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Forest Restoration and Fuels
Reduction: Convergent or Divergent?

SCOTT L. STEPHENS, MIKE A. BATTAGLIA, DEREK J. CHURCHILL, BRANDON M. COLLINS, MICHELLE COPPOLETTA,
CHAD M. HOFFMAN, JAMIE M. LYDERSEN, MALCOLM P NORTH, RUSSELL A. PARSONS, SCOTT M. RITTER, AND
JENS T. STEVENS

For over 20 years, forest fuel reduction has been the dominant management action in western US forests. These same actions have also been
associated with the restoration of highly altered frequent-fire forests. Perhaps the vital element in the compatibility of these treatments is that
both need to incorporate the salient characteristics that frequent fire produced—variability in vegetation structure and composition across
landscapes and the inability to support large patches of high-severity fire. These characteristics can be achieved with both fire and mechanical
treatments. The possible key to convergence of fuel reduction and forest restoration strategies is integrated planning that permits treatment design
flexibility and a longer-term focus on fire reintroduction for maintenance. With changing climate conditions, long-term forest conservation will
probably need to be focused on keeping tree density low enough (i.e., in the lower range of historic variation) for forest conditions to adapt to

emerging disturbance patterns and novel ecological processes.

Keywords: resilience, restoration, adaptation, wildfire, convergence, forest conservation, fuel reduction

n coniferous forests of the western United States that

were historically dominated by frequent (a median return
interval of less than 35 years) surface fire, a host of nine-
teenth and twentieth century land use changes dramatically
altered forest structure, function, and resilience to future
disturbance (Covington and Moore 1994, Reynolds et al.
2013, Stine et al. 2014, Safford and Stevens 2017, Addington
et al. 2018, Hessburg et al. 2019). These altered forest condi-
tions, in conjunction with a changing climate, have been
implicated in recent increases in the area of contiguous
stand-replacing fire and drought-induced tree mortality
(Miller et al. 2009, Abatzoglou and Williams 2016, Stevens
et al. 2017, Young et al. 2017, Parks et al. 2018, Stephens
et al. 2018a, Singleton et al. 2019), which in turn may hinder
their regenerative capacity (Haffey et al. 2018, Coop et al.
2019, Dey et al. 2019, Korb et al. 2019, Stephens et al. 2020a).
For over 20 years, forest fuel reduction has been the domi-
nant silvicultural technique for mitigating the risk of large
stand-replacing fires in these forests, and it is increasingly
being implemented as part of the forest restoration para-
digm (Moore et al. 1999, Allen et al. 2002, Fulé et al. 2012,
Underhill et al. 2014, Hesburg et al. 2015).

Forest restoration in this context generally refers to reduc-
ing tree densities and surface fuels while also shifting species
composition and spatial patterns to more closely resemble
the historical range of variation (i.e., prior to Euro-American
colonization and the onset of widespread timber harvesting,

and fire exclusion and suppression). Indeed, early twenty-
first century US legislation including the Healthy Forests
Restoration Act provided explicit funding and policy mecha-
nisms to accomplish fuels reduction while recognizing
the link to restoration—for example, to “plan and conduct
hazardous fuel reduction projects... on specified types
of Federal lands... [and] to fully maintain, or contribute
toward the restoration of, the structure and composition of
old growth [sic] stands according to the prefire suppression
old growth [sic] conditions characteristic of the forest type,
taking into account the contribution of the stand to land-
scape fire adaptation and watershed health, and retaining
the large trees contributing to old growth [sic] structure”
(US Congress 2003).

Recently, there has been a growing scientific understand-
ing of forest structure and composition in old-growth stands
prior to fire suppression and logging, from a combination of
historical reconstruction methods and studies of analogous
contemporary frequent-fire landscapes (Fulé et al. 1997,
Brown et al. 2008, Stephens et al. 2015, Merschel et al. 2019).
Among these important recent developments has been the
identification of generally low density, but variable forest
conditions at both the stand scale (Brown and Cook 2006,
Larson and Churchill 2012, Lydersen et al. 2013, Reynolds
et al. 2013, Churchill et al. 2017, Battaglia et al. 2018,
Lefevre et al. 2020) and across forest-dominated landscapes
(Collins et al. 2015, Boisramé et al. 2017, Hagmann et al.
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Figure 1. Forest fuel reduction treatments from the Texas Hill Project, Tahoe National Forest, California (a, b), and the
Meadow Valley Project, Plumas National Forest, California (c, d). Panels a and c represent nearby untreated forest to give
an idea of pretreatment conditions, and b and d represent treated areas. This portion of the Texas Hill project (b) was
burned multiple times following the treatment, and has retained large trees, a clumped pattern, and a diverse understory,
whereas this portion of the Meadow Valley project (d) has only been pile burned since the thinning, contains a more even
spaced tree pattern and less diversity and heterogeneity. The Texas Hill Project represents a greater degree of restoration
than the Meadow Valley project, although both would qualify as fuels reduction. More information on these treatments is

available in Stevens and colleagues (2014). Photographs: Jens Stevens.

2017, Stephens et al. 2018b). In fact, spatial and structural
heterogeneity has emerged as perhaps the unifying principle
guiding much of forest restoration in dry conifer forests in
the western United States (North et al. 2009, Frankin and
Johnson 2012, Churchill et al. 2013, Reynolds et al. 2013,
Stine et al. 2014, Addington et al. 2018).

Although the nuanced understanding of the variability
in historical forest conditions has been developing rapidly
in the scientific literature, the practical application of these
principles is lagging (but see Knapp et al. 2012, Stine and
Conway 2012). At the stand scale (i.e, 10-100 hectares
[ha]), conventional fuel reduction techniques of small-diam-
eter tree removal, often targeting fire-sensitive species, and
reducing surface fuels have well-known outcomes for mod-
erating fire behavior and effects (Agee and Skinner 2005).
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Although these treatments may constitute forest restoration
in a broad sense, they may be lacking the salient character-
istic of heterogeneity (figure 1). This is partly related to the
complexity in translating historical stand heterogeneity into
operational treatment prescriptions.

At the landscape scale (i.e., 1000-10,000 ha), restoration
via mechanical means is complicated by legal and physical
constraints on mechanical access or land use (North et al.
2015a, Stevens et al. 2016), as well as limited information on
variation in historical forest structure at larger spatial scales.
This creates uncertainty regarding how treatments might
be stitched together across landscapes, although landscape
level reference conditions and guidelines on using them
have been developed for some regions (Hessburg et al.,
1999, 2015, Keane et al. 2009). Finally, although there is
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Figure 2. The geographic scope of this paper is principally aligned with regions dominated by conifer forest and classified by
LANDFIRE as Fire Regime Group 1 (a), where frequent surface fire at return intervals of under 35 years (b) predominated
historically. These regions generally contain the most fire-resistant conifer species (c), which are characterized by thick bark,
self-pruning of lower limbs, tall tree heights, and fine litter fuels (figures modified from Stevens et al. 2020, based on data
and code therein, highlighting only frequent fire forests of Fire Regime Group 1). Regions with conifer forest but a greater
component of infrequent stand-replacing fire are shown in lighter transparent colors in panel c.

widespread agreement that the need for forest restoration
in more mesic and cold forests with longer historical fire
return intervals (e.g., more than 50-100 years) may not be
as pressing as it is for drier forest types (Schoennagel et al.
2004, Schoennagel and Nelson 2011), management in these
more mesic forest types may nevertheless have utility for
restoring landscape scale patchworks of various forest and
nonforest vegetation types (Spies et al. 2018, Hessburg et al.
2019). These landscape patchworks may also confer resil-
ience to future disturbance in a warming climate (Stephens
et al. 2013).

Given this context, our objective is to review the prin-
ciples of both forest fuel reduction and forest restoration
in historically frequent-fire forests of the western United
States (figure 2) to explore where these two sets of prin-
ciples align and the conditions in which they do not. Our
motivation is to provide greater clarity to forest managers,
stakeholders, scientists, and policy makers to ultimately
design and implement appropriate large-scale management
strategies. We recognize that fuel reduction need not always
constitute ecological restoration in order to meet societal
objectives (e.g., hazard reduction within and adjacent to
the wildland-urban interface, WUI). Furthermore, many
existing forest treatments contain elements of both prin-
ciples; therefore, a rigid dichotomy between fuel reduction
and restoration may not actually exist. Nevertheless, given
that fuel reduction activities are often couched in terms of
restoration, we argue that this review of the two concepts
is needed to retain the utility and integrity of each concept
independently.

https://academic.oup.com/bioscience

Forest fuels reduction

Forest fuels reduction treatments (fuel treatments) are
generally defined as “the purposeful use of any silvicultural
method, including mechanical methods, managed wildfire,
prescribed fire, or a combination of approaches, to inten-
tionally alter the fuel complex in such a way as to modify
fire behavior and thereby minimize the potential negative
impacts of future wildfires on ecosystem goods and services,
cultural resources, and human communities” (Hoffman
et al. 2018). In this context, managed fire refers to permit-
ting portions of or entire wildfires to burn in a manner such
that behavior and effects of subsequent fires are mitigated
(Collins et al. 2009). Although land managers can design
fuel treatments to alter a number of fire behavior and effects
metrics (e.g., fire rate of spread, fire-line intensity, flame
length, fire severity, soil impacts), most treatments focus on
reducing the likelihood of crown fire ignition and spread,
because these types of fires typically have greater rates of
spread and fire-line intensities, have increased fire brand
generation, are more difficult to control, and can produce
adverse ecological and societal effects (Scott and Reinhardt
2001, Graham et al. 2009, Hoffman et al. 2018). To reduce
the likelihood of crown fire, managers often design fuel
treatments to alter four aspects of the fuels complex: reduc-
ing surface fuels, increasing canopy base height, reducing
canopy bulk density, and maintaining large fire-resistant
trees (Agee and Skinner 2005). The first two objectives
are the most critical to reduce surface fire-line intensity,
decrease the risk of crown fire ignition and spread, and
increase fire suppression effectiveness. The third objective
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reduces the potential for active crown fire spread, whereas
the final objective increases tree survivability when burned.

Designing fuel treatments requires land managers iden-
tify and describe specific forest structural targets, and then
develop prescriptions that accomplish the goals in a timely
and economically viable manner. Posttreatment structural
targets are quantified using standard forestry metrics such
as surface fuel loads, residual tree basal area, tree density,
crown spacing, canopy base height, canopy cover, and
species composition. Strict implementation of fire hazard
reduction principles commonly results in a silvicultural pre-
scription that targets the removal of small to mid-size trees,
followed by a reduction of the surface fuels by broadcast or
pile burning. However, it is important to recognize that in
many cases the reduction of surface fuels through prescribed
fire can be postponed or never completed resulting in either
no change or increased surface fuel loads for a period of time
(Stephens et al. 2009). These prescriptions are commonly
developed using the outputs of nonspatial fire behavior
models that are converted to space-based thinning prescrip-
tions, resulting in a residual homogenous forest with evenly
spaced trees of relatively similar sizes (figure 1; e.g., Johnson
2008, Powell 2010, Kennedy and Johnson 2014). Although
this is typically the desired outcome from the standpoint of
fire hazard reduction, it may come at the expense of decreas-
ing structural heterogeneity and habitat suitability for spe-
cies that rely on multilayered forest conditions such as the
northern flying squirrel (Glaucomys sabrinus; Smith 2007),
the California spotted owl (Strix occidentalis occidentalis;
Stephens et al. 2014), the Douglas squirrel (Tamiasciurus
douglasii; Buchanan et al. 1990), and other small forest
mammals (Roberts et al. 2015).

Although treatment design and assessment often occur at
the stand scale, the size of contemporary wildfires in west-
ern US forests highlights the clear need for planning that
extends well beyond individual forest stands to landscapes
(Collins et al. 2010, Hessburg et al. 2015). Broader scale
planning is needed as the spatial context of a treatment can
affect both its stand-scale effectiveness as well as its ability
to modify potential fire behavior beyond the treated area.
Several recent studies have indicated that strategically locat-
ing treatment within a small fraction of the landscape (e.g.,
18%-20%) can significantly limit landscape fire spread and
severity (Finney 2001, Calkin et al. 2011, Collins et al. 2011,
Ex et al. 2019, Tubbesing et al. 2019). However, the magni-
tude and reliability of landscape scale fuel treatment effects
remains somewhat unclear because of a lack of empirical
evidence and untested modeling tools. Furthermore, there
are several constraints that may limit the total treated area
and the location of treatments within a landscape, including
limited budgets, road access, proximity to the WUI, slope
restrictions, and administrative boundaries (North et al.
2015a).

Within the areas available for treatment, priority areas
are often identified on the basis of a number of factors,
including their fuel hazard, the expected fire behavior and
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fire severity, or the risk they pose to social values including
homes and infrastructure (Miller and Ager 2013, Dunn et al.
2017). Factors such as site productivity, surrounding fuel
conditions, and the topographic position may all interact to
affect a stand’s hazard level and perceived need for treatment
as they influence the amount of biomass a site can sustain,
the rate at which this biomass will accumulate, as well as
the fire environment if a wildfire were to enter the stand.
In addition, priority areas may be identified on the basis of
wildfire suppression considerations, including placement on
ridge tops and near roads to serve as anchor points and to
facilitate suppression or burnout operations (Graham et al.
2009, Dunn et al. 2017). Such prioritization schemes may
result in treatment locations that either conflict or align with
other objectives such as restoration (Ager et al. 2013).

In addition to landscape scale considerations, the tem-
poral context within which fuel reduction treatments are
planned plays a key role in whether they may achieve
their objectives when exposed to a wildfire. Fuel reduction
treatments have a life span or duration during which their
impacts on fire behavior can be anticipated to be effective;
this life span varies with site productivity, nature of the
treatment, and other factors (Stephens et al. 2012, Jain et al.
2012, Low et al. 2021). In many cases, fuel treatments may
not intersect with a fire during this life span (Barnett et al.
2016); if treatments are considered as a single entry (with
no subsequent treatments), such cases would represent a
potential waste of resources. However, viewed in the longer
term, fuel treatments can reduce costs or increase efficiency
of subsequent treatment activities. In particular, mechani-
cal treatments can be used to create lower hazard stands
that can then be more easily maintained through periodic
prescribed burning or managed wildfire (North et al. 2012);
without such maintenance, subsequent treatments may be
more expensive and less effective.

Forest restoration

Forest restoration is defined as assisting the recovery of
degraded forest ecosystems by “reestablishing the composi-
tion, structure, pattern, and ecological processes necessary
to facilitate terrestrial and aquatic ecosystems sustainability,
resilience, and health under current and future conditions”
(USDA Forest Service 2012). This broad definition allows
for considerable overlap between forest restoration and fuel
treatments, however, there are also some important distinc-
tions. Forest restoration projects generally take a much
broader approach by considering the need for resilience to
a wider range of disturbance processes and stressors (e.g.,
drought and insect-induced mortality), and by incorporat-
ing variability in both stand structure and fuels (Franklin
et al. 2013, Reynolds et al. 2013, Collins and Skinner 2014,
Addington et al. 2018, Falk et al. 2019). For example, in
a review of randomly selected US Forest Service restora-
tion projects that were implemented between 2012 and
2016, all projects conducted in western US frequent-fire
forests included fuels reduction as an objective, but over
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in frequent-fire forest types in the western United States.

Table 1. Objectives noted in the environmental analysis documents for 25 projects implemented by the US Forest Service

Objective Number of projects Percentage of projects
Reduce fuels 25 100
Improve forest health/Increase resilience 21 84
Improve wildlife habitat 20 80
Alter species composition?/Protect tree species of interest 20 80
Increase structural diversity 17 68
Improve watershed health (includes streams and meadows) 16 64
Improve recreation or public safety (includes hazard tree removal) 15 60
Maintain roads (includes road removal) 13 52
Manage plantations 12 48
Improve economic health of rural communities (includes timber production) 12 48
Increase landscape vegetation diversity 12 48
Reforest after disturbance 10 40
Reintroduce fire 7 28
Includes fire (pile or prescribed) 20 80
Postwildfire 4 16

that are covered under the proposed restoration categorical exclusion.

Note: The projects were selected on the basis of location and forest type from a database of 68 projects across the entire United States that
were implemented between 2012 and 2016 and randomly selected for review as part of the recently proposed restoration categorical exclusion
(www.fs.fed.us/emc/nepa/revisions/includes/docs/AppendicesRestoration.pdf). All of the projects are entirely or partially composed of actions

aShifting species composition to favor more fire-resistant species is also often incorporated into treatments designed to reduce crown fire
potential (Agee and Skinner 2005). We count fuels reduction and shifting species composition separately in the table, because restoration may
target these goals for reasons other than reducing potential fire severity.

three-quarters of the projects also targeted forest health
or resilience, wildlife habitat, or tree species composition
(table 1). Although the diversity of stated objectives in table
1 demonstrates that restoration projects tend to be designed
with a more holistic approach that incorporates multiple ele-
ments of ecosystem function, how silvicultural prescriptions
are modified to meet these objectives is unclear; additional
monitoring during project implementation could help to
better distinguish restoration from fuel reduction outcomes.

The conceptual underpinning behind forest restoration
in western US dry conifer forests is that the forest structure
and composition that developed over many centuries under
an active disturbance regime are thought to be the most
resilient to a range of stressors, including fire, insects and
disease, and drought (Knapp et al. 2017, Hessburg et al.
2019). Therefore, the success of forest restoration treat-
ments at meeting project goals and objectives are generally
evaluated by comparing forest structural attributes (e.g., tree
size class distributions, tree density, basal area) and spe-
cies composition metrics (e.g., the ratio of shade-tolerant
to shade-intolerant species) with historical forest condi-
tions, as well as potential fire behavior and effects. In some
cases, variability in spatial pattern (Lefevre et al. 2020) and
potential fire behavior and effects are also assessed to evalu-
ate the influence that fine-scale structural heterogeneity
created by forest restoration treatments will have on future

https://academic.oup.com/bioscience

tire behavior (Parsons et al. 2017, Ziegler et al. 2017, Ritter
et al. 2020). Evaluating success in achieving landscape-level
restoration is more difficult because many goals are tied to
longer-term responses such as benefiting wildlife popula-
tions and resistance to drought, or the ability to adapt to the
changing climate, requiring ongoing monitoring (Spies et al.
2017, Liang et al. 2018).

Although historical information can be invaluable for
guiding decisions related to forest restoration, it is also
limited in availability, scale, and relevance under current
and future climatic conditions (Millar et al. 2007, Stephens
et al. 2010). Another limitation in historical reconstruc-
tions and data sets is that they rarely quantify variation in
historical conditions at a landscape scale (but see Hessburg
etal. 1999, Collins et al. 2015, Merschel et al. 2018, Stephens
et al. 2018b). The use of data from contemporary reference
sites with restored fire regimes may be more appropriate
for developing restoration goals because these sites have
been influenced by the recent climate (Huffman et al. 2020).
However, these areas are also limited in geographic extent
and may have legacy effects arising from several decades
of fire exclusion prior to the reintroduction of fire (Collins
and Stephens 2007, Lydersen and North 2012, Larson et al.
2013, Jeronimo et al. 2019). More challenging than restoring
historical structure and composition is to restore the suite
of ecological processes needed for ecosystems to sustain
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Box 1. The Hartless Ridge project.

The Hartless Ridge project, on the Eldorado National Forest in the central Sierra Nevada of California, provides one example of a forest
restoration project that has exhibited enhanced resilience in the face of multiple disturbance events. This project was designed to reduce
the intensity and behavior of future wildfires, while also creating forest structure and species composition patterns that generally aligned
with pre-Euro-American colonization conditions by reducing tree density and shifting the composition to favor pines and oaks. A require-
ment to retain 50% canopy cover hindered the ability of the treatments to closely mimic estimates of variable historical forest structure,
resulting in relatively similar posttreatment conditions across units (Dana Walsh, US Forest Service, Placerville, California, personal
communication, 17 January 2020). Although a range of target basal areas and stem densities were desired, this project was designed in
2005 before local quantitative information on historical range of variability (HRV) was available. Over 5 years (2009-2013), 375 ha of dry
mixed-conifer forest was mechanically thinned and then followed with a combination of piling and burning of surface fuels, mastication
of live fuels, and broadcast burning (example 11.4 ha unit shown in figure 3). Less than 5 years after treatment completion, the project area
was affected by both the 2014 King Fire and the intense multiyear drought conditions that occurred from 2012-2016.

Despite the restrictions on marking guidelines, this treatment did result in a more resilient stand structure that withstood both stress-
ors, as is evident by the remaining mature trees in the treated area. The heterogeneity introduced by the initial treatment and subse-
quent disturbance-related mortality resulted in a forest structure that more closely resembles the open, heterogeneous stand conditions
found in pre-Euro-American forests (Dana Walsh, US Forest Service, Placerville, California, personal communication, 13 January
2020). The addition of fire was therefore complementary and additive to the initial restoration efforts. However, the 11.4 ha treated
unit is also embedded within an untreated forest that burned at high severity (figure 3b; additional units of the Hartless project, not
shown, were disjunct from this one but were similarly dispersed across the landscape). Although this unit now constitutes a refugium
for live trees and seed for forest regeneration, and the stand-scale restoration work made it more resilient to the wildfire and drought,
this example also highlights the need for contiguous restoration projects at much larger scales to promote resilience to increasingly
common landscape-scale disturbances occurring across the western United States (North et al. 2015b).

Figure 3. Example treatment unit (11.4 ha, orange outline) from the Hartless Ridge project, Eldorado National Forest,
California (National Agriculture Imagery Program imagery). Pretreatmment conditions (a) were characterized by dense,
homogeneous forests that were determined to be at a high risk of loss from high-intensity wildfire and competition induced
tree mortality. The restoration treatments implemented for this unit between 2010 and 2011, reduced surface and ladder
fuels, lowered tree density, and increased the relative proportion of shade-intolerant species (b). Restoration treatments
decreased fire severity during the 2014 King Fire (c), allowing for the maintenance of forest cover within portions of the
landscape that experienced otherwise severe fire effects.
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themselves over time (Seidl et al. 2016). For coniferous for-
ests that have been affected by fire exclusion, restoring fire as
a process is a key component of forest restoration (Hessburg
et al. 2015).

One of the primary goals of forest restoration is to restore
ecosystem resilience (USDA Forest Service 2012), typically
defined as a system’s ability to absorb disturbance and main-
tain the same basic ecosystem identity and function (Holling
1973). Treatments that manipulate forest structure and com-
position, and incorporate natural disturbance processes such
as fire, may move the system closer to the desired restoration
endpoint (box 1). Managing for resilience often uses the
concept of the historical range of variation (HRV), recogniz-
ing that ecosystems are not static over time or space but vary
in response to disturbance processes and microsite condi-
tions at different scales (Walker et al. 2004, Keane et al. 2009,
Safford and Stevens 2017). Amid concerns that forests will
be unable to maintain ecosystem function under projected
future climate conditions, there is growing interest in explor-
ing the R in HRV. In other words, using our understanding
of the range of historical conditions to develop targets that
will help forests persist or transition into a state in which
forest structure and composition align with future climate
and disturbance regimes, thereby avoiding undesired states
(Rissman et al. 2018).

Targeting a range of conditions allows forest restoration
prescriptions to vary at both the stand and landscape scale.
At the stand scale, variation can be linked to fine-scale site
conditions such as topographic setting and soils (North
et al. 2009, Hessburg et al. 2015, Addington et al. 2018).
In addition, restoration plans can introduce variability at
the tree-neighborhood scale by producing a structure that
contains individual trees, varying sizes of tree clumps, and
interspersed forest openings (ICO for individual, clumps,
and openings; figure 4; Larson and Churchill 2012, Churchill
et al. 2013). This approach can be used to increase both
vertical and horizontal complexity within a stand. Greater
within-stand variability has been demonstrated to pro-
mote tree survival and increase forest resilience to wildfire
(Koontz et al. 2020).

Although most forest restoration projects have been
designed and implemented at the stand scale, there is grow-
ing interest in conducting restoration planning at the land-
scape scale (Hessburg et al. 2015, Schultz et al. 2012). This
has spurred development of tools that can evaluate tradeoffs
of different management scenarios and optimize landscape
restoration strategies to meet different objectives (e.g.,
Vogler et al. 2015, Spies et al. 2017). How to plan treatments
that promote resilience outside the footprint of the treated
area remains a topic in need of research (Lydersen et al.
2017). The concept of HRV can also be applied to treatments
at this scale. At the landscape scale, variation in restoration
targets between sites (among stands) can allow for broad
differences in productivity and forest type (Stephens et al.
2018b) and account for societal needs and values (Duncan
et al. 2010, Seidl et al. 2016). For example, managing for
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variability at the landscape scale can allow for a different
forest structure in climate refugia such as cold air drainages
that historically had less frequent, lower-severity fire that
resulted in unique forest structure and composition (Wilkin
et al. 2016).

Restoration and fuels reduction divergent

A common goal of forest restoration is to reintroduce spatial
variability into both stand structure and fuels (North 2012,
Franklin et al. 2013, Reynolds et al. 2013, Collins and Skinner
2014, Addington et al. 2018). Restoration treatments in fre-
quent-fire forests commonly result in a range of tree group
sizes, with variable proportions of large tree groups (more
than 10 trees), moderate tree groups (5-9 trees), small tree
groups (2-4 trees), and individual trees (i.e., ICO; figure 4;
Churchill et al. 2013). These groups are interspersed within
small (0.1 ha) to several hectares sized treeless areas. In
addition, restoration areas may also maintain a component
of shade-tolerant species, such as Douglas-fir (Pseudotsuga
menziesii), white fir (Abies concolor), and grand fir (Abies
grandis), across a range of size classes. In contrast, fuel treat-
ments commonly focus on the reduction of potential fire
behavior by manipulating a few key elements: fuel amount,
arrangement, and continuity, as well as retaining large fire-
resistant trees (table 2; Agee and Skinner 2005).

Although both restoration and fuel treatment activi-
ties often have overlapping objectives (table 1), restoration
projects commonly define desired outcomes using concepts
of resilience as well as resistance (North 2012, Reynolds
et al. 2013, Addington et al. 2018, Hessburg et al. 2019).
Restoration projects often consider a wider range of distur-
bance processes and stressors (e.g., insects, disease, invasive
species, drought, windthrow) that may affect forest struc-
tural and fuel conditions (table 2). Restoration projects often
target the removal of larger diameter shade-tolerant species
(Abies spp.) to free up space for shade-intolerant species
such as pines and oaks. In addition, trees across all diameter
size classes are removed to promote an uneven-age forest
structure, which was common in historical frequent-fire for-
ests (Allen et al. 2002, Reynolds et al. 2013, Churchill et al.
2017, Hagmann et al. 2017, Battaglia et al. 2018, Jeronimo
etal. 2019) and is thought to increase resilience (figure 3). In
contrast, fuel reduction activities typically focus tree removal
on smaller diameter ladder fuels to increase stand resistance
to fire, but this homogenization of forest structure may
increase susceptibility to other disturbances, such as insect
outbreaks that target a narrow range of tree sizes or species
(Fettig et al. 2007, DeRose and Long 2014).

Because fires were an important ecological process that
shaped western United States dry forests, reintroduction
of fire, either through natural ignition or prescribed fire, is
paramount to restoration treatments. Restoration treatments
seek to restore structural and fuel conditions in which fires
can burn at a range of severities allowing this process to con-
tinue to maintain and create spatial heterogeneity. Variability
in stand structure and fuels can result in fine-scale variation
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Figure 4. Aerial photograph (a), LIDAR canopy surface image (b), and panoramic photos (c, d) of a treated unit in the
Okanogan-Wenatchee National Forest in central Washington, showing design elements of a restoration and fuels reduction
prescription. The unit was treated with commercial thinning and prescribed fire. A more spatially variable restoration
approach was used in the north half of the unit (no.1 in panel a, photo c), whereas a less variable prescription with a fuels
reduction focus was used in the southern half (no.2 in panel a, photo d), which is adjacent to a highway. In photos c and

d, note the separation between tree crowns and the base of the crown and the ground, as well as the recovery of understory
plant communities. Photographs: Derek Churchill.
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Table 2. Characteristics of fuel reduction and forest restoration treatments.

Contextual considerations

Intention Temporal

Spatial Heterogeneity

Fuel reduction Reduce risk of large stand-

replacing fire the focus

Forest restoration Restore stand structure and
composition to more closely
resemble historical range
of variation and facilitate
reintroduction of fire

represent a regime

Shorter term: the next fire is

Longer term: next fire is
one of many that together

Focus on stand, location of
treatments typically driven by
operational or anthropogenic
concerns

Not a priority, possibly
considered a liability

View of stands within a
landscape context. Concern
for landscape composition
and variability, location of
treatments more driven by
past disturbance regimes,
topography, or ecological
considerations

Often explicit goal is

to increase or restore
heterogeneity in structure
and composition, with
understanding that this leads
to variability in fire behavior
and associated effects

in fire effects (box 2; Ritter et al. 2020), with small areas of
torching created by moderate or high-intensity fire, as well
as unburned or lightly burned areas that still maintain pre-
fire seed producing mature trees, tree saplings, understory
plants, and denser cover for wildlife habitat (Larson and
Churchill 2012, North 2014). Furthermore, restoration in
forests that historically experienced mixed-severity fires
with stand-replacing fire at a range of patch sizes (up to 100
ha) requires a mixture of species and forest stand structural
stages, including dense stands with multiple canopy strata,
early seral stands, and low density stands with a single
canopy strata (Brown et al. 1999, Hessburg et al. 2016). This
range of structural conditions would not fully meet a strict
interpretation of fuel treatment objectives.

Contrary to basic fuel reduction treatments, restoration
treatments also seek to enhance elements that are cur-
rently missing on the landscape to help maintain ecological
processes and functions. For instance, maintaining some
patches of shrubby Gambel oak (Quercus gambelii) in the
understory of ponderosa pine (Pinus ponderosa) forests is
a common objective of restoration treatments in Colorado.
However, in fuels reduction treatments, especially around
the WUI, Gambel oak is generally undesirable because of its
potential to vector fire vertically into adjacent tree crowns
(box 3; USDA Forest Service 2017). Restoration treatments
often seek to maintain moderate levels of downed coarse
wood and snags to maintain site productivity and wildlife
habitat (Graham et al. 1994, Brown et al. 2003), which in
some cases, could be reduced to lower levels by the rein-
troduction of fire. In contrast, fuel treatments often focus
on limiting the quantity of coarse woody fuels to reduce
potential fire intensity and increase firefighter effectiveness
and safety. Another common goal of forest restoration is to
create various sized openings that enhance understory plant
diversity and allow for regeneration of shade-intolerant tree
species (York et al. 2012, Underhill et al. 2014, Addington
et al. 2018). In contrast, fuel treatments often only create
small openings that stimulate some understory develop-
ment (Stevens et al. 2014) but generally only result in shade-
tolerant tree regeneration (Bigelow et al. 2011), which may
be less desirable for restoration objectives.

https://academic.oup.com/bioscience

Finally, assessing the need for fuel treatments across a
landscape may be fundamentally different than that for
forest restoration (Stevens et al. 2016, Barros et al. 2019).
One reason for this is that there is generally greater familiar-
ity with the models used to assess landscape level wildfire
hazard (e.g., FARSITE, Finney 1998; Flammap, Finney
2006) than there is for models of landscape restoration (e.g.,
Ecosystem Management Decision Support System, Reynolds
et al. 2014; Envision, Spies et al. 2017). As a result, there is
more confidence in recommendations for the specific fuel
treatment locations and landscape treatment proportions
based on the output from the more familiar fire spread and
behavior models; however, Envision includes a fire model
but the simulations require significant effort to parameterize
and apply for a particular landscape (Ager et al. 2018).

Another reason for the differential assessment of need is
that there is widespread agreement on protecting life and
property from wildfire (Toman et al. 2014, Roberts et al.
2019). This means that treatments that protect the WUI and
facilitate fire suppression are less likely to be challenged by
the interested public and more likely to be funded by land
management agencies. In contrast, the justification and
objectives for restoration treatments are often more broadly
defined (e.g., wildlife habitat, historical forest structure, rein-
troduction of fire), making it difficult to attain broad public
understanding and acceptance (Stephens et al. 2016). There
is no doctrine such as “life and property” that guides forest
restoration.

Restoration and fuels reduction convergent

Both fuel and restoration treatments have a role in contem-
porary forest management and can be considered endpoints
in a spectrum of possible treatments that vary across a land-
scape. Strict fuels reduction (i.e., decreasing surface fuels
and crown density, increasing height to the live crown, and
retaining large, fire-resistant species; Agee and Skinner 2005)
will often need to be the priority within or adjacent to the
WUI and in key strategic locations needed for fire contain-
ment. Some restoration objectives can be met within these
areas with density reduction, compositional shifts in the
remaining trees, and reduction in fuel loads, but reductions
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Box 2. Fire simulatio

Fire simulations demonstrate an increase in the mid-flame wind speed associated with treatments, with the restoration treatment producing
more variability in wind speed compared to fuel treatments (figure 5). Interestingly, surface fire rate of spread increased after restoration and
fuel treatments relative to the untreated stand. This increased fire rate of spread following both treatment types is due to a combination of
higher mid-flame wind speeds and a greater proportion of grass fuels, which result from reductions to canopy cover. The restoration treat-
ment resulted in the highest overall rate of spread because of large, grass filled openings and had greater variability in fire-line intensity and
increased sinuosity of the fire line relative to the fuel treatment and untreated stands (figure 5). Differences in sinuosity in the simulation
are a reflection of heterogeneous surface fuel and mid-flame wind speeds (as well as more complex fire-atmosphere interactions because of
small groups of trees torching that create updrafts which influence local wind velocities driving fire spread). Importantly, crown consump-
tion, a proxy for crown fire activity, was far lower for both the fuel (10%) and restoration (13%) treatments relative to the pretreatment
conditions (85%). Overall, these simulations suggest that both treatment types can be effective in reducing potential crown fire behavior.
However, the retention of small trees in a restoration treatment may increase localized tree torching and mortality.
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Figure 5. Simulated mid-flame windspeed, fire behavior, and effects in (a) an untreated stand, (b) a stand that
received a fuel reduction treatment, and (c) a stand that received a restoration treatment on the Black Hills National
Forest, South Dakota. Spatially explicit simulations were conducted using the Wildland Urban Interface Fire
Dynamics Simulator (Mell et al. 2007, 2009). The instantaneous mid-flame (2-meter) wind velocity just prior to
ignition is shown in the top row. Rows 2-4 show fire location and fire-line intensity (in kilowatts [kW] per meter [m])
of the surface fire after 30 seconds, 90 seconds, and 120 seconds of spread into the stands. Filled green circles represent
the locations and crown widths for all live trees greater than 2.5 centimeters in diameter at breast height, and the
hollow black circles represent tree crowns predicted to have sustained more than 10% crown consumption prior to the
specified time step. Tree locations, height, diameter, crown width, and crown base height were based on stem-mapped
data. All simulations were conducted with a 2.5 meters per second open wind speed, dead surface fuel moisture
content of 6%, and a foliar moisture content of 100%.
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Box 3. The Upper Monument Creek landscape restoration initiative.

The Upper Monument Creek (UMC) landscape restoration initiative, on the Pike and San Isabel National Forest in the southern Colorado
Front Range, is an example of the strategic use of fuel hazard reduction and restoration treatments conducted in a compatible manner to
simultaneously protect the community, and allow for the reintroduction of fire, either through natural ignition or prescribed fire (Upper
Monument Creek Collaborative 2014). The UMC landscape is approximately 27,000 ha and includes several urban and smaller communi-
ties and supports a diversity of vegetation types that vary along an elevational gradient that generally increases as you move to the west and
north (figure 6). About 90% of the UMC landscape consists of intermixed stands of ponderosa pine, dry mixed conifer, and mesic mixed
conifer that occur throughout the middle of the elevational gradient. The rest of the UMC landscape consists of equal areas of Gambel oak
shrublands at low elevation, and lodgepole pine (Pinus contorta) forests and subalpine grasslands at the highest elevations. Land managers
used the results of landscape-scale analyses based on Low and colleagues (2010) and Calkin and colleagues (2010) to identify where fuel and
restoration treatments are ecologically and socially beneficial and cost effective. Although restoration was the primary objective within the
UMC landscape, fuel reduction treatments were prioritized within the WUT along the eastern boundary as well as in both the high-elevation
lodgepole pine forests and low elevation Gambel oak shrublands. Although the primary goal of fuel reduction treatments within the WUI
was to enhance community safety, fuel reduction treatments in lodgepole pine forests and Gambel oak shrublands were designed to reduce
the risks associated with the use of prescribed and managed wildfire in ponderosa pine and mixed-conifer forests. Ultimately the integrated
collaborative planning used to develop treatments within the UMC landscape used both fuel hazard and restoration treatments to create
forest and shrubland structures that protect the community and watershed while fostering the reintroduction of fire within the landscape.
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Figure 6. Proposed areas for mechanical treatments and prescribed fire for the Upper Monument Creek Landscape
Restoration Initiative located on the Pike and San Isabel National Forest in Colorado. Treatment areas have been color-coded
on the basis of vegetation cover type to highlight the spatial context in which fuel hazard reduction and restoration treatments
are occurring. In this project area, restoration treatments are being implemented in the mixed conifer and ponderosa pine
forest types with the explicit goal of reducing tree densities, increasing stand-scale spatial heterogeneity, and moving the
landscape distribution of forest structures toward historical conditions. In contrast, the higher-elevation lodgepole pine forests
and lower elevation Gambel oak shrublands are being treated following fuel hazard reduction principles to protect human
infrastructure and to support increased use of prescribed fire and managed wildfire throughout the landscape.
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in canopy density often result in regularly spaced, separated
crowns (figure 1) eliminating most heterogeneity and associ-
ated ecological functions. Forest managers understandably
often treat the WUI for every possible gain in reducing
wildfire severity, especially in fuel breaks or areas adjacent
to structures. In areas outside of the WUI, as well as por-
tions of the WUI that are farther away from structures, fuels
reduction can include a broader set of objectives, including
a focus on spatial patterns such as ICO that produce greater
habitat heterogeneity (figure 4). With gap creation in these
areas, treatments will still reduce fire intensity under most
weather conditions relative to an untreated forest (Ziegler
et al. 2017).

Between these endpoints, land managers can vary treat-
ments depending on landscape context and local knowledge.
Although the need for large-scale coordinated treatments is
widely accepted, it is often difficult because of concerns over
smoke impacts on human communities, individual sensitive
species, and agency cost and capacity limitations. If treated
areas continue to be small and dispersed across a large
landscape, they are prone to being overwhelmed by wild-
fire, drought, or other stressors (box 1; Stevens et al. 2016,
Stephens et al. 2018a). With practical and cost limitations
on the use of fire (i.e., prescribed and managed wildfire),
consideration of an explicit design that couples silvicultural
treatments and their revenue streams with whole watershed
scale treatment could inform significant change in the pace
and scale of treatments (box 3).

Perhaps the key element in the convergence of fuel reduc-
tion and restoration treatments is that both types promote
the salient characteristics that frequent fire produced; vari-
ability in vegetation structure and composition across a
given landscape and inability to support large patches of
high-severity fire. These can be achieved with both fire
and mechanical treatments. Decades of fire exclusion and
suppression have homogenized many western US forests,
making them prone to high-severity wildfire and susceptible
to drought and bark beetle mortality (Stephens et al. 2018a,
Voelker et al. 2019). Ideally, both types of treatments would
be designed to facilitate the use of prescribed fire and man-
aged wildfire to restore and maintain ecological objectives
(Reinhardt et al. 2008, Stevens et al. 2014, Barros et al. 2018)
with mechanical fuel hazard reduction treatments provid-
ing anchor points for larger fire units and increased safety
around human infrastructure (box 3).

A focus on returning fire to the landscape also addresses
an often overlooked need in forest treatments: future main-
tenance. Because regrowth in productive forests quickly
reduces both fuel reduction and restoration treatment effec-
tiveness, maintenance can rapidly subsume all management
efforts and limited budgets. To leave resources available for
treating additional areas, large-scale, low-cost repeat treat-
ments could be considered once fuels become hazardous
again, which can occur within one to three decades. This
can be challenging for silvicultural treatments focused on
fuels reduction because ingrowth of ladder and surface
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fuels generally are expensive to treat unless there are nearby
biomass facilities that make this economically viable. Where
they are practicable, restoration treatments may be less
expensive to maintain using prescribed or managed wild-
fire (North et al. 2012, Tinkham et al. 2016, Valliant and
Reinhardt 2017), although these treatments still have costs
and do not provide any revenue from timber or biomass
removal. With less focus on maintenance, mechanical treat-
ment might concentrate on initial entry, where greater preci-
sion in manipulating specific structure and fuel conditions is
often desired before fire is reintroduced. Mechanical treat-
ment could also be shortly followed by fire reintroduction.
Following fire’s reduction in surface and ladder fuels, forest
structure can have a greater range of conditions that will
still favor low- to moderate-intensity surface fire, including
stand structures that support restoration targets (i.e., an ICO
pattern and diverse age classes of trees).

Fuel reduction and restoration treatments can be compat-
ible at landscape levels (box 3), but research to date has been
limited and practical applications rare. Certainly, part of the
problem is that there are very few landscapes that have been
extensively treated where both fuel reduction and ecologi-
cal restoration have been achieved, let alone maintained to
provide long-term effectiveness (however some areas of
large wildfires can provide fuels and restoration benefits). At
this scale, successful treatment includes not only fire hazard
reduction and ecological restoration but also maintenance
or enhancement of other ecosystem services such as provi-
sion of wildlife habitat, aquatic integrity, traditional tribal
uses, recreation, stable carbon storage, water production,
and long-term economic viability (Stephens et al. 2020b).
Landscape planning methods, data sources, metrics, and
tools that can help managers integrate these objectives, eval-
uate tradeoffs, and design landscape level prescriptions are
being developed, but are generally still in the early stages of
development. There are some notable modeling (McGarigal
and Cushman 2002, Mladenoff 2004, Reynolds et al. 2008,
Ager et al. 2013, Hessburg et al. 2013, Barros et al. 2019) and
planning (Thompson et al. 2016, WADNR 2017, Addington
et al. 2018, Leavell et al. 2018, Dunn et al. 2020) efforts that
are focused on meeting this goal. However, few, if any, large-
scale applications are far enough along in implementation
to be evaluated. More research is needed that directly col-
laborates with forest managers and the interested public to
facilitate large-scale treatments that meet fire risk reduction,
ecological restoration, and ecosystem service objectives.

Conclusions

Despite the recognition of the importance of heterogeneity
and ecological process in restoration prescriptions, encom-
passing natural variability into restoration planning is a chal-
lenge given the current planning process on US public land
(Stephens et al. 2016). This process often involves comparing
alternative strategies with explicit spatial and temporal man-
agement actions. Whether driven by the process itself or by
the modeling tools used, this approach almost necessarily
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forces stasis in managing forests. This stasis is reinforced by
real and perceived barriers to treatment, including resource
protection measures (e.g., wildlife protected activity centers,
wilderness, stream buffers, WUI, diverse land ownership),
operability (e.g., slopes, roads), and economic consider-
ations (Hartsough et al. 2008, Collins et al. 2010, North et al.
2015a). Although there will continue to be challenges in pro-
ducing effective landscape strategies, there is strong public
and management support for these actions (McCaffrey and
Olsen 2012).

The good news is that fuels and restoration treatments can
be designed to converge in many forests. If both fuels reduc-
tion and restoration treatments focus on leaving structures
and fuels in a condition that when burned, will produce low-
to moderate-severity fire effects with some small patches
of high-severity fire, desired forest and fire conditions will
become self-reinforcing (Koontz et al. 2020). At that point,
fuels reduction and restoration treatments become conver-
gent in creating and maintaining a resilient landscape. The
possible key to aligning forest fuels and restoration objec-
tives is integrated planning that permits treatment design
flexibility in different locations and a longer-term focus on
fire reintroduction for maintenance of treatments. With
changing climate conditions, long-term maintenance will
probably need to be focused less on static structural targets
and more on keeping tree density low enough (i.e., the lower
range of HRV) for forest conditions to adapt to emerging
disturbance patterns and novel ecological processes.
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