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Significance

 Highly destructive wildfires are 
occurring more frequently across 
the globe, prompting debates 
over the causes for this increase 
and effective management 
responses. We investigated 
building destruction trends in 
the United States by mapping 
buildings that were exposed to 
and destroyed by wildfires over 
two decades. The proportion of 
exposed buildings that were 
destroyed more than tripled from 
2002–2022, indicating that 
wildfires became more 
destructive in addition to burning 
more populated areas. This 
increase in destruction rate was 
linked to greater building 
exposure in forests, but 
destruction rates also increased 
in grass and shrublands and 
were influenced by weather, 
development type, and burn 
severity. Our findings suggest 
that diverse management 
approaches may be needed to 
reduce community vulnerability 
to wildfire disasters.
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Many regions of the world have seen an increase in highly destructive wildfires, driven by 
well-documented increases in burned area and growth of housing in the wildland–urban 
interface (WUI), which exposes more homes to fire. However, it is unclear whether 
wildfires are also becoming more destructive due to changes in wildfire behavior or in 
the development patterns of exposed communities. Here, we assessed trends in wildfire 
building exposure and destruction rates in the conterminous United States from 2002 to 
2022. We mapped destroyed and surviving buildings within 100 m of all wildfires that 
destroyed 10 or more buildings (n = 362) and assessed trends relative to major ecore-
gions and vegetation types. We used logistic regression to assess relationships between 
destruction rates and landscape factors. We found that 10% of exposed buildings were 
destroyed in 2002–2012, but this percentage increased to 32% in 2013–2022. This 
increase was largely due to greater building exposure in evergreen forests in the north-
western United States, where exposed buildings were more than 3.4 times as likely to 
be destroyed as those in grass and shrublands. However, annual destruction rates also 
significantly increased in all other vegetation types and were correlated with development 
type, weather, and burn severity. These results indicate that increasing wildfire destruc-
tion in the United States has resulted not only from increased exposure but from rising 
rates of building destruction, potentially indicating more extreme wildfire behavior. This 
finding underscores the need to better understand how fuel management, community 
planning, and hardening buildings can reduce vulnerability.

wildland fire | building destruction | wildland–urban interface | global change | wildfire risk

 Highly destructive wildfires are occurring more frequently in many parts of the world ( 1 ). 
Many of the most destructive events in modern history have occurred since the mid-2010s, 
including the 2018 Camp fire in northern California, United States of America (>16,000 
reported burned structures), the 2019–2020 Black Summer fires in southeastern Australia 
(>3,000 structures), the 2023 Lahaina fire in Hawaii, United States of America (>2,200 
structures), and the 2025 Palisades and Eaton fires in Los Angeles, United States of America 
(>10,000 structures). Many of these events occurred in the western United States, where 
over 59,000 structures were destroyed by wildfires from 2010–2023 ( 2 ). Wildfires since 
2015 have caused USD $136 billion in economic losses globally ( 3 ), as well as enormous 
insurance losses that resulted in loss of coverage for tens of thousands of homeowners ( 4 ). 
Destructive wildfires also have severe long-term economic impacts, disrupt communities, 
and have lasting effects on public health ( 5 ). Adapting to changing patterns of wildfire 
destruction and developing effective risk mitigation policies is, therefore, an important 
management concern.

 Increasing wildfire building destruction may result from 1) increases in wildfire fre-
quency and burned area, 2) growth of housing in the wildland–urban interface (WUI), 
where homes are most likely to be exposed to wildfires, or 3) more extreme wildfire 
behavior that makes suppression less effective. Global burned areas have decreased since 
the late 20th century but have increased specifically in high-latitude forests, particularly 
in western North America ( 6 ). The United States has experienced significant increases 
in wildfire burned area and average wildfire size since the 1980s as a result of lengthening 
fire seasons and greater frequency, duration, and severity of droughts ( 7   – 9 ). The footprint 
and number of homes in the WUI has also grown substantially in the United States, and 
this growth leads to more frequent wildfire ignition near homes and more homes exposed 
when wildfires occur ( 2 ,  10 ). Increases in burned area and housing growth in the WUI 
have contributed approximately equally to increases in home exposure within burned 
areas since 1990 ( 11 ,  12 ). At the same time, extreme fire weather and changes in fuel 
structure have potentially contributed to more extreme wildfire behavior. Fire suppression 
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during the 20th century has led to excess fuel build-up in many 
western US forests that were adapted to frequent burning, while 
the western United States has also experienced widespread forest 
die-offs from drought and insects since ca. 2000 ( 13   – 15 ). Rates 
of wildfire spread have increased in the western United States, 
and these fast-spreading fires are associated with high destruction 
( 7 ,  16 ,  17 ). However, changes in the destructive potential of 
wildfires are less well-understood than changes in wildfire burn 
probability or increases in the number of vulnerable homes in 
the WUI.

 Policy discussions about mitigating wildfire disasters often focus 
on fuels management and particularly on reducing forest fuels 
( 18 ,  19 ). However, wildfires in different vegetation types may 
require different management approaches. A majority of burned 
area in the WUI in the United States is in grass and shrublands 
rather than forests ( 11 ,  20 ), and although grass and shrubland fuel 
management can help to reduce wildfire intensity near homes, 
destructive events in these landscapes are also strongly influenced 
by human-caused ignitions and high winds ( 10 ,  21 ). Fuel treat-
ments in these landscapes may be less effective during extreme 
high winds and also require frequent maintenance to prevent 
regrowth by invasive species ( 22 ,  23 ). Management in grass and 
shrublands may therefore focus on reducing accidental ignitions 
(e.g., by burying power lines). In forests, mechanical thinning, 
prescribed burning, and fuel breaks are effective at reducing wild-
fire intensity in low-elevation dry forests that have been altered 
by past suppression ( 24 ). Suppression histories have had less sig-
nificant effects in high-elevation, wet forests characterized as hav-
ing “low-frequency, high-intensity” fire regimes, which are at risk 
of highly destructive events as a result of climate-driven increases 
in wildfire activity ( 25 ,  26 ). Fuel management in these ecosystems 
is challenging due to dense vegetation and steep terrain, and risk 
reduction may therefore focus instead on community prepared-
ness. Determining which management strategies to prioritize 
requires consideration for which communities are at greatest risk 
of destruction, and how risk is affected by fuel type.

 Reducing wildfire risk to communities may also involve making 
structures less susceptible to destruction. The WUI is where most 
homes are exposed to wildfires ( 27 ), but characteristics of homes 
and neighborhoods also influence the probability that buildings will 
be destroyed when wildfires occur. Broadly, the WUI is made up of 
two types: the intermix, where housing above a minimum density 
threshold (>6.17 houses per km2 ) intermingles with wildland veg-
etation, and the interface, where housing abuts but does not inter-
mingle with wildland vegetation ( 28 ). Building density and 
vegetation in the defensible space around buildings affect destruction 
probability, such that destruction rates are higher in lower-density 
areas with more surrounding vegetation ( 29   – 31 ). Factors such as 
building materials and construction age also influence probabilities 
of ignition and home-to-home flame spread ( 32 ,  33 ). Management 
strategies focused on reducing home-to-home flame transmission 
(e.g., building codes, homeowner outreach) may be as important 
for reducing destruction as strategies focused on fuel reductions to 
control wildfire behavior ( 34 ).

 Understanding wildfire destruction patterns across the United 
States is important for developing effective wildfire risk mitigation 
policies, particularly with respect to rapid changes in burned area 
and wildfire behavior. Here, we evaluated 21st﻿-century trends and 
predictors of building destruction rates, or numbers of buildings 
destroyed relative to numbers exposed, in the conterminous 
United States. Our evaluations were based on mapping locations 
of all exposed buildings within and adjacent to the perimeters of 
destructive fires (≥10 buildings destroyed; n = 362 fires) from 
2002–2022 (see Materials and Methods ;  Fig. 1A  ;  31 ,  35   – 37 ). The 

final dataset included 73,534 destroyed buildings and an addi-
tional 1.70 million surviving buildings that were within 2.4 km 
of mapped wildfire perimeters, representing the approximate 
distance over which buildings can be ignited by embers ( 38 ). 
Spatially precise data building locations allowed us to assess 
destruction rates using consistent counts of exposed and destroyed 
buildings and to assess predictors of destruction in relation to 
vegetation and other landscape factors. We evaluated building 
destruction rates by dividing the number of destroyed buildings 
by the number of buildings that were “directly” exposed, i.e., 
within or <100 m outside the fire perimeter (n = 294,209; see 
﻿Materials and Methods ). Our aims were to 1) assess trends in 
numbers of exposed and destroyed buildings and destruction rates 
for the entire conterminous United States and by major ecore-
gions ( 38 ;  Fig. 2A  ), 2) assess trends and relative destruction like-
lihood by major vegetation types, and 3) assess how destruction 
rates varied with vegetation cover, WUI types, building density, 
distance to high-severity burned area, final fire size, and weather. 
For objective 3), we used logistic regression to model destruction 
rates for clusters of buildings within wildfire events (i.e., groups 
of buildings within 1 km of one another; see Materials and 
Methods ). Our results inform the likely causes of increasing build-
ing destruction in the United States and have broad implications 
for risk management.                 

Results

Rates of Wildfire Building Destruction Are Increasing Across the 
Conterminous UnitedStates. The number of destructive events, 
numbers of destroyed buildings, and rate of destruction increased 
dramatically in the conterminous United States from 2002 to 
2022 (Fig.  1). During the first half of this period from 2002 
to 2012, we mapped 119 events that destroyed 905 buildings 
per year, on average (std. dev.: 934), with an overall destruction 
rate of 10.1%. From 2013 to 2022, we mapped nearly twice as 
many destructive events (n = 243). There was a nearly seven-fold 
increase in the annual number of destroyed buildings (6,239 ± 
6,974) and a three-fold increase in the destruction rate (31.9%; 
Fig. 1 B and C). Notably, the annual trend in buildings exposed 
to destructive wildfires was positive (517 buildings/year) but only 
weakly significant (P = 0.085; Table 1), as building exposure in 
2003 and 2007 was comparable to more recent highly destructive 
years in 2017, 2018, and 2020 (Fig. 1B). In contrast, the number 
of destroyed buildings significantly increased at a rate of 208 
buildings/year, or by 23% of the mean number of destroyed 
buildings from 2002 to 2012 (P = 0.009; Table 1 and SI Appendix, 
Table S1). It is unclear whether this increase in destruction rate 
was caused by more extreme wildfire behavior, less effective 
suppression, changes in the vulnerability of exposed communities, 
or other factors, but it is concerning given the increases in wildfire 
burned area and development in the WUI.

 We considered whether our trend assessments were affected by 
potential undercounting of destroyed buildings in earlier fires. 
Building maps based on older aerial imagery were subject to 
greater uncertainty due to coarser image resolution (1 to 3 m) and 
longer periods between collection times, sometimes resulting in 
postfire imagery collected several years after destruction had 
occurred and thus may have been more prone to undercounting 
destroyed buildings (SI Appendix, Supporting Text ). However, 
annual destroyed building counts after 2002 were strongly corre-
lated with counts from incident reports ( 26 ; r  = 0.99; SI Appendix, 
Fig. S1 ). We found a significant increasing trend in annual build-
ing destruction rates, whether we used totals from incident reports 
or from our dataset (SI Appendix, Fig. S2 ).  D
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More Building Exposure in Forests, But Increasing Destruction 
Rates in Other Vegetation Types. Trends in building exposure 
and destruction varied by ecoregions of the conterminous US. 
Annual numbers of buildings exposed to destructive wildfires 
increased most significantly from in the Western Forests ecoregion 
from 2002 to 2022, by a large magnitude (25%/year, relative 
to the 2002–2012 mean; p: 0.025; Table  1 and SI  Appendix, 
Table S1). Increases in exposure were weakly significant in the 
Western Deserts (slope: 11.8%/year; p: 0.058) and Great Plains 
(slope: 7.8%/year; P = 0.064) but nonsignificant in Mediterranean 
California and the Eastern Forests (P = 0.30 and 0.12, respectively). 
Annual numbers of destroyed buildings increased significantly in 
the Western Forests, Western Deserts and Great Plains, but not 
in Mediterranean California or the Eastern Forests (Table 1 and 
Fig. 2 and SI Appendix, Table S1).

 Destruction rates in the Western Forests ecoregion were sub-
stantially higher than in other western ecoregions ( Table 1  and 
 Fig. 2  and SI Appendix, Table S2 ). The Eastern Forests ecoregion 
also had high destruction rates (total: 36.9%) but had fewer build-
ings exposed to wildfire overall. However, destruction rates 
increased significantly over time in Mediterranean California, the 
Western Deserts, and the Great Plains ecoregions ( Table 1  and 
 Fig. 2 ).

 In absolute numbers, most exposed and destroyed buildings 
were in grass and shrubland or evergreen forest ( Table 2  and  Fig. 3 
﻿A  and B  ). The majority of exposed buildings were in grass and 
shrubland; however, there was a substantial increase in building 
exposure in evergreen forest ( Fig. 3A  ). From 2002 to 2012, most 
destructive events occurred in southern California and the south-
ern Great Plains ( Fig. 1A  ), and 82.4% of exposed buildings were 

in grass and shrublands. From 2013 to 2022, the proportion of 
exposed buildings in grass and shrublands dropped to 61.3%, and 
the proportion in evergreen forests increased from 11.3% to 
33.2%. Most notably, the majority of destroyed buildings from 
2002 to 2012 were in grass and shrubland (62.2%), but from 
2013 to 2022 this shifted to evergreen forest (50.1%).        

 Increases in building exposure in evergreen forests largely 
explain increasing destruction rates across the conterminous 
United States, as evergreen forests had consistently higher destruc-
tion rates than other vegetation types throughout our study period 
( Table 2  and  Fig. 3C  ). Destruction rates were lowest in grass and 
shrublands (total: 16.6%). Buildings in evergreen forest were 3.4 
times as likely to be destroyed as those in grass and shrublands, 
buildings in deciduous and mixed forest were 2.4 times as likely, 
and buildings in wetlands were 1.9 times as likely, after accounting 
for annual trends (SI Appendix, Table S3 ). These differences were 
not consistent over time, and destruction rates increased signifi-
cantly in grass and shrublands and deciduous and mixed forests 
from 2002 to 2022 ( Fig. 3C   and  Table 2 ). Only 2.4% of exposed 
buildings were in wetlands, and destruction rates for this vegeta-
tion type were highly variable ( Fig. 3 ). Most fires where buildings 
were primarily in wetlands were in the southeastern coastal region 
or the northern forests; however, increases in the destruction rate 
for wetlands were strongly influenced by the 2020 Almeda Drive 
fire in western Oregon ( Fig. 3 B  and C  ).  

Rising Destruction Rates Are Related to Changes in Vegetation 
Type, Fire Weather, and Development Type. The predictors that 
best explained wildfire destruction rates for building clusters 
were percentage of evergreen forest cover, mean energy release 

A

B C

Fig. 1.   (A) Wildfires that destroyed 10 or more buildings in the conterminous United States from 2002 to 2022, where we mapped all exposed and destroyed 
buildings. Point size indicates the number of exposed buildings and colors indicate the destruction rate, or number of buildings destroyed relative to number 
that was within or <100 m outside of the fire perimeter. (B) Numbers of buildings exposed to and destroyed by destructive wildfires by year. (C) Total annual 
destruction rate (line plot) and destruction rates for individual fire events (points) by year. Point size is proportional to number of exposed buildings.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 7
3.

25
.1

41
.5

2 
on

 J
an

ua
ry

 1
2,

 2
02

6 
fr

om
 I

P 
ad

dr
es

s 
73

.2
5.

14
1.

52
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2505886122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2505886122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2505886122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2505886122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2505886122#supplementary-materials


4 of 8   https://doi.org/10.1073/pnas.2505886122� pnas.org

component [ERC; a relative, unitless measure related to the heat 
released by burning, related to live and dead fuel moisture (41)] 
during the 7-d period following wildfire ignition, percentage of 
buildings in interface WUI, maximum wind speed, mean building 
distance to high-severity burned area, percentage of wetland cover, 
and percentage of buildings in low-density wildlands (SI Appendix, 
Tables  S4–S6). Logistic regression models explained 80% of 
deviance and predicted reasonably well on test subsets (observed-
predicted pseudo-R2: 0.67; SI  Appendix, Figs.  S3 and S4). 
Destruction rates were positively correlated with evergreen forest 
and ERC in all ecoregions and negatively correlated with interface 
WUI in Mediterranean California, the Western Deserts, and the 
Great Plains (SI  Appendix, Fig.  S5). Very few exposed clusters 

had more than 20% interface WUI in the Western Forests and 
Eastern Forests, so it is unclear whether relationships are similar 
in these ecoregions. Destruction rates were positively correlated 
with maximum wind speed in Mediterranean California and the 
Eastern Forests but were only weakly correlated with wind speed 
in other ecoregions (SI Appendix, Fig. S5).

 We tested how annual trends in wildfire building destruction 
rates were related to trends in fuels, weather, and WUI type by 
using our final logistic regression models to predict destruction 
rate response to each predictor, while holding all other predictors 
constant at their median values ( Fig. 4 ). Our models predicted 
increases in annual destruction rates in response to 1) increases in 
the percentage of evergreen forest cover in proximity to exposed 
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Fig. 2.   (A) Major ecoregions in the conterminous United States, based on Level I ecoregions for North America (39). (B–F) Numbers of buildings exposed to and 
destroyed by destructive wildfires (bar charts) and total annual destruction rates (line plots) by year, by ecoregion.

Table 1.   Trends in building destruction from destructive wildfires (≥10 destroyed buildings) in the conterminous 
United States, by major ecoregion, 2002–2022

Ecoregion
Exposed buildings 

trend (%/year)
Destroyed buildings 

trend (%/year)
Destruction rate trend 

(odds ratio/year)
Total destruction 

rate (%)

 Mediterranean California  NS  NS  1.008 to 1.014  15.4

 Western Forests  25.1*  20.7*  0.991 to 1.009  45.7

 Western Deserts  11.8***  24.9*  1.003 to 1.010  20.0

 Great Plains  7.8***  17.8*  1.007 to 1.012  20.5

 Eastern Forests  NS  NS  1.000 to 1.021  36.9

 All conterminous United States  5.8***  23.0**  1.014 to 1.018  24.6
Trends in numbers of exposed and destroyed buildings are relativized by their 2002–2012 means. Trend significance: **P < 0.01; *P < 0.05; ***P < 0.1; NS: nonsignificant. Odds ratios for 
destruction rate trends are based on logistic regression coefficients (odds ratio >1 indicates increasing trend, <1 indicates decreasing). Ranges indicate minimum and maximum coeffi-
cients, determined by fitting models leaving out one year of observations at a time to assess trend robustness.D
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buildings, 2) increases in ERC, and 3) decreases in the percentage 
of exposed buildings in interface WUI ( Fig. 4  and SI Appendix, 
Tables S7 and S8 ). Interface WUI had the largest effect size (0.41 
± 0.17 %/year), while evergreen forest and ERC had similar effect 
sizes (0.28 ± 0.09 %/year; 0.26 ± 0.08 %/year; respectively). There 
was no significant trend in response to maximum wind speed 
during wildfire events, although there was a significant increase 
in mean wind speed in the Western Forests, Western Deserts, and 
Great Plains (SI Appendix, Table S8 ). Our models did not indicate 
that increases in destruction rates were due to changes in the size 
of destructive wildfires or building proximity to high-severity 
burned areas (SI Appendix, Tables S7 and S8 ).           

Discussion

 Increasing wildfire building destruction in the conterminous 
United States from 2002 to 2022 was driven not only by wildfires 
exposing more buildings, due to increasing burned areas and 
growth of homes in the WUI, but by wildfires destroying exposed 
buildings at higher rates. Across the entire conterminous United 
States, this increase in building destruction rates was strongly 
related to increasing exposure in evergreen forests in the north-
western United States, where exposed buildings were much more 
likely to be destroyed than in other vegetation types. However, 
the majority of buildings that were exposed to wildfires from 2002 
to 2022 were in grass and shrublands. Destruction rates signifi-
cantly increased over time in grass and shrublands, as well as in 
deciduous and mixed forests. Our results indicate that the drivers 
of increasing wildfire destruction are varied and highlight chal-
lenges of adapting to dynamic wildfire risk.

 Increasing burned areas in regions where wildfire was histori-
cally infrequent can lead to highly destructive events. In our anal-
yses, this shift was most evident in the western Cascades region 
of Oregon, which experienced no destructive wildfires in 2002–
2012 but experienced several highly destructive fires in September 
of 2020 in the midst of extreme high temperatures, drought, and 
winds ( 42 ). We found that destruction rates in this region were 
frequently above 50%, likely because dense forest fuels are prone 
to high-intensity fires and produce large numbers of embers ( 43 ). 
Wildfire in temperate and boreal forests has historically been lim-
ited by the occurrence of low-fuel moisture conditions, and warm-
ing in recent years has driven significant increases in fire size and 
frequency in these ecosystems globally ( 6 ). While destructive fires 
have occurred historically in this region, future projections indi-
cate that the extreme conditions driving the 2020 fire season are 

Table 2.   Destruction rates for buildings in each of four 
major vegetation types in the conterminous United 
States, 2002–2022

Vegetation 
type

Mean annual 
destruction 
rate ± std. 

dev. (%)

Relative 
destruction 
probability

Annual 
destruction rate 

trend (odds 
ratio/year)

 Grass and 
shrubland

 16.6 ± 9.2  1  1.010 to 1.013

 Evergreen 
forest

 33.6 ± 15.4  3.36  0.999 to 1.020

 Deciduous/
mixed forest

 25.8 ± 18.4  2.44  1.022 to 1.036

 Wetland  12.2 ± 14.4  1.89  1.006 to 1.035
Relative destruction probability is based on factor intercepts of a logistic regression mod-
el, accounting for annual trends. Odds ratios for annual destruction rate trends are based 
on logistic regression coefficients (odds ratio >1 indicates increasing trend, <1 indicates 
decreasing). Ranges indicate minimum and maximum coefficients, determined by fitting 
models leaving out one year of observations at a time to assess trend robustness.
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Fig. 3.   (A) Proportions of buildings exposed to destructive wildfires (≥10 destroyed buildings) in different vegetation types in the conterminous United States, 
by year. (B) Locations of destructive wildfire events in the conterminous United States, with colors and symbols indicating the most common vegetation type 
within 1 km of exposed buildings. (C) Annual destruction rates for buildings in each vegetation type (point symbols) and linear trends (lines) based on logistic 
regression. The shaded area represents the range of predicted destruction rates using leave-one-out cross validation for individual years.D
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likely to occur more frequently in the Pacific Northwest over the 
21st century ( 44 ).

 Although much more burned area in the United States occurs 
in the western United States than in the east, the potential for 
increasing wildfire destruction in forested areas in the eastern 
United States is of concern because large populations live near 
forested WUI ( 11 ). The 8th most destructive fire in our dataset 
was Chimney Tops 2, which occurred in deciduous forest near 
Great Smoky Mountain National Park, near Gatlinburg, 
Tennessee, in 2016 and destroyed over 1,500 buildings (52.1% 
destruction rate). We did not observe a significant trend in num-
bers of exposed or destroyed buildings in the Eastern Forests and 
found that average ERC of destructive fires decreased over time, 
coincident with climate change-driven precipitation increases 
( 45 ). However, it is highly uncertain how precipitation trends will 
continue and how warming temperatures will interact with pre-
cipitation to affect wildfire activity ( 46 ). Some regions of the 
southeastern United States have experienced increases in burned 
areas and wildfire size since the late 20th century, while burned 
areas have decreased in the north-central and northeastern United 
States ( 47 ). Growing burned areas in the southeast could lead to 
much greater home exposure, as parts of this region experienced 
more growth in the WUI than any other region in the United 
States in the 2010s (e.g., southeast Texas, the western Carolinas, 
and Florida; 11).

 Outside of forests, many highly destructive wildfires occurred 
in Mediterranean-type shrublands in California, grasslands on the 
Rocky Mountain Front Range and southern Great Plains, and 
desert shrublands in the Great Basin ( 21 ). We found that increas-
ing destruction rates in grass and shrubland-dominated ecoregions 
are linked to increasing ERC, which indicates lower fuel moisture 
and low-humidity conditions that can drive extreme fire behavior 
( 41 ). Assessing relationships between climate and wildfire behavior 
is complex, however, because wildfire activity is linked not only 
to periods of low fuel moisture leading up to fire ignition, but to 
antecedent wet periods that allow for fuel buildup ( 48 ). Increasing 
“whiplash” between wet and dry extremes in the southwestern 
United States can create conditions for more extreme wildfire 
behavior ( 49 ), and the devastating Los Angeles fires in January 
2025 provide an example of the high destruction that can occur 
during an extreme dry period that follows an extreme wet period, 
particularly during extreme high winds ( 50 ). Our study also did 
not assess how extreme fire behavior may have been exacerbated 
by the spread of flammable invasive grasses, which have altered 

fire frequency in the Great Basin, desert southwest, and southeast-
ern pine savannahs ( 51 ).

 Wildfire building destruction rates were influenced by devel-
opment type as well as weather and wildland vegetation. In 
Mediterranean California, we found that increasing destruction 
rates were linked to a shift in exposure from interface WUI to 
low-density wildlands, as more destructive wildfires occurred in 
the northern California coastal mountains and Sierra Nevada 
foothills. Lower-density areas may face greater destruction likeli-
hood as a result of lower suppression efforts, as they may have 
limited accessibility for firefighters or may be a lower priority for 
protection than higher-density areas where more buildings can be 
protected by focusing suppression efforts on a limited area ( 27 , 
 29 ,  31 ). More dispersed buildings may also have more vegetation 
in the defensible space, increasing the likelihood of flame trans-
mission and ignition ( 52 ). However, high-density developments 
may face high destruction risk when human-caused ignitions 
occur near communities during conditions that allow fires to 
spread rapidly, as these events can overwhelm suppression and 
turn into highly destructive urban conflagrations driven by 
home-to-home spread ( 16 ,  34 ). Home-hardening measures, such 
as building with flame-resistant materials and clearing defensible 
space, can significantly reduce the likelihood of building ignitions, 
thereby reducing the rate of building destruction ( 33 ,  53 ). 
Assessing these features for all fires included in our study was not 
feasible, but our results indicate that housing density and com-
munity layout relative to neighboring wildlands can mitigate 
wildfire risk.

 Rising rates of wildfire building destruction compound the 
challenges of increasing wildfire exposure as burned areas continue 
to increase and as populations in the WUI continue to grow ( 54 , 
 55 ). Vegetation management can reduce the potential for 
high-intensity wildfires near communities, while actions focused 
on reducing home susceptibility can help to minimize losses. 
Increasing building exposure and high destruction rates in forests 
suggest that forest fuel management can play an important role 
in risk reduction, with attention to the historical role of fire in 
different forested ecosystems. However, rising destruction rates in 
other ecosystem types indicate that policies other than forest thin-
ning (e.g., invasive grass management, reducing ignitions caused 
by powerlines or other human activities, defensible space clearing, 
reducing exposure during new home construction) are also of 
importance. With all these potential management actions, 
resources and knowledge are needed for effective implementation. 

Fig. 4.   Predicted annual building destruction rates for all wildfires in the conterminous United States in response to observed variation in each of the four top 
predictors in our logistic regression models, while holding all other predictors constant. Trendlines are based on logistic regressions weighted by numbers of 
exposed buildings in each fire, with shaded areas representing SE. Point colors are scaled to represent observed predictor values for all exposed buildings [% 
of exposed buildings where evergreen forest is the dominant vegetation type within 1 km; weighted mean of energy release component (ERC) by wildfire event; 
% of exposed buildings in interface WUI; weighted mean of maximum wind speed by wildfire event].

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 7
3.

25
.1

41
.5

2 
on

 J
an

ua
ry

 1
2,

 2
02

6 
fr

om
 I

P 
ad

dr
es

s 
73

.2
5.

14
1.

52
.



PNAS  2025  Vol. 122  No. 51 e2505886122� https://doi.org/10.1073/pnas.2505886122 7 of 8

Our study provides support for evidence-based risk management 
policies for preventing wildfire disasters.  

Materials and Methods

Building Destruction Dataset. We created a dataset with point locations of all 
buildings that were exposed to destructive wildfires (≥10 buildings destroyed) in 
the conterminous United States from 2002 to 2022 (56; SI Appendix, Supporting 
Text). Buildings were mapped using high-resolution aerial and satellite imagery, 
using pre- and postfire imagery to manually assess building condition (destroyed 
or not destroyed). The dataset incorporated existing building destruction maps for 
2002–2013 (29, 33; n = 124 fires) and for a few highly destructive events from 
2014 to 2018 (34; n = 10 fires). We mapped all remaining fires that destroyed 
10 or more buildings from 2014 to 2022 (n = 228), identified from final incident 
reports (40, 56). We used this threshold due to the time and labor constraints of 
manually classifying postfire building condition, which was necessary to achieve 
a suitable degree of accuracy across diverse landscapes with varying imagery 
quality, compared to automated classifications (57). We filtered the final dataset 
to include only fires where we were able to locate 10 or more major buildings (i.e., 
all permanent buildings approximately the size of a residential home or larger, 
excluding minor and mobile structures) that were destroyed.

Defining Building Exposure. Determining which buildings were exposed to 
wildfires is not straightforward because buildings can be ignited by embers at 
variable distances from the active flame front, depending on wind speed and 
ember production (58). Wildfire perimeter maps are typically drawn to include 
groups of destroyed buildings, and so only a small fraction of destroyed buildings 
in our dataset was outside of mapped fire perimeters (3.0%), even though some 
of these buildings may have been ignited by embers away from the flame front. 
The median distance for these buildings was 103 m (SI Appendix, Fig. S6). We 
therefore defined “directly” exposed buildings as all buildings that were inside fire 
perimeters or within 100 m of the perimeter. The 100 m buffer approximates the 
spatial uncertainty of perimeter maps based on 30-m Landsat pixels, the spatial 
uncertainty of building footprints, and defensible space around buildings (~30 
m). This expanded definition included 98.4% of all destroyed buildings in our 
dataset. Although this approach does not perfectly account for all structures that 
face threats from wildfire, this provided a consistent definition that allowed us to 
assess temporal trends while accounting for most destroyed buildings.

We used our building dataset to assess spatial autocorrelation in destroyed 
buildings, to determine distances at which the likelihood of building destruction 
is influenced by neighboring buildings. We calculated correlograms for each 
fire and plotted means and SE of correlations at 100-m lag increments, up to 
2,400 m. From this plot, we determined that autocorrelation diminished to <0.05 
beyond distances of approx. 1,000 m (SI Appendix, Fig. S7). We therefore used 
this distance to summarize neighborhood variables around building points and 
to aggregate buildings into clusters.

Other Data. We defined major ecoregions for the conterminous United States 
based on the US Environmental Protection Agency’s Level I ecoregions for North 
America (39) and defined major vegetation classes using National Land Cover 
Database annual products (NLCD; 59). Some Level I ecoregions had small extents 
within the conterminous United States, so we grouped these with larger ecore-
gions with similar vegetation types to define five major ecoregions (Fig. 2A). We 
grouped NLCD classes into four simplified vegetation classes (evergreen forests, 
deciduous and mixed forests, grass and shrublands, and wetlands; SI Appendix, 
Table S8). We calculated proportions of each class within 1 km of building points, 
based on the classification from the year prior to fire occurrence. We classified each 
building according to the class with the greatest proportion, excluding developed, 
agricultural, or other nonvegetated classes.

We determined WUI types using maps created by the SILVIS Lab at the 
University of Wisconsin-Madison, which are based on decadal census housing 
counts and NLCD vegetation cover (60). These maps classify census blocks into 
non-WUI, intermix WUI, or interface WUI according to minimum thresholds of 
housing density, wildland vegetation cover, and proximity to wildland vegeta-
tion based on US Federal Register definitions (38; SI Appendix, Table S9). We 
used these threshold classifications to identify intermix WUI (>6.17 houses/km2, 
>50% vegetation cover) and interface WUI (>6.17 houses/km2, <50% vegetation 
cover but within 2.4 km of a large vegetation patch). We then classified non-WUI 

blocks as “nonvegetated” (<50% vegetation cover) or “low-density wildlands” 
(>50% vegetation and <6.17 buildings/km2).

Other predictor variables considered for inclusion in our logistic regression models 
were derived from 4-km gridded weather data (gridMET; 61), a 30-m digital elevation 
model (62), and burn severity and perimeter maps from MTBS (SI Appendix, Table S4). 
We selected mean and maximum wind speed and ERC as weather predictors because 
these variables predict fire spread and behavior (63). Due to the coarse resolution of 
weather data and uncertainty in dates when buildings were destroyed, we represented 
each weather variable as a single mean value for each wildfire event by extracting daily 
values for all pixels overlapping the fire perimeter, for the 7-d period including and 
following the date of ignition. We assessed burn severity by calculating distance from 
areas that were mapped in the “high” severity category by MTBS and extracted final fire 
size from MTBS perimeter maps. We used elevation data to calculate slope and aspect 
and transformed aspect to represent the absolute difference from southwest-facing 
(225°). We additionally used building point data to calculate building density within 
each fire perimeter, using a 1 km2 window.

Trend Analysis. We assessed annual trends in the numbers of destroyed and 
exposed buildings and in predictor variables using Mann–Kendall tests with Theil-
Sen slope estimators. We determined that there was no significant temporal 
autocorrelation in annual destruction rates and that our models were therefore 
appropriate for assessing annual trends (SI Appendix, Fig. S8). We assessed trends 
in annual destruction rates using logistic regression, weighted by the number of 
exposed buildings. For ecoregions, the response variable was destruction rate for 
individual fire events. For vegetation types, the response variable was the total 
annual destruction rate. We assessed trend robustness by sequentially fitting 
models with one year of observations excluded, then calculating means and 
ranges of slopes across all models. We exponentiated slopes to convert them to 
odds ratios, representing the increase or decrease in odds of destruction, given 
exposure, by year and among ecoregions or vegetation types.

Destruction Models. Past studies examining building loss within individual 
wildfires have found that building loss patterns exhibit strong spatial struc-
ture, reflecting the importance of home-to-home spread processes (29, 33). 
Furthermore, destruction likelihood for individual buildings is strongly predicted 
by building-level characteristics such as building age, materials, and vegetation 
within the defensible zone around homes (~30 m; 28, 29), which cannot be 
readily assessed at large scales for retrospective analysis. We therefore chose to 
model building destruction at an aggregated scale using clusters of adjacent 
buildings, similar to the approach used by Alexandre et al. (31). We defined clus-
ters by grouping directly exposed buildings from individual fires with a maximum 
distance of 1 km, based on our spatial autocorrelation assessments.

We fit linear logistic regression models with cluster-level destruction rate as a 
binomial response, weighted by the number of exposed buildings. Models can 
be biased by including clusters with very few buildings, and so we fit models only 
using clusters with 10 or more destroyed buildings (n = 440). This retained 91% of 
exposed buildings (n = 268,885) and 97% of destroyed buildings (n = 70,158). 
For each cluster polygon, we extracted the percent cover of each major vegetation 
type based on the annual layer from the year prior to the fire, percent cover of each 
WUI type based on census block classifications from the year nearest the date of 
the fire (2000, 2010, or 2020), and means of building density, slope, transformed 
aspect, and distance to high-severity burned area. We also included final fire size, 
weather means, and year as predictors in our models. We fit univariate models 
for each predictor, then used a stepwise forward selection procedure in which we 
added variables that increased the total deviance explained (SI Appendix, Tables S5 
and S6). We included ecoregion as a slope interaction for all model terms.

Data, Materials, and Software Availability. Geospatial data and CSV tables 
data have been deposited in USGS ScienceBase https://doi.org/10.5066/
P1QX6UXD. The citation for the data release included in the manuscript is Carlson 
et al. (35).
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