customers served, SAIDI is a continuous metric that integrates both duration and scale

of POs. As a continuous metric, SAIDI possesses more information and is more sensitive to

changes than categorical measures [37,38]. We used a daily measure of SAIDI to incorporate

daily weather variability and to address the limitations of missing data. Our secondary objec-

tive is to assess the validity of the PowerOutage.us data by calculating utility and state-wide

annual SAIDI estimates, identifying and describing the characteristics of major PO events, and

comparing our results with established federal datasets.

Materials and methods

Power outage data and study population

Sustained PO data was obtained from PowerOutage.us, a platform that collects, records, and

aggregates live PO data. This information, gathered through an application programming

interface (API), includes data from utilities that provide web portals displaying POs for their

customers [39]. The PowerOutage.us data are comprised of rows of dates and times in the

UTC time zone and includes variables for the utility, state, county, subdivision, customers

tracked, customers out, and date-time (S1 Table). PowerOutage.us minimizes storage require-

ments by only storing a date-time stamp when the number of customers changes. The Power-

Outage.us checks the utility API every 10–20 minutes for changes in the stored values,

according to email correspondence [40]. Utilities aggregate outage data at varying geographic

scales—some report exclusively at the county level (n = 7), while others provide data for subdi-

visions (n = 15); additionally, this reporting varies over time (S1 Fig). The subdivision variable

names are given by utilities for the purposes of operating their website and often do not corre-

spond with geography. The PowerOutage.us variable for customers tracked does not reliably

represent the number of customers served by the utility in the geographic area. Our study did

not require institutional review board review or approval because it does not involve human

subjects.

We aggregated the PO data on the county level for each electric utility (county-utility)

rather than on the subdivision level due to missing and inconsistent subdivision information.

We also aggregated PO data on the county-utility level rather than on the county level due to

missing data for different utilities within the same county. We excluded electric utilities with
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only partial data and/or low data quality (Fig 1) after conducting extensive pre-processing of

the data (S1 File and S2 Table).

The primary analysis included six of 65 electric utilities serving 20 counties in Washington

State from February 17, 2018 to December 31, 2021. These six utilities served 2.6 million cus-

tomers in 23 county-utility service areas and reported outages on 94% of the study days. A sec-

ondary analysis added eight utilities with a lower percentage of observations suggesting lower

data reliability. The secondary analysis included a total of 14 utilities serving 3.0 million cus-

tomers in 27 counties (n = 31 county-utilities). For confidentiality, unique identifiers were

assigned to each electric utility in Washington State.

County-utility customer counts

To estimate daily SAIDI, customer counts (metered service points, not people or households)

for each county-utility area were needed. However, only data for state-wide customer counts

were available from the U.S. Energy Information Administration (EIA). The state-wide counts

were equivalent to county-utility counts when the utility only operates in a single county, but

many utilities operate in more than one county [41].

To estimate all Washington utility counts, we estimated their state-wide residential, com-

mercial, and industrial customer counts using the Forms EIA-861 and EIA-861S [13,36]. To

Fig 1. Flow chart for the selection of county-utility service areas. Additional zero observations removed from

primary and secondary analysis as described in S1 Table. Raw unprocessed PowerOutage.us data included 22 utilities.

https://doi.org/10.1371/journal.pone.0307742.g001
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determine the fraction of customers served by utilities in each county for each study year, we

first contacted electric utilities to request county-level customer counts and extracted informa-

tion from utility websites. We then estimated the fraction of customers served by utilities in

each county. For consistency, we estimated the county-utility customer counts for each year

by multiplying the utilities total state-wide counts from EIA by the fraction of customers

served for each county.

In prior research, analyses have been conducted on the level of the county [13]. Do et al.

employed a downscaling method to estimate county customer counts [13]. This approach

involved apportioning the total state-wide customer counts to individual counties based on

each county’s proportion of households and establishments. As an ancillary analysis, we lever-

aged utility data we had collected to compare our estimates with these downscaling methods.

To replicate the downscaling methods, we derived the number of households from the 2017–

2021 American Community Survey (ACS), and the number of establishments per county from

the Census Business Patterns data for each year of our study [42]. We quantified the error asso-

ciated with downscaling methods by comparing these with the aggregated utility-derived data

for each county, thereby informing future research approaches.

Outage burden and major events

Our measure of outage burden is the daily SAIDI for county-utility areas. We calculated SAIDI

by dividing the sum of the customer-outage time (number of customers experiencing an outage

multiplied by the duration of the outage) for each county-utility and day by the number of

county-utility customers on the system for the year [43]. We initially explored other metrics

such as Customer Average Interruption Duration Index (CAIDI) and System Average Interrup-

tion Frequency Index (SAIFI), but these metrics were more affected by spurious zero values

than SAIDI because they require the identification of outage events (S1 and S2 Tables).

As part of validating the PowerOutage.us data, we compared our utility- and state-wide

SAIDI results with EIA data [36]. The EIA-861 includes data on annual reliability information

including the SAIDI with and without major events (defined as days when the daily system

SAIDI exceeds a threshold value). Utilities may calculate the reliability metrics using either the

Institute of Electrical and Electronics Engineers (IEEE) 1366–2012 [43] or IEEE 1366–2005 or

choose not to certify to an IEEE standard.

We additionally defined and described major outage events in both absolute and relative

terms [15]. Absolute definitions allow for the accounting of the PO magnitude and compari-

son with Department of Energy (DOE) definition of major PO events [35], whereas relative

definitions allow for the identification of a similar number of PO events across counties with

different population sizes. In absolute terms, major events were defined as days with at least

10,000 and 50,000 customer-POs affected in an hour [15]. Relative major events were defined

as: 1) PO days affecting 0.1% of county-utility customers for eight consecutive hours, 2) a

major event day (MED) with SAIDI exceeding the threshold (TMED), defined as the exponen-

tial of the sum of α and 2.5 times β [43]. Here, α is defined as the mean of the natural logarithm

of all non-zero daily county-utility SAIDI and β is the standard deviation about that mean

[43]. We compared our major events with those reported on the DOE-417, “Electric Emer-

gency Incident and Disturbance Report” [35].

Social vulnerability

We operationalized social vulnerability using individual factors rather than summary scores or

themes from social vulnerability indices used by other research [13,15,31]. We chose individ-

ual factors rather than summary scores for two main reasons: firstly, individual factors offer
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more specific, actionable insights for targeted interventions; and secondly, this approach

addresses concerns about the validity of the most commonly used tools available on the county

level [25,44,45]. We initially considered 10 social vulnerability factors but dropped six variables

due to collinearity and variance inflation factors (VIFs) (households occupying multi-unit

housing, percentage of population: with reliance on electricity-dependent medical equipment,

aged 65 years and older living alone, aged 5 years and younger, non-white and non-Hispanic,

and percentage of households living in mobile homes). We additionally considered household

density and rurality (population living in an urban vs. rural area) as potential control measures

for grid density, but these were also dropped due to collinearity with social vulnerability fac-

tors. We conducted all analyses with the four highest priority factors due to their theoretical

relationship with vulnerability to POs [15,18,20,21,30], including percentage within the

county-utility service territory of: 1) households living under 100% of the federal poverty limit,

2) civilian population 18 years of age or older with a disability, 3) households with non-English

language preference (“limited English”), square root-transformed due to skewness in the data,

and 4) population unemployed. We standardized all continuous social vulnerability factors

with Z-score standardization in our generalized linear mixed models (GLMMs).

We started with the Electric Retail Service Territories map developed by the Oak Ridge

National Laboratory (ORNL), revising utility boundaries based on information provided by

utility websites [46]. We ascertained county-utility level demographic information from the

American Community Survey (ACS), 2017–2021 (5-year) data and retrieved from the

National Historical Geographic Information System (NHGIS) [47]. To do this, we used popu-

lation-weighted centroids for census block groups to represent the locations of populations

from the 2020 Census [47,48]. We then overlayed the population-weighted block group cen-

troids with the service territories and allocated the populations from the ACS data to each ser-

vice territory using QGIS v3.30.1 [49].

Weather variables

Hourly temperature and wind data were obtained from the High-Resolution Rapid-Refresh

(HRRR) model [50,51], a weather forecasting model produced by the U.S. National Weather

Service. We chose to use the HRRR analysis data because it provides a good representation of

weather events over the Pacific Northwest, and it has a fine spatial resolution that resolves the

complex topography of Washington State (Olympic and Cascade Mountain ranges). Data

from the HRRR analysis fields were used, which assimilate real-time data from a variety of

sources including surface observations, regional weather networks, radar data, and satellite

products. Observations are assimilated into HRRR analyses for each hourly forecast at a spatial

resolution of 3 km using the Gridpoint Statistical Interpolation system, which provides hourly

values of surface temperature, humidity, and horizontal wind. We used hourly 2-m air temper-

ature (TMP; 2m_above_ground) to determine the minimum and maximum 2-m air tempera-

tures (˚C) and the hourly 10-m maximum wind speed (WIND_max_fcst;

10m_above_ground) to daily maximum wind speed (m/s) for each day of the study period.

In addition, we used gridMET data for precipitation accumulation on each calendar day from

midnight-midnight local time [52]. GridMET is a hybrid dataset that combines spatially down-

scaled weather data from the North American Land Data Assimilation System (NLDAS) with

date from the Parameter-elevation Relationships on Independent Slopes Model (PRISM) [52].
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Statistical analysis

We conducted data exploration following the protocol described in Zuur et al. [53]. The

response variable was the average duration of POs per day (SAIDI) in minutes. We included

the social vulnerability metrics and weather variables as predictors.

Distribution. We applied a zero-altered lognormal (ZALN) model within the context of

generalized additive mixed effects model (GAMM) using the bam() function from “mgcv”

[54]. In such a model, the absence-presence data is analyzed with a Bernoulli model and the

non-zero data are analyzed with a log-normal model [55]. The choice for using a log-normal

distribution for the non-zero data was partly motivated by the fact that it enhanced numerical

stability for our advanced models applied to large data sets, ensuring more reliable conver-

gence and accuracy in our estimations.

The analysis incorporated social vulnerability factors and weather variables. A GAMM was

used to allow for non-linear covariate effects, providing flexibility in modeling complex rela-

tionships between predictors and the response variable [54,56]. Cubic regression splines were

utilized for the smoothers. We used fast REML to estimate the smoothing parameters and

illustrated the plots with “gratia” [57] and “ggplot2” [58] packages. All analyses were con-

ducted in R 4.3.1 [59].

Dependency. To avoid pseudo-replication, we included random effects and modeled the

temporal patterns using smoothing functions of time. To capture the potentially different tem-

poral patterns of POs across different county-utilities, we utilized hierarchical GAMMs [54].

Such models allow for different temporal patterns for each county-utility. We used three dif-

ferent approaches to model seasonal patterns: day of the year (DayInYear) or minimum daily

temperature for short-term seasonal trends, each with year as a categorical variable for long-

term trends, and Julian Day (JDay, a continuous count of days) to model both seasonal and

long-term trends. The inclusion of minimum daily temperature was intended to capture sea-

sonality, potentially simplifying the model.

We used the Akaike’s Information Criterion (AIC) to compare the models with different

temporal patterns and chose the most parsimonious model when the AIC difference was less

than two [60]. We verified whether spatial dependency was present by extending the best-fit

models with a spatial smoother (Markov random field). Results indicated that there was no

need to extend the models with spatial dependency.

Model overview. PO burden SAIDI�c;t for a given county-utility service territory (c) and

temporal or time-dependent variable (t) was modeled using a ZALN GAMM. This model con-

sists of three steps:

1. Bernoulli Process (Probability of Zero Outage):

This component models the likelihood that there is no outage on a given day for a specific

county-utility.

POc;t ¼ Bernoulli pc;t

� �
ð1Þ

The expected value of the probability of an outage absence can be expressed as:

E POc;t

� �
¼ pc;t ð2Þ

With a log-odds representation:

Logit pc;t

� �
¼ Intercept þ Covariatesc;t þ Dependencyc;t ð3Þ
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The terms can be expanded for (see ‘Exploring Model Structures’ below for more informa-

tion on the dependency terms):

Logit pc;t

� �
¼ b1 þ f Povertyc

� �
þ f Unemploymentc
� �

þ f Limited Englishc

� �
þ

f Temperaturec;t
� �

þ f Wind Speedc;t

� �
þ f Precipitationc;t

� �
þ fCounty� utilityðJDayÞ þ ac

ð3bÞ

Where f(.) stands for a smoothing function, β1 stands for the intercept, fCounty-utility is the

smoother for JDay for each county-utility and ac is the smoother for random effects to model

the county-utility specific intercept.

1. Log-Normal (LN) Process (Magnitude of Non-zero pOs):

When an outage occurs, this component models its magnitude or severity; The expected

value of SAIDI on the original scale can be expressed as:

E SAIDIc;t
� �

¼ emc;tþ
1
2
sc;t

2

ð4Þ

Where μ is the mean of the natural log-transformed non-zero SAIDIc,t values.

mc;t ¼ Intercept þ Covariatesc;t þ Dependencyc;t ð5Þ

The terms can be expanded (see ‘Exploring Model Structures’ below for more information

on the dependency terms:

mc;t ¼ b1 þ f Povertyc
� �

þ f Unemploymentc
� �

þ f Limited Englishc

� �
þ f Temperaturec;t
� �

þ

f Wind Speedc;t

� �
þ f Precipitationc;t

� �
þ f7ðDayInYearÞ þ fYearðDayInYearÞþ

fCounty� utilityðDayInYearÞ þ b2 � ðYearÞ þ ac

ð5bÞ

Where f(.) stands for a smoothing function, β1 stands for the intercept, β2 is the coefficient

for year as a categorical variable, fYear is the smoother for the DayInYear for each year, fcounty-

utility is the smoother for the DayInYear for each county-utility, and ac is the smoother for ran-

dom effects to model the county-utility specific intercept.

2. Combining Parts 1 and 2:

The final model combines the Bernoulli and LN parts to provide a comprehensive represen-

tation of SAIDIc,t :

SAIDI�c;t � ZALN pc;t; mc;t

� �
ð6Þ

Where SAIDI∗c;t is the overall expected value of the SAIDI on the original scale and

expressed with the following.

E SAIDI∗c;t
� �

¼ 1 � pc;t

� �
� emc;tþ

1
2
sc;t2 ð7Þ

Exploring model structures. To investigate the driving factors of POs, we applied

GAMMs that allowed for non-linear covariate effects of social vulnerability factors by using

smoothing functions [54]. The GAMM software has the facility to determine whether a covari-

ate effect is linear or non-linear (by estimating smoothing parameters) [54]. First, our models

either included or excluded a global seasonal effect for each of the temporal variables: DayIn-
Year, JDay, minimum temperature. Among the global seasonal models with the short-term
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seasonal variables (DayInYear or temperature), we additionally allowed for the seasonal effects

to differ by year. Second, we utilized the GAMMs to allow for temporal patterns that differed

per county-utility. This is the smoothing equivalent of a random intercept and slope GLMM

[54]. We either forced the county-specific temporal dependency to have the same smoothness

for all county-utilities (shared smoothness) or allowed it to differ per county-utility (individual

level smoothness) [54].

Model fit. We assessed the goodness of fit for each stage of the zero-altered model and for

the integrated ZALN model that combines these two stages using residual diagnosis based on

scaled (quantile) residuals from the “DHARMa” package [61,62]. Model assumptions were

verified by plotting scaled quantile residuals versus fitted values, versus each covariate in the

model and versus each covariate not in the model. We found no major violations.

Initial approaches. We first built generalized linear mixed effects models (GLMM) using

the ‘glmmTMB’ package [63] and accounted for the hierarchical structure of the data by

including random effects for the county-utility in all models. For the distribution, we began by

using the Tweedie distribution (a special case of exponential dispersion models that can be

used for positive, continuous, right skewed data with a point-mass at zero) [64]. We opted for

the Tweedie distribution over a Gaussian (Normal) distribution because a Gaussian distribu-

tion could result in negative fitted values. However, these models were not able to cope with

the many small values. We therefore applied zero-altered (hurdle) models with Gamma and

negative-binomial distributions to the SAIDI data. However, the non-zero parts of the models

resulted in a poor model fit, overpredicting small values. Additionally, model validation

showed auto-correlated residuals. We therefore considered GLMMs with temporal auto-corre-

lation terms, but due to over-fitting with an auto-correlation structure, we decided to apply

GAMMs [54].

Secondary analysis. We fit the same models that included a larger set of utilities that we

excluded due to a lower baseline outage frequency and potential issues with missing not at ran-

dom (MNAR).

Results

Validity of power outage data

During the study period, there were 117,890 unique POs among 14 utilities, with a median PO

duration of 90.03 minutes (IQR, 41.07 to 182.68) for each customer affected. Statewide, our

SAIDI estimates followed similar patterns to the EIA data, with the largest average duration of

POs occurring in 2021 (S3 Table). Utility-level SAIDI values were also comparable (although

some utilities deviated or were missing reliability data, S3 Table). Some county-utility territo-

ries had large variations in the natural log of SAIDI values from year to year, depending on

extreme events such as wind, extreme rain, or even wildfire (Fig 2). Notably, Ferry county had

large POs in 2020 at the time of one of the largest complex wildfires in Washington history in

nearby Okanogan and Douglas counties [65,66].

We identified nearly all major events (defined as those affecting 50,000 customers for more

than 1 hour) reported by utilities to the Department of Energy on DOE-417 [35]. We did not

identify two major events: one affecting a large utility during a period when the API was off-

line, and another affecting Okanogan County that is not in the PowerOutage.us data (S4

Table). We identified one major event that was missing from the DOE database [35], and the

dates, times, and county locations for major events in the DOE were sometimes incomplete or

incorrect (S2 Fig). Notably, large POs often occurred in other counties at the same time as

major events in the DOE database but may have not met the threshold for a major event for

inclusion in the DOE database (e.g., Event 1, also affected Clallam and King Counties, Event 2
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also affected King and Snohomish Counties). Certain areas experienced high SAIDI values

(exceeding 60 minutes, see Table 1) during major events, even though these events did not

qualify as major under the DOE definition (e.g., S2 Fig, Event 5, Ferry County).

In the primary analysis, there were 138 county-utility days with more than 10,000 customer

POs and 9 county-utility days with at least 50,000 customer-POs (Table 1). Different defini-

tions of major events or medically-relevant POs [13] resulted in widely different sample sizes

and daily SAIDI values. Results for the secondary analysis were similar (S5 Table). Major event

definitions such as POs affecting more than 50,000 customers excluded days with the highest

SAIDI values.

We compared the downscaling estimation of county customer counts from census data as

described by Do et al. [13] with estimation using utility-derived data. Two potential sources of

error were identified in customer count estimates in prior research: first, the incorrect assump-

tion that the ratio of meters to the total number of households and establishments remains

constant regardless of the total number of meters; and second, the failure to adjust for incom-

plete utility coverage in the PowerOutage.us data. We show in S3 Fig that downscaling under-

estimates the number of customers in counties of smaller size (median percentage error: -12%,

range: -37.5%-10.8%). This results in underestimating the number of customers for smaller

counties. For instance, downscaling from census data estimated 3,526 customers in Ferry

County, while utility-provided data indicated a higher count of 5,153 customers, resulting in a

-32.2% error in the downscaled estimate. Additionally, considering the incomplete coverage of

the PowerOutage.us data, we estimated the county’s customer count at 1,828. Therefore, had

Fig 2. Mean daily log of SAIDI values for each county-utility service territory (n = 31). Areas shaded in white were not included in the PowerOutage.us data or

were excluded from all analyses. Washington county boundaries were provided by the Washington State Department of Natural Resources [67]. Utility service

territories provided by the Oak Ridge National Laboratory were modified based on maps provided on utility websites [46].

https://doi.org/10.1371/journal.pone.0307742.g002
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we relied exclusively on the downscaled customer count, the error would have changed direc-

tion and increased to 92.4%.

Data exploration

The highest variance inflation factor observed was for disability (VIF = 1.94, VIF = 1.69) in the

primary and secondary analyses, respectively. The Pearson’s correlation coefficients for all

social vulnerability factors considered are in S6 Table.

Model fit

We determined the best fit for modeling the seasonal effects. For the occurrence of POs, our

optimal model allowed for individual temporal dependency by fitting county-utility-specific

smoothers for Julian Day (JDay), with each allowed to have its own level of smoothness

(Table 2). For the log-transformed average duration of POs, our optimal model featured a

global smoother for seasonal effects (DayInYear) that was allowed to vary by year. This model

allowed for individual temporal dependency by fitting county-utility-specific smoothers for

the DayInYear, with each allowed to have its own level of smoothness. This means that while

there is a general seasonal pattern, each county-utility can have its unique seasonal trend.

Partial effects

The following are partial effects from the GAMMs for each covariate, accounting for all other

covariates. The partial effects appear in the figures on two distinct scales: the log-odds scale for

the absence of POs (Fig 3) and the natural logarithm scale for the daily average duration of

POs (Fig 4). Notably, poverty, limited English proficiency, and unemployment had inconsis-

tent relationships with PO burden. These variables had a non-linear relationship with PO fre-

quency and no significant association with outage duration. There was, however, a

nonsignificant trend of shorter outages for higher unemployment. Additionally, areas with the

highest disability rates faced lengthier POs although there was no association with outage

Table 1. Description of medically relevant/major event definitions vs. non-zero outages.

Non-Zero Outages � 0.1% for� 8 Hra Daily SAIDI > Tmed
b � 10,000 Max Affected � 50,000 Max Affected

Sample Size, d 23,597 1,093 310 138 9

Daily SAIDI, min

Median (Q1, Q3)
0.0 (0.0, 0.3) 3.5 (1.4, 11.2) 49.6 (30.6, 113.9) 46.4 (17.0, 113.0) 215.5 (82.5, 236.0)

Range 0.0–1,432.0 0.1–1432.0 22.0–1432.0 2.1–1,178.3 66.6–427.5

Max Customer-Hr Affected

Median (Q1, Q3)
24.3 (4.5, 142.8) 371.5 (109.0,

1334.0)

3,366.5 (1,009.3,

12,512.4)

16,327.0 (12,551.8,

30,175.6)

65,051.6 (51,122.1,

81,959.9)

Range 0.0–154,908.8 1.2–44,864.0 58.0–154,908.8 10,031.6–154,908.8 50,074.2–154,908.8

Max Fraction of Customers

Affected

Median (Q1, Q3)

0.00 (0.00, 0.00) 0.01 (0.00, 0.04) 0.13 (0.08, 0.27) 0.10 (0.06, 0.21) 0.23 (0.11, 0.27)

Range 0.00–1.00 0.00–1.00 0.02–1.00 0.02–1.00 0.09–0.42

Customer-Hr (Thousands)

Median (Q1, Q3)
0.1 (0.0, 0.6) 2.0 (0.5, 6.4) 27.1 (5.5, 116.4) 160.6 (72.6, 278.9) 782.0 (769.5, 1286.4)

Range 0.0–2272.3 0.0–596.4 0.5–2,272.3 16.4–2,272.3 630.5–2,272.3

N = 31,714 d; Missing data: 808 (2.5%)

IQR: Interquartile Range
aPOs of 8 consecutive hours or more could start and end on different calendar days; all days are included.
bTmed was 21.93 minutes among all 23 county-utility territories.

https://doi.org/10.1371/journal.pone.0307742.t001
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frequency, underscoring the potential complexity of these relationships. Thresholds for longer

outages were relatively light to moderate, with spatially averaged maximum wind speeds over

8 m/s and daily precipitation accumulation over 32 mm being associated with longer PO dura-

tions, for example.

Poverty. The partial effect of the county-level percentage of the population living under

the federal poverty level was non-linear, with lower probability outage absence (more likely to

have a PO) for poverty levels above 14.68%, holding all other variables constant (at zero).

Additionally, there was more frequent PO absence for lower poverty levels between 5.33% and

5.72% and between 10.59% and 12.73%. Poverty was not statistically significantly associated

with PO duration at the P< 0.05 significance level.

Unemployment. Unemployment had a non-linear relationship with PO occurrence. The

confidence intervals were wide and the smoother usually included zero. Counties with an

unemployment rate of 4.27% to 5.45% were less likely to have a PO absence (more likely to

Table 2. Summary table of ZALN GAMM for SAIDI for the primary analysis.

Binomial (Absence of Outage) Gaussian

Parametric Coefficients

Component Estimate P-value Estimate P value

Intercept -4.41 < .001 -0.53 < .001

Yeara

2019 -0.17 < .0001

2020 -0.09 0.045

2021 0.01 0.729

Approximate Significance of Smooth Terms

Component edf P-value edf P-value

s(Poverty) 3.84 < .0001 0.00 0.617

s(Disability) 0.50 0.122 1.89 0.113

s(Unemployment) 3.24 < .0001 0.75 0.036

s(Square Root of Limited English)b 2.82 < .0001 0.00 0.629

s(Minimum Temperature) 4.01 < .0001 5.97 < .0001

s(Max Wind Speed) 4.25 < .0001 3.94 < .0001

s(Precipitation) 1.00 < .0001 3.95 < .0001

s(DayInYear): Yearc

2018 5.94 < .0001

2019 4.00 < .0001

2020 6.74 < .0001

2021 6.36 < .0001

s(countyID) 10.39 < .001 19.08 < .0001

Model Fit

Component Binomial Gaussian

Deviance explained .46 .17

N 31,714 23,597

ZALN: zero altered log-normal; GAMM: generalized additive mixed model; SAIDI: system average interruption duration index; edf: effective degrees of freedom

Missing data: primary analysis, 808 (2.5%); secondary analysis, 3,968 (9.1%) county-utility days.

For brevity, the individual JDay and DayInYear smooths for each county-utility are not shown.
aYear reference category is 2018 for the Gaussian model and models including JDay do not include a categorical variable for Year.
bIndicator variable for limited English is transformed by taking the square root of its values.
cThe variable to capture temporality and seasonality is JDay for the binomial model and DayInYear for the Gaussian model.

https://doi.org/10.1371/journal.pone.0307742.t002
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have a PO), while those with an unemployment rate of 2.58%-3.34% and between 6.21% to

10.87% were more likely to have a PO absence (less likely to have a PO). There was a trend

towards shorter outages for counties with higher unemployment rates, but it did not reach sta-

tistical significance. In summary, counties with low or high unemployment rates were less

likely to have outages, and there was non-significant trend toward shorter unemployment for

counties with higher unemployment.

Disability. The partial effect of county-level disability was not significantly associated

with PO occurrence. The relationship between disability and PO duration was non-linear,

with wide confidence intervals, and with longer POs for counties with over 23.14% of the adult

civilian population with disabilities. Thus, counties with the largest percentages of the civilian

adult population with disabilities had longer average POs.

Limited english. We transformed the percentage of households speaking limited English

for analysis but have reverse-transformed them here for easier interpretation. The percentage

of households speaking limited English also had a non-linear association with the probability

PO absence. Counties with between 1.97%-9.73% of households speaking limited English were

Fig 3. Smooth effect on the log-odds of outage absence. Partial effects from the fitted GAMM model predicting the log-odds of a power outage absence for 23 county-

utility areas as a function of function of poverty (%), disability (%), square root of the % of limited English, unemployment (%), minimum temperature (˚C), maximum

wind (m/s), and precipitation (mm). The shaded areas represent the 95% confidence interval for the partial effects, the solid lines represent the smooth fitting curves of

outage absence, and the x-axis represent the measured values of the explanatory variables. Rug marks along the x-axis represent data points from the original dataset

(n = 31,714) to indicate the distribution of observations.

https://doi.org/10.1371/journal.pone.0307742.g003
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less likely to have an absence of POs (more likely to have a PO), holding all other covariates

constant; confidence intervals were wider for counties with the highest rate of limited English

proficiency. Those counties with under 0.55% of households speaking limited English were

more likely to have a PO absence. There was no significant difference in duration at the

P< 0.05 significance level.

Weather. In terms of weather, minimum temperature was not significantly associated

with outage occurrence, while having a small increase in outage duration over 16.18˚C and

decrease in outage duration between -1.07˚C and 11.52˚C. Both low and high temperatures

had a wide confidence interval. Average maximum wind speeds over 11.18 m/s were associated

with lower PO absence, while winds speed under 6.34 m/s were associated with increased PO

absence. Wind speeds exceeding 8.05 m/s were associated with longer, and wind speeds under

6.86 m/s were associated with shorter PO duration. The average accumulation of precipitation

exceeding 33.54 mm was associated with less PO absences and precipitation less than 21.43

mm was associated with PO absence. Daily precipitation exceeding 31.67 mm was associated

with longer outage duration, while accumulation under 18.63 mm was associated with shorter

Fig 4. Smooth effect on log of SAIDI in minutes. Partial effects from the fitted GAMM predicting daily mean log-transformed SAIDI for 23 county-utility areas as a

function of poverty (%), disability (%), square root of the % of limited English, unemployment (%), minimum temperature (˚C), maximum wind (m/s), precipitation

(mm) for the effects of social vulnerability and weather on mean daily log-transformed SAIDI. The shaded areas represent the 95% confidence interval for the partial

effects, the solid lines represent the smooth fitting curves of outage absence, and the x-axis represent the measured values of the explanatory variables. Rug marks along

the x-axis represent data points from the original dataset (n = 23,597) to indicate the distribution of observations.

https://doi.org/10.1371/journal.pone.0307742.g004
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duration. There was greater uncertainty in outage duration for higher average maximum

winds and precipitation.

Seasonality. The two parts of the ZALN were distinct in how they accounted for seasonal-

ity. The best fit model for presence/absence included a temporal variable of JDay and allowed

for an individual effect of JDay for each county-utility. The model for log(SAIDI) included a

global effect of DayInYear that was allowed to vary by year, and then allowed for individual

effect of DayInYear for each county-utility. The timing of seasonal effects for the PO duration

shifted each year; in two of the four years, winter had the largest seasonal effect, while in the

other two years, late summer or early fall had the longer POs (Fig 5). County-utility areas had

seasonal trends or temporal correlation for the models predicting absence (n = 6, 26%) and the

average duration (n = 13, 57%). (Fig 6) shows that the partial effect of seasonality differs by

county-utility areas.

Secondary analysis

In the secondary analysis that included utilities with a higher number of days without observa-

tions, most results were similar. However, the best fit model for the occurrence of outages fea-

tured both a global smoother for seasonal effects (JDay) in addition to individual temporal

Fig 5. Short-term seasonal effects on log of SAIDI in minutes for county-utility service areas. Partial effects from the fitted GAMM predicting daily mean log-

transformed SAIDI for each study year for 23 county-utilities and 23,604 county-utility days.

https://doi.org/10.1371/journal.pone.0307742.g005
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dependency by fitting county-utility-specific smoother for JDay (S7 Table). Additionally, the

most significant difference in results was for the partial effect of precipitation and poverty on

the occurrence of POs (S4 Fig). Low and high precipitation resulted in higher absence of POs

and the middle range of precipitation had a wider confidence interval, while the effect of pov-

erty on PO occurrence was no longer statistically significant. Additionally, the partial effect of

Fig 6. Short-term seasonal effects on log-odds of outage absence for county-utility service areas. The top panel includes the partial effects of seasonal effects for

the county-utility (n = 5) on the presence/absence of outages. The bottom panel includes the partial effects of seasonal effects for the county-utility (n = 13) on the

log(SAIDI). Figure includes only county-utility areas with 95% confidence intervals excluding zero.

https://doi.org/10.1371/journal.pone.0307742.g006
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disability on average PO duration was no longer statistically significant and the trend for

unemployment disappeared (S5 Fig).

Discussion

In our study, we conducted pre-processing of the PO data, described major PO events using

absolute and relative definitions, and compared annual utility and state-wide utility metrics

and major events identified using the PowerOutage.US data with federal datasets. We addi-

tionally examined the link between social vulnerability factors and PO burden in Washington

State from 2018–2021. We modeled both covariates and response variables as continuous

rather than dichotomous variables. We did so to avoid a loss of information and to avoid spu-

rious threshold effects [37,38], whereby we find positive or negative effects only because of the

choice of thresholds. Our analysis of daily SAIDI revealed an excess of zero values, non-linear

patterns, missing data, and potential seasonal and temporal correlations. There were non-lin-

ear associations between social vulnerabilities and PO metrics, suggesting that the relation-

ships are complex. The non-linear associations could be related to the level of analysis, in that

urban and rural areas with varying physical and social vulnerabilities were aggregated. Our

findings correspond with certain ecological studies [18], yet diverge from others [30,31],

underscoring the difficulty in formulating consistent and generalizable insights from research

on POs, especially given differing data sources, data quality, spatial resolution, pre-processing,

and analytic choices.

Our findings generally agree with those of Mitsova et al. who researched county-level

power restoration times following Hurricane Irma in Florida [18]. In their study, socioeco-

nomic factors such as poverty and limited English proficiency were excluded from their final

models due to a lack of statistical significance [18]. We found that there was a non-linear rela-

tionship for poverty and limited English proficiency with the log-odds of PO occurrence and

no significant association with outage duration. In spatial lag models, the authors found longer

restoration times in rural counties and counties with higher proportions of individuals with

disabilities and Hispanic residents, and shorter restoration times for counties with higher

unemployment [18]. We similarly noted longer outage durations for counties with higher pro-

portions of individuals with disabilities and a non-significant trend of longer outage duration

in counties with higher unemployment rates, and no significant association for outage fre-

quency. The authors speculated that reduced outage duration in areas with higher unemploy-

ment could be attributed to residual confounding related to rurality [18]. Importantly, we

were forced to exclude both rurality and population density from our models due to collinear-

ity with social vulnerability factors. These variables could have captured distribution line den-

sity, factors that may have a causal relationship with PO burden. Other characteristics of

rurality such as proximity to major urban areas may also affect restoration time. This high-

lights the challenge of distinguishing between physical and social vulnerability factors. Future

work should consider examining urban and rural areas separately to better inform equitable

resilience planning efforts.

Other research is conflicting with regards to the relationship between disabilities and power

outages. In a study of the Winter Storm Uri’s impact in Texas in February of 2021, Flores et al.

examined the relationship of social vulnerability and major PO exposure, adjusting for urban/

rural classification and population density [15]. In county-level analyses, higher percentages of

Medicare populations using electricity-dependent DME consistently experienced fewer major

outages [15]. These results differed from their findings in a non-representative survey that

found individuals who used DME were more likely to experience major outages in the prior

year [15]. Differences among research studies are difficult to explain, but it could be that there
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are unmeasured factors, such as distance from critical infrastructure such as hospitals and dif-

fering priority in the power restoration hierarchy, or residual confounding related to distribu-

tion line density. The availability of more detailed and validated PO data could allow for more

precise analyses that include a wider array of physical factors, such as the type of electrical

infrastructure (above versus underground) [21], proximity to hospitals, customer distribution

networks [14], or co-occurring hazards such as wildfire.

In contrast to our findings, some studies have suggested that lower socioeconomic status

correlates with longer PO durations, though it is nuanced. In a cross-sectional study of local-

ized POs for a single investor-owned utility between 2002–2003, Liévanos et al. implemented

spatial error models to evaluate the relationship between a categorical variable of American

Indian disadvantage and average POs (natural-log transformed) on the census block group

level [14]. The authors found longer POs for areas with higher American Indian disadvantage

and attributed these differences to bureaucratic decision-making rather than institutional bias

[14]. Additionally, in a retrospective study of county-level power recovery following eight

Atlantic hurricanes spanning 2017–2020, the authors suggested that socioeconomic vulnera-

bility might affect PO duration, although significant associations were only confirmed for two

of the eight storms [31]. This study also noted no significant correlations with other SVI

themes such as household composition, minority status, or housing and transportation vari-

ables. In a cross-sectional study tracking power recovery for county subdivisions over eight

months post-Hurricane Maria, Azad et al. utilized Quasi-Poisson models, considering both

infrastructure (e.g., access to major roads) and socioeconomic indicators for county subdivi-

sions [30]. The authors found that a 10% increase in poverty led to a 2% increase in recovery

time but did not find any association for race or ethnicity. Physical factors such as distance to

hurricane landfall, distance to major road arteries, landslides, and elevation were also critical

factors.

We found that higher wind and precipitation resulted in more frequent and longer average

POs. More extreme precipitation and increased severity and width of atmospheric rivers is

expected in the Pacific Northwest due to progression of climate change [68,69], and may con-

tribute to future POs. An important justice consideration is that despite the urgency to act on

climate change, electric utilities and fossil fuel companies in the United States have established,

managed, and funded interest groups to cast doubt on climate change and weaken climate pol-

icies [70,71]. They have also continued to expand fossil fuel infrastructure, despite evidence

that new fossil fuel infrastructure is incompatible with limiting warming to 1.5˚C [70,72]. Elec-

tric utilities are not required to demonstrate that their activities- some of which are tied to cli-

mate change- do not contribute to the increase in POs. Furthermore, there is no mandate for

reporting POs that disproportionately affect socially vulnerable groups, even though these

groups are considered most vulnerable to climate impacts.

There is a need for validated PO data with finer patial resolution to allow for a better under-

standing of the impacts and distribution of POs. In this study, we identified numerous issues

with PowerOutage.us data and conducted careful data processing treatments not previously

described. To our knowledge, this is the first outage study to describe missing outage data as

MNAR and to conduct separate analyses for more versus less reliable outage data. However, it

is difficult to know how results of outage studies are affected by these data problems due to the

lack of validated data to compare them with. We additionally demonstrated how customer

count estimates could bias results. For example, downscaling from census counts could under-

estimate the number of customers in less populated counties, resulting in an overestimate of

outage extent (proportion affected by outages). Our examination of the validity of PowerOu-

tage.US data found problems with missing data in PowerOutage.US data and gaps and incon-

sistencies in federal datasets. DOE data on major POs [35] was frequently missing outage
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durations and county locations for many major events, and the EIA data is missing some reli-

ability metrics [36]. Moreover, the DOE definitions for major outages will primarily identify

outages in urban areas and states and counties with large utilities. This is important because

more populations reliant on electricity-dependent DME may be located in rural areas [73].

Recent research has identified four categories of PO events, based on size and recovery speed

and can identify more moderate but meaningful outage events [74]. However, this approach

still requires the use of thresholds. As of yet, it remains unknown what outage thresholds on a

county or sub-county level have significance for public health and how those may change

depending on other environmental hazards, such as extreme heat or wildfire smoke. Identifi-

cation of these thresholds can allow for better public health surveillance and resource alloca-

tion and prioritization, but the lack of validated data could pose serious challenges to its use.

Although the Biden-Harris administration has encouraged utilities to standardize outage

data sharing through the Outage Data Initiative Nationwide, participation is optional and

detailed regional breakdowns are not compulsory [75,76]. Currently, a mere 125 (3.8%) of U.S.

utilities share their outage data, highlighting a significant deficit in information [76]. For

enhanced public health surveillance and accountability, there should be a requirement for elec-

tric utilities to report PO data and customer counts at more granular geographic levels, such as

census tracts or block groups. Improved understanding of how PO burden is distributed

according to the vulnerability of populations and co-occurring hazards could allow for infra-

structure resilience planning and resources (e.g., solar with back-up batteries) to be appropri-

ately allocated for prevention and mitigation of health impacts.

An important limitation of this study is that our county-level analysis and lack of inclusion

of other physical factors may potentially obscure local disparities. Furthermore, our study’s

findings may not extend to other U.S. regions with greater deprivation or socioeconomic

inequality, where county-level PO patterns could be more unevenly distributed. However, our

study makes important methodological contributions, using a continuous PO metric for local-

ized outages and raising questions about the quality of PO data and thresholds used in

research. Employing a continuous PO metric allows for the detection of annual variability in

the seasonal effects of POs, with these patterns also differing across county-utility regions.

Such fluctuations could be indicative of seasonal influences or unidentified variables, such as

wind gusts, wildfires, lightning, or annual shifts in utility operations and workforce. Despite

the importance of temporal correlation and seasonal trends, other studies on differential PO

exposure have analyzed data cross-sectionally and have not accounted for seasonal trends in

their analyses [13]. Cross-sectional study designs [14,15,18,30,31,77] miss important seasonal

data and do not capture the dynamic nature of POs, which can vary in intensity and affect dif-

ferent customers over time.

Conclusions

Outage burden is an increasing public health threat due to the continued burning of fossil

fuels and rising global temperatures, resulting in extreme weather. There is a low level of trans-

parency into power outage exposure, with publicly available datasets possessing only crude

temporal and patial resolution, with missing and sometimes incorrect data. A lack of customer

counts within county or subcounty levels makes it difficult to accurately compare the outage

probability or average duration across areas with different population sizes. Community orga-

nizations, scientists, regulators and policy makers lack sufficient information needed to judge

whether outages are fairly or unfairly distributed among communities and to guide equitable

planning efforts. Federal and state policy changes are needed to make these data more trans-

parent and accessible.
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Supporting information

S1 Fig. Number of subdivisions per utility each month. Subdivisions are unknown when

outage data is reported at the level of the county. Each panel corresponds to a utility, repre-

sented by an anonymized ID.

(TIF)

S2 Fig. Major events 1–11. Validation of PowerOutage.US data with the Department of

Energy (DOE)-417, “Electric Emergency Incident and Disturbance Report.” Outage events

with dashed lines representing major events in the on the DOE-417, “Electric Emergency Inci-

dent and Disturbance Report.” [1] Data representing the start and end date and time for the

event according to the DOE files is demarcated with a blue dashed line. Areas with a blank x-

axis indicate missing PowerOutage.US data. When impacted counties are missing from the

DOE data, we assumed all counties in the utility service territory were affected.

(PDF)

S3 Fig. Downscaling from census counts results in systematic error based on county size.

(A) The ratio of downscaled census-based customer counts to census totals (households and

establishments) versus households for Washington counties. (B) The ratio of utility-based cus-

tomer estimates to census totals (households and establishments) versus the number of county

households for Washington counties. (C) The ratio of downscaled to utility-based customer

counts for the year 2021, with red point for Ferry County. (D) The ratio of downscaled to util-

ity-based customer counts summed for utilities included in PowerOutage.us data for the year

2021, with red point for Ferry County.

(TIF)

S4 Fig. Smooth effect on log odds of outage absence for secondary analysis. Partial effects

from the fitted GAMM model predicting the absence of a power outage for 31 county-utility

areas as a function of function of poverty (%), disability (%), square root of the % of limited

English, unemployment (%), rural (%), minimum temperature (˚C), maximum wind (m/s),

and precipitation (mm). The shaded areas represent the 95% confidence intervals for the par-

tial effects, the solid lines represent the smooth fitting curves of outage absence, and the x-axis

represent the measured values of the explanatory variables. Rug marks along the x-axis repre-

sent data points from the original dataset (n = 39,847) to indicate the distribution of observa-

tions.

(TIF)

S5 Fig. Smooth effect on log of SAIDI in minutes for secondary analysis. Partial effects

from the fitted GAMM predicting daily mean log-transformed SAIDI in Washington counties

as a function of poverty (%), disability (%), square root of the % of limited English, unemploy-

ment (%), rural (%), minimum temperature (˚C), maximum wind (m/s), and precipitation

(mm). The shaded areas represent the 95% confidence intervals for the partial effects, the solid

lines represent the smooth fitting curves of log(SAIDI) and the x-axis represent the measured

values of the explanatory variables. Rug marks along the x-axis represent data points from the

original dataset (n = 31,140) to indicate the distribution of observations.

(TIF)

S1 File. Data quality and supplementary references.
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S1 Table. Example of PowerOutage. US data and Issues with Zero Values.
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S2 Table. Data processing.
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S3 Table. Annual System Average Interruption Duration Index (SAIDI) for individual

utilities and State: Study vs. EIA estimates from 2019–2021. aStudy data for 2018 was only a

partial year and is not presented. bStatewide study data includes 15 utilities, while EIA data

consists of all reporting utilities statewide. The EIA SAIDI values include major events from

the EIA Electric Annual Power Report for Washington State. Utilities shaded in gray are

included in the primary analysis, utilities shaded in white are additionally included in the sec-

ondary analysis. Empty rows indicate missing EIA data.

(DOCX)

S4 Table. Major events reported to the Department of Energy (DOE) on the OE-417 “Elec-

tric Emergency Incident and Disturbance Report”.

(DOCX)

S5 Table. Daily SAIDI and maximum fraction of customers out by major event definitions

for the secondary analysis. n = 39,847 County-Utility Days. aOutages of 8 hours or more

could start and end on different calendar days; all days are included. bTmed was 22.12 minutes

for all 31 county-utility territories.

(DOCX)

S6 Table. Pearson’s correlation for social vulnerability factors (n = 31 county-utility areas,

secondary analysis). Shaded cells are those variables included in analyses. aPercent of Medi-

care Population; bSquare root transformed. Poverty is defined as less than 100% of the federal

poverty limit. BIPOC: Black Indigenous or Person of Color. DME: Electricity Dependent

Durable Medical Equipment, Unemp: Unemployed civilian population.

(DOCX)

S7 Table. Summary table of Generalized Additive Mixed Model (GAMM) for ZALN model

of SAIDI (secondary analysis). edf: effective degrees of freedom. Missing data: n = 3,968

(9.1%) county-utility days. For brevity, we exclude the individual JDay and DayInYear

smooths for each county-utility. aYear reference category is 2018 for the Gaussian model and

models including JDay do not include a categorical variable for Year. bIndicator variable for

limited English is transformed by taking the square root of its values. cThe variable to capture

temporality and seasonality is JDay for the binomial model and DayInYear for the Gaussian

model. dThe best fit model for the absence/presence model in the secondary analysis included

a global term for seasonality (JDay).
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