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Many regions of the world have seen an increase in highly destructive wildfires, driven by
well-documented increases in burned area and growth of housing in the wildland—urban
interface (WUI), which exposes more homes to fire. However, it is unclear whether
wildfires are also becoming more destructive due to changes in wildfire behavior or in
the development patterns of exposed communities. Here, we assessed trends in wildfire
building exposure and destruction rates in the conterminous United States from 2002 to
2022. We mapped destroyed and surviving buildings within 100 m of all wildfires that
destroyed 10 or more buildings (n = 362) and assessed trends relative to major ecore-
gions and vegetation types. We used logistic regression to assess relationships between
destruction rates and landscape factors. We found that 10% of exposed buildings were
destroyed in 2002-2012, but this percentage increased to 32% in 2013-2022. This
increase was largely due to greater building exposure in evergreen forests in the north-
western United States, where exposed buildings were more than 3.4 times as likely to
be destroyed as those in grass and shrublands. However, annual destruction rates also
significantly increased in all other vegetation types and were correlated with development
type, weather, and burn severity. These results indicate that increasing wildfire destruc-
tion in the United States has resulted not only from increased exposure but from rising
rates of building destruction, potentially indicating more extreme wildfire behavior. This
finding underscores the need to better understand how fuel management, community
planning, and hardening buildings can reduce vulnerability.

wildland fire | building destruction | wildland-urban interface | global change | wildfire risk

Highly destructive wildfires are occurring more frequently in many parts of the world (1).
Many of the most destructive events in modern history have occurred since the mid-2010s,
including the 2018 Camp fire in northern California, United States of America (>16,000
reported burned structures), the 2019-2020 Black Summer fires in southeastern Australia
(>3,000 structures), the 2023 Lahaina fire in Hawaii, United States of America (>2,200
structures), and the 2025 Palisades and Eaton fires in Los Angeles, United States of America
(>10,000 structures). Many of these events occurred in the western United States, where
over 59,000 structures were destroyed by wildfires from 2010-2023 (2). Wildfires since
2015 have caused USD $136 billion in economic losses globally (3), as well as enormous
insurance losses that resulted in loss of coverage for tens of thousands of homeowners (4).
Destructive wildfires also have severe long-term economic impacts, disrupt communities,
and have lasting effects on public health (5). Adapting to changing patterns of wildfire
destruction and developing effective risk mitigation policies is, therefore, an important
management concern.

Increasing wildfire building destruction may result from 1) increases in wildfire fre-
quency and burned area, 2) growth of housing in the wildland—urban interface (WUI),
where homes are most likely to be exposed to wildfires, or 3) more extreme wildfire
behavior that makes suppression less effective. Global burned areas have decreased since
the late 20th century but have increased specifically in high-latitude forests, particularly
in western North America (6). The United States has experienced significant increases
in wildfire burned area and average wildfire size since the 1980s as a result of lengthening
fire seasons and greater frequency, duration, and severity of droughts (7-9). The footprint
and number of homes in the WUTI has also grown substantially in the United States, and
this growth leads to more frequent wildfire ignition near homes and more homes exposed
when wildfires occur (2, 10). Increases in burned area and housing growth in the WUI
have contributed approximately equally to increases in home exposure within burned
areas since 1990 (11, 12). At the same time, extreme fire weather and changes in fuel
structure have potentially contributed to more extreme wildfire behavior. Fire suppression
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during the 20th century has led to excess fuel build-up in many
western US forests that were adapted to frequent burning, while
the western United States has also experienced widespread forest
die-offs from drought and insects since ca. 2000 (13-15). Rates
of wildfire spread have increased in the western United States,
and these fast-spreading fires are associated with high destruction
(7, 16, 17). However, changes in the destructive potential of
wildfires are less well-understood than changes in wildfire burn
probability or increases in the number of vulnerable homes in
the WUIL.

Policy discussions about mitigating wildfire disasters often focus
on fuels management and particularly on reducing forest fuels
(18, 19). However, wildfires in different vegetation types may
require different management approaches. A majority of burned
area in the WUTI in the United States is in grass and shrublands
rather than forests (11, 20), and although grass and shrubland fuel
management can help to reduce wildfire intensity near homes,
destructive events in these landscapes are also strongly influenced
by human-caused ignitions and high winds (10, 21). Fuel treat-
ments in these landscapes may be less effective during extreme
high winds and also require frequent maintenance to prevent
regrowth by invasive species (22, 23). Management in grass and
shrublands may therefore focus on reducing accidental ignitions
(e.g., by burying power lines). In forests, mechanical thinning,
prescribed burning, and fuel breaks are effective at reducing wild-
fire intensity in low-elevation dry forests that have been altered
by past suppression (24). Suppression histories have had less sig-
nificant effects in high-elevation, wet forests characterized as hav-
ing “low-frequency, high-intensity” fire regimes, which are at risk
of highly destructive events as a result of climate-driven increases
in wildfire activity (25, 26). Fuel management in these ecosystems
is challenging due to dense vegetation and steep terrain, and risk
reduction may therefore focus instead on community prepared-
ness. Determining which management strategies to prioritize
requires consideration for which communities are at greatest risk
of destruction, and how risk is affected by fuel type.

Reducing wildfire risk to communities may also involve making
structures less susceptible to destruction. The WUI is where most
homes are exposed to wildfires (27), but characteristics of homes
and neighborhoods also influence the probability that buildings will
be destroyed when wildfires occur. Broadly, the WUTI is made up of
two types: the intermix, where housing above a minimum density
threshold (>6.17 houses per km?) intermingles with wildland veg-
etation, and the interface, where housing abuts but does not inter-
mingle with wildland vegetation (28). Building density and
vegetation in the defensible space around buildings affect destruction
probability, such that destruction rates are higher in lower-density
areas with more surrounding vegetation (29-31). Factors such as
building materials and construction age also influence probabilities
of ignition and home-to-home flame spread (32, 33). Management
strategies focused on reducing home-to-home flame transmission
(e.g., building codes, homeowner outreach) may be as important
for reducing destruction as strategies focused on fuel reductions to
control wildfire behavior (34).

Understanding wildfire destruction patterns across the United
States is important for developing effective wildfire risk mitigation
policies, particularly with respect to rapid changes in burned area
and wildfire behavior. Here, we evaluated 21"-century trends and
predictors of building destruction rates, or numbers of buildings
destroyed relative to numbers exposed, in the conterminous
United States. Our evaluations were based on mapping locations
of all exposed buildings within and adjacent to the perimeters of
destructive fires (210 buildings destroyed; n = 362 fires) from
2002-2022 (see Materials and Methods; Fig. 14; 31, 35-37). The
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final dataset included 73,534 destroyed buildings and an addi-
tional 1.70 million surviving buildings that were within 2.4 km
of mapped wildfire perimeters, representing the approximate
distance over which buildings can be ignited by embers (38).
Spatially precise data building locations allowed us to assess
destruction rates using consistent counts of exposed and destroyed
buildings and to assess predictors of destruction in relation to
vegetation and other landscape factors. We evaluated building
destruction rates by dividing the number of destroyed buildings
by the number of buildings that were “directly” exposed, i.e.,
within or <100 m outside the fire perimeter (n = 294,209; see
Materials and Methods). Our aims were to 1) assess trends in
numbers of exposed and destroyed buildings and destruction rates
for the entire conterminous United States and by major ecore-
gions (38; Fig. 24), 2) assess trends and relative destruction like-
lihood by major vegetation types, and 3) assess how destruction
rates varied with vegetation cover, WUI types, building density,
distance to high-severity burned area, final fire size, and weather.
For objective 3), we used logistic regression to model destruction
rates for clusters of buildings within wildfire events (i.e., groups
of buildings within 1 km of one another; sece Materials and
Methods). Our results inform the likely causes of increasing build-
ing destruction in the United States and have broad implications
for risk management.

Results

Rates of Wildfire Building Destruction Are Increasing Across the
Conterminous UnitedStates. The number of destructive events,
numbers of destroyed buildings, and rate of destruction increased
dramatically in the conterminous United States from 2002 to
2022 (Fig. 1). During the first half of this period from 2002
to 2012, we mapped 119 events that destroyed 905 buildings
per year, on average (std. dev.: 934), with an overall destruction
rate of 10.1%. From 2013 to 2022, we mapped nearly twice as
many destructive events (n = 243). There was a nearly seven-fold
increase in the annual number of destroyed buildings (6,239 +
6,974) and a three-fold increase in the destruction rate (31.9%;
Fig. 1 Band C). Notably, the annual trend in buildings exposed
to destructive wildfires was positive (517 buildings/year) but only
weakly significant (P = 0.085; Table 1), as building exposure in
2003 and 2007 was comparable to more recent highly destructive
years in 2017, 2018, and 2020 (Fig. 1B). In contrast, the number
of destroyed buildings significantly increased at a rate of 208
buildings/year, or by 23% of the mean number of destroyed
buildings from 2002 to 2012 (P = 0.009; Table 1 and S/ Appendix,
Table S1). It is unclear whether this increase in destruction rate
was caused by more extreme wildfire behavior, less effective
suppression, changes in the vulnerability of exposed communities,
or other factors, but it is concerning given the increases in wildfire
burned area and development in the WUL

We considered whether our trend assessments were affected by
potential undercounting of destroyed buildings in earlier fires.
Building maps based on older aerial imagery were subject to
greater uncertainty due to coarser image resolution (1 to 3 m) and
longer periods between collection times, sometimes resulting in
postfire imagery collected several years after destruction had
occurred and thus may have been more prone to undercounting
destroyed buildings (S7 Appendix, Supporting Text). However,
annual destroyed building counts after 2002 were strongly corre-
lated with counts from incident reports (26; 7= 0.99; ST Appendix,
Fig. S1). We found a significant increasing trend in annual build-
ing destruction rates, whether we used totals from incident reports
or from our dataset (S Appendix, Fig. S2).
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Fig. 1. (A) Wildfires that destroyed 10 or more buildings in the conterminous United States from 2002 to 2022, where we mapped all exposed and destroyed
buildings. Point size indicates the number of exposed buildings and colors indicate the destruction rate, or number of buildings destroyed relative to number
that was within or <100 m outside of the fire perimeter. (B) Numbers of buildings exposed to and destroyed by destructive wildfires by year. (C) Total annual
destruction rate (line plot) and destruction rates for individual fire events (points) by year. Point size is proportional to number of exposed buildings.

More Building Exposure in Forests, But Increasing Destruction
Rates in Other Vegetation Types. Trends in building exposure
and destruction varied by ecoregions of the conterminous US.
Annual numbers of buildings exposed to destructive wildfires
increased most significantly from in the Western Forests ecoregion
from 2002 to 2022, by a large magnitude (25%/year, relative
to the 2002-2012 mean; p: 0.025; Table 1 and S/ Appendix,
Table S1). Increases in exposure were weakly significant in the
Western Deserts (slope: 11.8%/year; p: 0.058) and Great Plains
(slope: 7.8%/year; P = 0.064) but nonsignificant in Mediterranean
California and the Eastern Forests (= 0.30 and 0.12, respectively).
Annual numbers of destroyed buildings increased significantly in
the Western Forests, Western Deserts and Great Plains, but not
in Mediterranean California or the Eastern Forests (Table 1 and
Fig. 2 and SI Appendix, Table S1).

Destruction rates in the Western Forests ecoregion were sub-
stantially higher than in other western ecoregions (Table 1 and
Fig. 2 and SI Appendix, Table S2). The Eastern Forests ecoregion
also had high destruction rates (total: 36.9%) but had fewer build-
ings exposed to wildfire overall. However, destruction rates
increased significantly over time in Mediterranean California, the
Western Deserts, and the Great Plains ecoregions (Table 1 and
Fig. 2).

In absolute numbers, most exposed and destroyed buildings
were in grass and shrubland or evergreen forest (Table 2 and Fig. 3
A and B). The majority of exposed buildings were in grass and
shrubland; however, there was a substantial increase in building
exposure in evergreen forest (Fig. 34). From 2002 to 2012, most
destructive events occurred in southern California and the south-
ern Great Plains (Fig. 14), and 82.4% of exposed buildings were

PNAS 2025 Vol.122 No.51 2505886122

in grass and shrublands. From 2013 to 2022, the proportion of
exposed buildings in grass and shrublands dropped to 61.3%, and
the proportion in evergreen forests increased from 11.3% to
33.2%. Most notably, the majority of destroyed buildings from
2002 to 2012 were in grass and shrubland (62.2%), but from
2013 to 2022 this shifted to evergreen forest (50.1%).

Increases in building exposure in evergreen forests largely
explain increasing destruction rates across the conterminous
United States, as evergreen forests had consistently higher destruc-
tion rates than other vegetation types throughout our study period
(Table 2 and Fig. 3C). Destruction rates were lowest in grass and
shrublands (total: 16.6%). Buildings in evergreen forest were 3.4
times as likely to be destroyed as those in grass and shrublands,
buildings in deciduous and mixed forest were 2.4 times as likely,
and buildings in wetlands were 1.9 times as likely, after accounting
for annual trends (87 Appendix, Table S3). These differences were
not consistent over time, and destruction rates increased signifi-
cantly in grass and shrublands and deciduous and mixed forests
from 2002 to 2022 (Fig. 3Cand Table 2). Only 2.4% of exposed
buildings were in wetlands, and destruction rates for this vegeta-
tion type were highly variable (Fig. 3). Most fires where buildings
were primarily in wetlands were in the southeastern coastal region
or the northern forests; however, increases in the destruction rate
for wetlands were strongly influenced by the 2020 Almeda Drive
fire in western Oregon (Fig. 3 B and C).

Rising Destruction Rates Are Related to Changes in Vegetation
Type, Fire Weather, and Development Type. The predictors that
best explained wildfire destruction rates for building clusters
were percentage of evergreen forest cover, mean energy release
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Fig. 2. (A) Major ecoregions in the conterminous United States, based on Level | ecoregions for North America (39). (B-F) Numbers of buildings exposed to and
destroyed by destructive wildfires (bar charts) and total annual destruction rates (line plots) by year, by ecoregion.

component [ERC; a relative, unitless measure related to the heat
released by burning, related to live and dead fuel moisture (41)]
during the 7-d period following wildfire ignition, percentage of
buildings in interface WUI, maximum wind speed, mean building
distance to high-severity burned area, percentage of wetland cover,
and percentage of buildings in low-density wildlands (S] Appendix,
Tables S4-S6). Logistic regression models explained 80% of
deviance and predicted reasonably well on test subsets (observed-
predicted pseudo-R*: 0.67; SI Appendix, Figs. S3 and S4).
Destruction rates were positively correlated with evergreen forest
and ERC in all ecoregions and negatively correlated with interface
WUI in Mediterranean California, the Western Deserts, and the
Great Plains (87 Appendix, Fig. S5). Very few exposed clusters

had more than 20% interface WUI in the Western Forests and
Eastern Forests, so it is unclear whether relationships are similar
in these ecoregions. Destruction rates were positively correlated
with maximum wind speed in Mediterranean California and the
Eastern Forests but were only weakly correlated with wind speed
in other ecoregions (S Appendix, Fig. S5).

We tested how annual trends in wildfire building destruction
rates were related to trends in fuels, weather, and WUI type by
using our final logistic regression models to predict destruction
rate response to each predictor, while holding all other predictors
constant at their median values (Fig. 4). Our models predicted
increases in annual destruction rates in response to 1) increases in
the percentage of evergreen forest cover in proximity to exposed

Table 1. Trends in building destruction from destructive wildfires (210 destroyed buildings) in the conterminous

United States, by major ecoregion, 2002-2022

Destruction rate trend Total destruction

Downloaded from https://www.pnas.org by 73.25.141.52 on January 12, 2026 from IP address 73.25.141.52.

Exposed buildings Destroyed buildings

Ecoregion trend (%/year) trend (%/year) (odds ratio/year) rate (%)
Mediterranean California NS NS 1.008 to 1.014 15.4
Western Forests 25.1* 20.7* 0.991 to 1.009 457
Western Deserts 11.8%** 24.9* 1.003to 1.010 20.0
Great Plains 7.8%%* 17.8* 1.007 to 1.012 20.5
Eastern Forests NS NS 1.000 to 1.021 36.9
All conterminous United States 5.8%** 23.0%* 1.014t0 1.018 24.6

Trends in numbers of exposed and destroyed buildings are relativized by their 2002-2012 means. Trend significance: **P < 0.01; *P < 0.05; ***P < 0.1; NS: nonsignificant. Odds ratios for
destruction rate trends are based on logistic regression coefficients (odds ratio >1 indicates increasing trend, <1 indicates decreasing). Ranges indicate minimum and maximum coeffi-
cients, determined by fitting models leaving out one year of observations at a time to assess trend robustness.
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Table 2. Destruction rates for buildings in each of four
major vegetation types in the conterminous United
States, 2002-2022

Mean annual Annual
destruction Relative destruction rate
Vegetation rate £ std.  destruction trend (odds
type dev. (%) probability ratio/year)
Grass and 16.6 £9.2 1 1.010to0 1.013
shrubland
Evergreen 33.6+15.4 3.36 0.999 to 1.020
forest
Deciduous/ 25.8+18.4 2.44 1.022 to 1.036
mixed forest
Wetland 12.2+14.4 1.89 1.006 to 1.035

Relative destruction probability is based on factor intercepts of a logistic regression mod-
el, accounting for annual trends. Odds ratios for annual destruction rate trends are based
on logistic regression coefficients (odds ratio >1 indicates increasing trend, <1 indicates
decreasing). Ranges indicate minimum and maximum coefficients, determined by fitting
models leaving out one year of observations at a time to assess trend robustness.

buildings, 2) increases in ERC, and 3) decreases in the percentage
of exposed buildings in interface WUI (Fig. 4 and S/ Appendix,
Tables S7 and S8). Interface WUTI had the largest effect size (0.41
+0.17 %/year), while evergreen forest and ERC had similar effect
sizes (0.28 + 0.09 %/year; 0.26 + 0.08 %/year; respectively). There
was no significant trend in response to maximum wind speed
during wildfire events, although there was a significant increase
in mean wind speed in the Western Forests, Western Deserts, and
Great Plains (S Appendix, Table S8). Our models did not indicate
that increases in destruction rates were due to changes in the size
of destructive wildfires or building proximity to high-severity
burned areas (S7 Appendix, Tables S7 and S8).

1.00 A
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D MA

Discussion

Increasing wildfire building destruction in the conterminous
United States from 2002 to 2022 was driven not only by wildfires
exposing more buildings, due to increasing burned areas and
growth of homes in the WUI, but by wildfires destroying exposed
buildings at higher rates. Across the entire conterminous United
States, this increase in building destruction rates was strongly
related to increasing exposure in evergreen forests in the north-
western United States, where exposed buildings were much more
likely to be destroyed than in other vegetation types. However,
the majority of buildings that were exposed to wildfires from 2002
to 2022 were in grass and shrublands. Destruction rates signifi-
cantly increased over time in grass and shrublands, as well as in
deciduous and mixed forests. Our results indicate that the drivers
of increasing wildfire destruction are varied and highlight chal-
lenges of adapting to dynamic wildfire risk.

Increasing burned areas in regions where wildfire was histori-
cally infrequent can lead to highly destructive events. In our anal-
yses, this shift was most evident in the western Cascades region
of Oregon, which experienced no destructive wildfires in 2002—
2012 but experienced several highly destructive fires in September
0f 2020 in the midst of extreme high temperatures, drought, and
winds (42). We found that destruction rates in this region were
frequently above 50%, likely because dense forest fuels are prone
to high-intensity fires and produce large numbers of embers (43).
Wildfire in temperate and boreal forests has historically been lim-
ited by the occurrence of low-fuel moisture conditions, and warm-
ing in recent years has driven significant increases in fire size and
frequency in these ecosystems globally (6). While destructive fires
have occurred historically in this region, future projections indi-
cate that the extreme conditions driving the 2020 fire season are

Vegetation type

= Evergreen forest
Deciduous/mixed forest

0.00 A
T T T T Grass/shrubland
2005 2010 2015 2020
Wetland
Year
Exposed buildings
0.75 ®
45°N A <100
Qo : * <1,000
40°N - ] / * <10,000
c
e
. _% N ; e >10,000
=] 0.254 >
30°N % d
© 0.001
25°N A
T T T T T T T T T
120°W 110°W  100°W 90°W 80°W 2005 2010 2015 2020

Year

Fig. 3. (A) Proportions of buildings exposed to destructive wildfires (=10 destroyed buildings) in different vegetation types in the conterminous United States,
by year. (B) Locations of destructive wildfire events in the conterminous United States, with colors and symbols indicating the most common vegetation type
within 1 km of exposed buildings. (C) Annual destruction rates for buildings in each vegetation type (point symbols) and linear trends (lines) based on logistic
regression. The shaded area represents the range of predicted destruction rates using leave-one-out cross validation for individual years.
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Fig. 4. Predicted annual building destruction rates for all wildfires in the conterminous United States in response to observed variation in each of the four top
predictors in our logistic regression models, while holding all other predictors constant. Trendlines are based on logistic regressions weighted by numbers of
exposed buildings in each fire, with shaded areas representing SE. Point colors are scaled to represent observed predictor values for all exposed buildings [%
of exposed buildings where evergreen forest is the dominant vegetation type within 1 km; weighted mean of energy release component (ERC) by wildfire event;
% of exposed buildings in interface WUI; weighted mean of maximum wind speed by wildfire event].

likely to occur more frequently in the Pacific Northwest over the
21st century (44).

Although much more burned area in the United States occurs
in the western United States than in the east, the potential for
increasing wildfire destruction in forested areas in the eastern
United States is of concern because large populations live near
forested WUI (11). The 8th most destructive fire in our dataset
was Chimney Tops 2, which occurred in deciduous forest near
Great Smoky Mountain National Park, near Gatlinburg,
Tennessee, in 2016 and destroyed over 1,500 buildings (52.1%
destruction rate). We did not observe a significant trend in num-
bers of exposed or destroyed buildings in the Eastern Forests and
found that average ERC of destructive fires decreased over time,
coincident with climate change-driven precipitation increases
(45). However, it is highly uncertain how precipitation trends will
continue and how warming temperatures will interact with pre-
cipitation to affect wildfire activity (46). Some regions of the
southeastern United States have experienced increases in burned
areas and wildfire size since the late 20th century, while burned
areas have decreased in the north-central and northeastern United
States (47). Growing burned areas in the southeast could lead to
much greater home exposure, as parts of this region experienced
more growth in the WUI than any other region in the United
States in the 2010s (e.g., southeast Texas, the western Carolinas,
and Florida; 11).

Outside of forests, many highly destructive wildfires occurred
in Mediterranean-type shrublands in California, grasslands on the
Rocky Mountain Front Range and southern Great Plains, and
desert shrublands in the Great Basin (21). We found that increas-
ing destruction rates in grass and shrubland-dominated ecoregions
are linked to increasing ERC, which indicates lower fuel moisture
and low-humidity conditions that can drive extreme fire behavior
(41). Assessing relationships between climate and wildfire behavior
is complex, however, because wildfire activity is linked not only
to periods of low fuel moisture leading up to fire ignition, but to
antecedent wet periods that allow for fuel buildup (48). Increasing
“whiplash” between wet and dry extremes in the southwestern
United States can create conditions for more extreme wildfire
behavior (49), and the devastating Los Angeles fires in January
2025 provide an example of the high destruction that can occur
during an extreme dry period that follows an extreme wet period,
particularly during extreme high winds (50). Our study also did
not assess how extreme fire behavior may have been exacerbated
by the spread of flammable invasive grasses, which have altered
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fire frequency in the Great Basin, desert southwest, and southeast-
ern pine savannahs (51).

Wildfire building destruction rates were influenced by devel-
opment type as well as weather and wildland vegetation. In
Mediterranean California, we found that increasing destruction
rates were linked to a shift in exposure from interface WUI to
low-density wildlands, as more destructive wildfires occurred in
the northern California coastal mountains and Sierra Nevada
foothills. Lower-density areas may face greater destruction likeli-
hood as a result of lower suppression efforts, as they may have
limited accessibility for firefighters or may be a lower priority for
protection than higher-density areas where more buildings can be
protected by focusing suppression efforts on a limited area (27,
29, 31). More dispersed buildings may also have more vegetation
in the defensible space, increasing the likelihood of flame trans-
mission and ignition (52). However, high-density developments
may face high destruction risk when human-caused ignitions
occur near communities during conditions that allow fires to
spread rapidly, as these events can overwhelm suppression and
turn into highly destructive urban conflagrations driven by
home-to-home spread (16, 34). Home-hardening measures, such
as building with flame-resistant materials and clearing defensible
space, can significantly reduce the likelihood of building ignitions,
thereby reducing the rate of building destruction (33, 53).
Assessing these features for all fires included in our study was not
feasible, but our results indicate that housing density and com-
munity layout relative to neighboring wildlands can mitigate
wildfire risk.

Rising rates of wildfire building destruction compound the
challenges of increasing wildfire exposure as burned areas continue
to increase and as populations in the WUI continue to grow (54,
55). Vegetation management can reduce the potential for
high-intensity wildfires near communities, while actions focused
on reducing home susceptibility can help to minimize losses.
Increasing building exposure and high destruction rates in forests
suggest that forest fuel management can play an important role
in risk reduction, with attention to the historical role of fire in
different forested ecosystems. However, rising destruction rates in
other ecosystem types indicate that policies other than forest thin-
ning (e.g., invasive grass management, reducing ignitions caused
by powerlines or other human activities, defensible space clearing,
reducing exposure during new home construction) are also of
importance. With all these potential management actions,
resources and knowledge are needed for effective implementation.
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Our study provides support for evidence-based risk management
policies for preventing wildfire disasters.

Materials and Methods

Building Destruction Dataset. We created a dataset with point locations of all
buildings that were exposed to destructive wildfires (=10 buildings destroyed) in
the conterminous United States from 2002 to 2022 (56; S/ Appendix, Supporting
Text). Buildings were mapped using high-resolution aerial and satellite imagery,
using pre-and postfire imagery to manually assess building condition (destroyed
or not destroyed). The dataset incorporated existing building destruction maps for
2002-2013(29, 33; n = 124 fires) and for a few highly destructive events from
201410 2018 (34; n = 10 fires). We mapped all remaining fires that destroyed
10 or more buildings from 2014 to 2022 (n = 228), identified from final incident
reports (40, 56). We used this threshold due to the time and labor constraints of
manually classifying postfire building condition, which was necessary to achieve
a suitable degree of accuracy across diverse landscapes with varying imagery
quality, compared to automated classifications (57). We filtered the final dataset
toinclude only fires where we were able to locate 10 or more major buildings (i.e.,
all permanent buildings approximately the size of a residential home or larger,
excluding minor and mobile structures) that were destroyed.

Defining Building Exposure. Determining which buildings were exposed to
wildfires is not straightforward because buildings can be ignited by embers at
variable distances from the active flame front, depending on wind speed and
ember production (58). Wildfire perimeter maps are typically drawn to include
groups of destroyed buildings, and so only a small fraction of destroyed buildings
in our dataset was outside of mapped fire perimeters (3.0%), even though some
of these buildings may have been ignited by embers away from the flame front.
The median distance for these buildings was 103 m (S/ Appendix, Fig. S6). We
therefore defined “directly” exposed buildings as all buildings that were inside fire
perimeters or within 100 m of the perimeter. The 100 m buffer approximates the
spatial uncertainty of perimeter maps based on 30-m Landsat pixels, the spatial
uncertainty of building footprints, and defensible space around buildings (~30
m). This expanded definition included 98.4% of all destroyed buildings in our
dataset. Although this approach does not perfectly account for all structures that
face threats from wildfire, this provided a consistent definition that allowed us to
assess temporal trends while accounting for most destroyed buildings.

We used our building dataset to assess spatial autocorrelation in destroyed
buildings, to determine distances at which the likelihood of building destruction
is influenced by neighboring buildings. We calculated correlograms for each
fire and plotted means and SE of correlations at 100-m lag increments, up to
2,400 m. From this plot, we determined that autocorrelation diminished to <0.05
beyond distances of approx. 1,000 m (S/ Appendix, Fig. S7). We therefore used
this distance to summarize neighborhood variables around building points and
to aggregate buildings into clusters.

Other Data. We defined major ecoregions for the conterminous United States
based on the US Environmental Protection Agency's Level | ecoregions for North
America (39) and defined major vegetation classes using National Land Cover
Database annual products (NLCD; 59). Some Level | ecoregions had small extents
within the conterminous United States, so we grouped these with larger ecore-
gions with similar vegetation types to define five major ecoregions (Fig. 24). We
grouped NLCD classes into four simplified vegetation classes (evergreen forests,
deciduous and mixed forests, grass and shrublands, and wetlands; S/ Appendix,
Table S8). We calculated proportions of each class within 1 km of building points,
based on the classification from the year prior to fire occurrence. We classified each
building according to the class with the greatest proportion, excluding developed,
agricultural, or other nonvegetated classes.

We determined WUI types using maps created by the SILVIS Lab at the
University of Wisconsin-Madison, which are based on decadal census housing
counts and NLCD vegetation cover (60). These maps classify census blocks into
non-WUI, intermix WU, or interface WUl according to minimum thresholds of
housing density, wildland vegetation cover, and proximity to wildland vegeta-
tion based on US Federal Register definitions (38; S/ Appendix, Table S9). We
used these threshold classifications to identify intermix WUI (>6.17 houses/km?,
>50% vegetation cover) and interface WUI (>6.17 houses/km?, <50% vegetation
cover butwithin 2.4 km of a large vegetation patch). We then classified non-WUl
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blocks as "nonvegetated” (<50% vegetation cover) or "low-density wildlands”
(>50% vegetation and <6.17 buildings/km?).

Other predictor variables considered forinclusion in our logistic regression models
were derived from 4-km gridded weather data (gridMET; 61),a 30-m digital elevation
model (62), and burn severity and perimeter maps from MTBS (S/Appendix, Table S4).
We selected mean and maximum wind speed and ERC as weather predictors because
these variables predict fire spread and behavior (63). Due to the coarse resolution of
weather data and uncertainty in dates when buildings were destroyed, we represented
each weathervariable as a single mean value for each wildfire event by extracting daily
values for all pixels overlapping the fire perimeter, for the 7-d period including and
following the date of ignition. We assessed burn severity by calculating distance from
areasthatwere mapped in the "high” severity category by MTBS and extracted final fire
size from MTBS perimeter maps. We used elevation data to calculate slope and aspect
and transformed aspect to represent the absolute difference from southwest-facing
(225°).We additionally used building point data to calculate building density within
each fire perimeter, using a 1 km? window.

Trend Analysis. We assessed annual trends in the numbers of destroyed and
exposed buildings and in predictor variables using Mann-Kendall tests with Theil-
Sen slope estimators. We determined that there was no significant temporal
autocorrelation in annual destruction rates and that our models were therefore
appropriate for assessing annual trends (S/ Appendix, Fig. S8). We assessed trends
in annual destruction rates using logistic regression, weighted by the number of
exposed buildings. For ecoregions, the response variable was destruction rate for
individual fire events. For vegetation types, the response variable was the total
annual destruction rate. We assessed trend robustness by sequentially fitting
models with one year of observations excluded, then calculating means and
ranges of slopes across all models. We exponentiated slopes to convert them to
odds ratios, representing the increase or decrease in odds of destruction, given
exposure, by year and among ecoregions or vegetation types.

Destruction Models. Past studies examining building loss within individual
wildfires have found that building loss patterns exhibit strong spatial struc-
ture, reflecting the importance of home-to-home spread processes (29, 33).
Furthermore, destruction likelihood for individual buildings is strongly predicted
by building-level characteristics such as building age, materials, and vegetation
within the defensible zone around homes (~30 m; 28, 29), which cannot be
readily assessed at large scales for retrospective analysis. We therefore chose to
model building destruction at an aggregated scale using clusters of adjacent
buildings, similar to the approach used by Alexandre etal.(31). We defined clus-
ters by grouping directly exposed buildings from individual fires with @ maximum
distance of 1 km, based on our spatial autocorrelation assessments.

We fit linear logistic regression models with cluster-level destruction rate as a
binomial response, weighted by the number of exposed buildings. Models can
be biased by including clusters with very few buildings, and so we fit models only
using clusters with 10 or more destroyed buildings (n = 440).This retained 91% of
exposed buildings (n = 268,885) and 97% of destroyed buildings (n = 70,158).
For each cluster polygon, we extracted the percent cover of each major vegetation
type based on the annual layer from the year prior to the fire, percent cover of each
WUI type based on census block classifications from the year nearest the date of
thefire (2000, 2010, or 2020), and means of building density, slope, transformed
aspect, and distance to high-severity burned area. We also included final fire size,
weather means, and year as predictors in our models. We fit univariate models
for each predictor, then used a stepwise forward selection procedure in which we
added variables thatincreased the total deviance explained (S/ Appendix, Tables S5
and S6). We included ecoregion as a slope interaction for all model terms.

Data, Materials, and Software Availability. Geospatial data and CSV tables
data have been deposited in USGS ScienceBase https://doi.org/10.5066/
P1QX6UXD. The citation for the data release included in the manuscriptis Carlson
etal.(35).
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