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ABSTRACT: Climate change is impacting wildfires in the contiguous United States; thus, projections of fire danger under
climate change have the potential to inform responses to changing wildfire risks. We calculate fire indices for 13 dynamically
downscaled regional climate models, then count days exceeding relevant fire danger thresholds, and compare future changes
for mid- and late-twenty-first century relative to a historical reference period. We then compare the responses of the fire indi-
ces to highlight areas of agreement and disagreement on the sign and magnitude of future change in fire danger days. Many
regions in the domain experience increases in the number of days exceeding fire danger thresholds by the midcentury. The re-
gions which exhibit agreement across the simulation ensemble on the sign of change, and the magnitude of that change, vary
greatly between indices. The timing and frequency of fire danger days (defined as days exceeding fire danger thresholds)
throughout the year change, both in the shoulder season and during existing peaks in fire danger. By the end of the century,
most of the domain experiences statistically significant increases in the number of fire danger days. Complex interactions be-
tween input variables, and the sensitivities to inputs, affect the response of fire indices under climate change. The projected in-
crease in fire weather risk could place greater demands upon fire management resources, pose elevated hazards for
populations exposed to fire, and potentially disrupt landscapes and infrastructure more frequently.

SIGNIFICANCE STATEMENT: The purpose of this study is to examine future changes in multiple fire indices, cal-
culated for an ensemble of regional climate models, under a high emission scenario for the contiguous United States.
We compare the fire indices to one another and examine their responses to climate change to better understand how
climate change may impact weather conducive to wildfires. We find that the fire indices do not respond to climate
change uniformly and that in the midcentury, some regions disagree on the sign of change, while other regions agree on
the sign of change and project increases in fire conducive weather. More frequent fire conducive weather poses chal-
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lenges for fire management and human safety.
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1. Introduction

Future projections of fire potential are needed to anticipate
future impacts and inform long-term management practices.
Wildfires can be destructive and expensive to manage, particu-
larly near populated areas, where fire suppression is motivated
by the protection of life and property. In addition, wildfires can
disrupt infrastructure such as roads, utilities, and water supply,
and smoke from wildfires negatively affects human health
(Black et al. 2017). Existing research establishes the key role of
climate and weather in the intensity and spread of wildfires and
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confirms that climate change is contributing to changes in wild-
fire across the United States (e.g., Goss et al. 2020; Williams et al.
2019; Abatzoglou and Williams 2016; Westerling 2016). Climate
change is likely to alter the intensity, season length, and seasonal-
ity of fire, which will affect fire management practices, increase
competition for regional fire suppression resources, and increase
the cost and complexity of risk management and the protection
of infrastructure and human health (Jolly et al. 2015; Cullen et al.
2021; Podschwit and Cullen 2020; Cullen et al. 2024).

Wildfires require an ignition source, fuels, and conducive
weather conditions to start and spread. Ignitions can be diffi-
cult to quantify or predict, but fuel conditions (e.g., dryness)
and fire-conducive weather are informed by meteorological
conditions. These fuel and fire weather characteristics are often
quantified by fire indices that synthesize meteorological varia-
bles into a quantification of fire danger potential or fire behavior
potential. Indices of fuel moisture and fire characteristics that
incorporate temperature, precipitation, and other atmospheric
variables can serve as better indicators of macroscale annual
area burned than temperature or precipitation alone (Abatzoglou
and Kolden 2013). Fire indices have been applied to understand

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding
reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 11/29/25 09:09 AM UTC


https://orcid.org/0000-0001-5954-9311
https://doi.org/10.1175/JAMC-D-24-0230.s1
https://doi.org/10.1175/JAMC-D-24-0230.s1
mailto:kessenic@ucar.edu
http://www.ametsoc.org/PUBSReuseLicenses

1852

macroscale changes in fire potential and potential fire behavior
(e.g., Baijnath-Rodino et al. 2023; Richardson et al. 2022; Bedia
et al. 2015) and are routinely applied to decision-making in fire
management (Bradshaw et al. 1983).

Multiple fire indices have been developed to inform fire
management systems in different regions of North America
and focus on different aspects of fire danger. Fire indices are
intended to assist fire management in allocating resources,
which is driven by the intensity, timing, and duration of wild-
land fire. The Canadian Forest Fire Danger Rating System
was released in 1970 with fuel moisture and fire behavior indica-
tors for fuel and fire conditions within Canada (Van Wagner
1987). The U.S. National Fire Danger Rating System (NFDRS)
was developed to be a scientific- and engineering-based system
that would be applicable across the contiguous United States
and adaptable to the needs of local management. Its compo-
nents include measures of fuel moisture, fire intensity, and fire
spread (Schlobohm and Brain 2002). Developed separately, but
incorporated into and used alongside NFDRS, are the Keetch—
Byram drought index (Keetch and Byram 1968) and modified
Fosberg fire weather index (Goodrick 2002). These two indices
were developed in the southeast United States, which has a dif-
ferent fire regime than the western United States. In 2019, the
severe fire danger index was released, intended for decision
support for practitioners using NFDRS indices. It correlates to
fire activity and firefighter fatalities (Jolly et al. 2019). These in-
dices have inherently different time scales and vary in sensitivity
to meteorological inputs, reflecting heterogeneity in their devel-
opment and intended uses.

Given the diversity of fire indices used operationally and in
previous studies (Littell et al. 2016), we calculated projections of
a suite of fire indices for a set of dynamically downscaled future
climate projections, or regional climate model (RCM) simula-
tions, that cover the contiguous United States (CONUS). The
RCM ensemble comes from the North American component of
the Coordinated Regional Climate Downscaling Experiment
(NA-CORDEX) archive focused on representative concentra-
tion pathway 8.5 (RCP8.5) (Mearns et al. 2017; Bukovsky and
Mearns 2020). RCP8.5 is characterized by high levels of green-
house gas emissions and explores a plausible high risk scenario
(Terando et al. 2020). While many other RCM-based products
are available and widely used, as well as statistically downscaled
datasets (e.g., Abatzoglou and Brown 2012), we focus on
NA-CORDEX due to its physically based approach and its
comparatively robust sampling of structural uncertainties
across models. This feature of NA-CORDEX allows us to
explore the uncertainty in future changes in fire indices and
highlight regions of model agreement. By examining fire in-
dices calculated from an RCM ensemble, we can examine
fire-management-relevant metrics of fire season length, tim-
ing, and extremes under a high emission climate change sce-
nario. Seasonality is distinct from season length, as seasonality
refers to the expected timing of fire throughout the year,
whereas season length does not indicate timing. Although igni-
tions are a vital component of wildfires, modeling wildfire igni-
tions is outside the scope of this analysis.

Previous research that examined future changes in fire weather
primarily focused on examining fire indices individually (e.g.,
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Goss et al. 2020; Flannigan et al. 2013; Wotton and Flannigan
1993; Jain et al. 2017; Tang et al. 2015; Lu et al. 2011; Fox-Hughes
et al. 2014), while a few studies included several indices (e.g.,
Abatzoglou and Williams 2016; Jolly et al. 2015; Yu et al. 2023;
Preisler et al. 2008). However, individual indices are not equally
applicable across regions; they exhibit different sensitivities to
climate change (Flannigan et al. 2016); they were developed to
capture different attributes of fire.

In this paper, we calculate projections of future fire weather,
as described by a variety of fire indices, for a 13-member ensem-
ble of regional simulations from NA-CORDEX. This work pro-
vides an in-depth analysis of fire weather danger across a large
and variable domain that includes different fire regimes. Com-
paring projections of various fire weather indices is an underex-
plored topic. This analysis expands our understanding of future
fire danger under climate change, which is critical for long-term
fire management.

2. Datasets, models, and methods
a. gridMET

The gridMET dataset is a gridded surface meteorological data-
set that has been validated against multiple networks of weather
station data to ensure accuracy to observations. The dataset has a
resolution of 1/24°, so to better match our simulation data, we
regrid gridMET to a 1/4° grid using local area averaging. The
gridMET dataset provides maximum and minimum temperature,
precipitation accumulation, downward surface shortwave radia-
tion, wind velocity, maximum and minimum relative humidity,
and specific humidity on a daily time step (Abatzoglou 2013).

b. Regional climate models

Our climate model data are from 13 regional climate model
simulations from NA-CORDEX (Mearns et al. 2017; Bukovsky
and Mearns 2020). Ten simulations have a grid spacing of 25 km,
and three simulations have a grid spacing of 50 km, which have
been regridded using local area averaging to a 1/4° or 14° com-
mon grid, respectively. For ensemble comparison, the 1/4° simula-
tions were regridded to match the 1/4° simulations using bilinear
interpolation. Global climate model (GCM) simulations have fi-
nite spatial resolution, especially in areas of complex topography.
To better capture spatial and temporal meteorological features
important to wildfire, we used RCM simulations that downscale
GCMs to higher resolution. These simulations were produced by
6 RCMs downscaling 6 GCMs from the Coupled Model Inter-
comparison Project phase 5 (CMIPS) in various combinations
listed in Table 1. The RCM simulations run from 1950 to 2099,
using the RCP8.5 (Moss et al. 2008) for future periods. RCP8.5
is characterized by high levels of greenhouse gas emissions and is
a high warming scenario. This scenario is not assigned a like-
lihood but rather represents a plausible high-risk scenario
(Terando et al. 2020).

All of the analyses shown use a reference period of 31 years,
spanning from 1980 to 2010. For future analysis, we chose two
periods: The midcentury (2030-60) period was chosen to be
actionable for decision-makers in fire management (Cullen
et al. 2023), and the end-of-the-century (2069-99) period was
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TABLE 1. List of simulations used to calculate fire indices. A
single ensemble member was used for each RCM-GCM pair,
and all outputs were interpolated to a common 1/4° grid.

GCM RCM Grid spacing (°)
GFDL-ESM2M RegCM4 Ly
GFDL-ESM2M WRF A
HadGEM2-ES RegCM4 s
HadGEM2-ES WRF A
MPI-ESM-LR RegCM4 1a
MPI-ESM-LR WRF A
MPI-ESM-LR CRCMS5-UQAM Uy
MPI-ESM-MR CRCMS5-UQAM A
CanESM2 CRCMS5-UQAM s
CanESM2 CanRCM4 A
CanESM2 RCA4 1
EC-EARTH RCA4 15
EC-EARTH HIRHAMS 1A

chosen to examine trends and observe the impacts of extreme
climate change. During the midcentury period, the high-end
and midrange RCP scenarios (e.g., RCP4.5 and RCP8.5) have
not yet diverged significantly, and uncertainty is dominated by
internal variability and structural uncertainty stemming from
an incomplete knowledge of complex systems, resulting in
models having different responses to similar climate forcings.
Applying an ensemble of simulations facilitates exploration
of the range of potential outcomes (Hawkins and Sutton
2009; Terando et al. 2020). The GCMs used in the NA-COR-
DEX simulation ensemble span the equilibrium climate sensitiv-
ity of CMIP5 (Bukovsky and Mearns 2020), which makes the
ensemble suitable for informing decision-making in the midcen-
tury period. At the end of the century, the scenarios diverge sig-
nificantly, and uncertainty is dominated by choice of scenario.
As NA-CORDEX does not have a comparable simulation en-
semble in number of simulations or spread in GCM climate sen-
sitivity for RCP4.5, we constrained our focus to RCP8.5
experiments, which limits the resultant outputs to inform deci-
sion-makers about scenario uncertainties (Terando et al. 2020).

GCM and RCM simulations contain systematic biases that
can affect the results of fire index calculations. To address the
bias in the RCM simulations, we used data that were bias cor-
rected over CONUS against the gridMET observation-based
dataset (Abatzoglou 2013) using the N-dimensional multivari-
ate bias correction (mBCN) algorithm method described in
Cannon (2018) (McGinnis and Mearns 2021). The reference
period used in the bias-correction process of the simulations is
1980-2010, which aligns with the reference period used in our
analysis, ensuring that the reference period best reflects real-
world conditions.

c. Fire indices

Eight indices related to fire weather are calculated and
compared. They are listed in Table 2. The daily variables
used in the calculation of fire indices include precipitation (pr),
minimum and maximum near-surface air temperature and
relative humidity (tmin and tmax, and rhmin and rhmax,
respectively), near-surface wind speed (sfcWind), near-surface

relative humidity (hurs), near-surface specific humidity (huss),
and surface downwelling shortwave radiation (rsds). The inputs
to each index are summarized in Fig. 1. The code used to cal-
culate the fire indices is available to the public (Kessenich
and McGinnis 2024), and the input data are available in the
NA-CORDEX archive (Mearns et al. 2017).

A major factor in fire ignition and spread is the local topog-
raphy, soil, and fuels, which vary on a spatial scale far smaller
than a 25-km grid. Fuel is only a variable input into energy re-
lease component (ERC) and burning index (BI) [which trans-
fers into severe fire danger index (SFDI)], while the rest
either address a certain fuel diameter (FM100 and FM1000)
or have a single fuel scenario [Canadian Forest Fire Weather
Index (CFWI), Keetch-Byram drought index (KBDI), modi-
fied Fosberg fire weather index (mFFWI)]. KBDI assumes
that 8 in. of moisture can be held in the soil and surface duff
(i.e., plant litter) beyond the wilting point, and the wilting
point is based on mean annual rainfall (Keetch and Byram
1968). CFWI models a mature pine stand with several static
levels of litter and duff fuels (Stocks et al. 1989). Multiple fuel
models exist for the NFDRS indices for different vegetation
types and are inputs for ERC, BI, and (indirectly) SFDI, so
we used two different fuel modeling approaches to examine
how fuel modeling affects the results. The first approach mod-
els a dense conifer stand with heavy fuel buildup, should pro-
duce the most dramatic fire behavior, and is known as fuel
model G in the NFDRS system. The second fuel modeling ap-
proach, vegetation mosaic (VM), applies a variety of NFDRS
fuel models approximating the spatial distribution of fuels
across CONUS. While fuel model G has been used exten-
sively in operations, the VM fuel modeling approach is more
representative of fuel effects across the domain, which is why
both are included in this analysis. The VM approach includes
less dramatic fire behavior in response to fuel load and ex-
cludes any areas not subject to wildland fire, such as domi-
nantly agricultural areas. Fuels vary greatly within each 1/4°
or 1/2° model grid cell, so the largest area fraction method
was applied to select a single fuel model for each grid cell
from a finer-scale map provided by the Wildland Fire Assess-
ment Program (Burgan et al. 1998). These two fuel modeling
approaches are labeled in the results as either ERC/BI/SFDI
G or ERC/BI/SFDI VM. In both cases, it is assumed that fuel
type is static across time, matching the methodology for land-
use/land-cover type used in the climate simulations. The fuel
modeling scenarios used to calculate ERC and BI are propa-
gated through to SFDI, as ERC and BI are input into SFDI.
As fuels vary on a fine scale, so must fuel treatment, which
can aid in managing the risk of fire impact (Prichard et al.
2021). Due to the scale of the projections, fuel treatment is
not addressed in this paper, and it is assumed that fuel is pre-
sent according to the fuel models used in the fire indices.

The fire index calculations required some modification for
use with the existing RCM data. Specifically, 1200 local stan-
dard time (LST) measurements were substituted with tmax,
sfcWind, and rhmin in CFWI, and tmax, tmin, rhmax, and
rhmin were substituted for 1300 LST observations in ERC
and BI. These substitutions may affect the absolute values of
the fire indices such that they are not directly comparable to
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TABLE 2. Summary of fire indices.
Fire
Fire index index What the fire Input
name acronym index indicates variables Notes Citations
Keetch-Byram KBDI  Cumulative moisture tmax, prec Bounded from 0 to 800 where 0 Keetch and Byram
drought deficiency in soil indicates saturated soil and 800 (1968), Alexander
index represents severe drought (1990)
Modified mFFWI  Potential effect of tmax, hurs, Open-ended scale Goodrick (2002)
Fosberg fire weather conditions  sfcWind, KBDI
weather index on wildland fire
Canadian Forest CFWI  Potential frontal fire tmax, rhmin, prec, From the Canadian Forest Fire Weather Stocks et al. (1989)
Fire Weather intensity sfcWind System. It has an open-ended scale
Index
100-h fuel FM100 Moisture content of tmax, tmin, prec, From the U.S. NFDRS. Higher values Schlobohm and
moisture dead fuels that are ~ rhmin, rhmax indicate more moisture, and low values Brain (2002)
1-3 in. in diameter indicate less moisture, so lower fuel
moisture values are associated with
higher fire danger, which is opposite to
the other fire indices here
1000-h fuel FM1000 Moisture content in  tmax, tmin, prec, From the NFDRS. Higher values
moisture dead fuels that are rhmin, rhmax indicate more moisture, and low
3-8 in. in diameter values indicate less moisture, so lower
fuel moisture values are associated
with higher fire danger, which is
opposite to the other fire indices here
Energy release ERC Available energy per tmax, tmin, prec, From the NFDRS. Open ended and
component unit area within the ~ rhmin, rhmax, designed to represent the worst-case
flaming front at the huss, rsds, scenario. Two fuel modeling
head of a fire FM100, FM1000  approaches are applied (G and VM)
Burning index BI Contribution of fire tmax, tmin, prec, From the NFDRS. Open ended and
behavior to the rhmin, rhmax, designed to represent the worst-case
effort of containing huss, rsds, scenario. Two fuel modeling
a fire by combining sfcWind, FM100,  approaches are applied (G and VM)
intensity and spread ~ FM1000, ERC
Severe fire SFDI Normalization of fire ERC, BI Derived from the NFDRS. Five classes  Jolly et al. (2019)
danger danger across of fire danger: low (0-60), moderate
index space derived (60-80), high (80-90), very high

from BI and ERC

(90-97), and severe (97-100). Two fuel
modeling approaches are applied
(G and VM)

index values calculated using the original time-based meas-
urements (e.g., tmax may overestimate, or sfcWind may un-
derestimate, conditions at 1200 LST or 1300 LST) (Van Vliet
et al. 2024), although such substitutions are less consequential
when applied systematically across time as done here.

The indices are calculated daily and continuously for the
entire simulation period (1950-2099), regardless of season.
Some indices (e.g., CFWI) are operationally only calculated
during part of the year, but we calculate all indices year-round
and with appropriate spinup time for time-lagged variables
(e.g., drought code), to allow for changes in fire weather to oc-
cur at any time of year under future conditions.

Fire indices were developed with the expectation that local-
ized expertise would be applied when interpreting their values,
and since different indices were developed for different regions,
indices should be expected to have varied interpretations across
CONUS. From its conception, all the components of the NFDRS
system were intended to be subject to local interpretation, with

its default thresholds only recommended in areas where
more localized knowledge is unavailable or study has yet to
be performed [National Interagency Fire Center (NIFC) 2022].
Applying locally calculated percentile thresholds provides a
way to uniformly interpret the indices across space while allow-
ing for different behavior from the indices across space. Unlike
the rest of the indices used, SFDI was developed to be inter-
preted uniformly across space (Jolly et al. 2019). SFDI is built
off of percentile thresholds, which is the same as the analyses
presented here, but does not eliminate the qualification that not
all fire indices should be relied upon equally across CONUS.
However, for the sake of completeness, all the fire indices are
presented across the entire domain.

d. Methods
1) FIRE DANGER THRESHOLDS

In this paper, we look at future projections of fire danger
days by counting daily occurrences of fire index values
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FIG. 1. Flowchart showing the variable inputs into the fire indices. Meteorological variables
are in gray rectangles, and each fire index is color coded so that all edges connecting an input to
a fire index match the index. FM100 and FM1000 use the same set of inputs and thus are the
same color. Variables used as inputs have edges on the right side of the rectangle, and the fire in-
dex receives inputs on the left side of the rectangle. The fire indices are arranged in four columns
based on the dependencies of the inputs. The indices in the left-most column use only meteoro-
logical inputs, the column immediately to its right uses meteorological inputs and fire indices
that use only meteorological variables, and so on.

exceeding specific percentile thresholds. These counts are pri-
marily examined as annual sums, which are then averaged for
the reference and future time periods to examine change. The
percentile thresholds are calculated on a gridcell-by-gridcell
basis. Because the interpretation of fire index values varies by
the index and due to differences in fuels, climatology, and to-
pography, using percentiles allows us to apply a uniform inter-
pretation across space and index. Percentile thresholds are
commonly used to examine changes in fire extremes (e.g.,
Williams et al. 2019; Abatzoglou and Kolden 2013; Jain et al.
2017; Fox-Hughes et al. 2014; Bedia et al. 2014; Brown et al.
2021), mostly between the 90th and 99th percentiles.

We selected thresholds of the 80th, 90th, and 97th percen-
tile for the entire year based on default thresholds used to as-
sign adjective descriptors of fire danger in the NFDRS system
(Schlobohm and Brain 2002, NIFC 2022), the same thresholds
and descriptors used for SFDI. “High fire danger days” are
those with an index value above the 80th percentile, “very
high” are above the 90th percentile, and “severe” are above

the 97th percentile (for FM100 and FM1000, which measure
fuel moisture content, lower index values correspond to
higher fire danger, and so in this case, high/very high/severe
fire danger days are instead those with values below the 20th/
10th/3rd percentiles). Heightened fire activity correlates to
higher fire danger index values. According to the adjective rat-
ings, “high” corresponds to conditions where “fires may be-
come serious and their control difficult unless they are attacked
successfully while small,” very high corresponds to conditions
where “fires start easily . . . spread rapidly and increase quickly
in intensity,” and “extreme” corresponds to conditions where
“direct attack is rarely possible and may be dangerous except
immediately after ignition” (Schlobohm and Brain 2002).

In addition, to examine fire season length, we count the annual
number of days above the midpoint value [defined as midpoint =
(maximum fire index value + minimum fire index value)/2]
from existing methodology in Jolly et al. (2015). This methodol-
ogy can apply a similar definition of fire season across a range
of fire indices, and the midpoint was found to best capture daily
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fire activity globally (Jolly et al. 2015). The minimum and maxi-
mum values are calculated from the period of 1980-2010.

3) CALCULATION OF FIRE SEASONALITY

Additionally, we examine when high fire danger days occur
throughout the year to further explore fire seasonality and
whether the timing of fire danger changes in the future. Many
papers examine fire weather during a fixed portion of the year
(e.g., Tang et al. 2015; Lu et al. 2011; Bedia et al. 2014). Other
papers apply dynamic definitions of fire season, which are
more localized (e.g., Flannigan et al. 2013; Jain et al. 2017,
Fox-Hughes et al. 2014), or a statistical definition of fire
season applied to fire indices (e.g., Jolly et al. 2015). Across
CONUS, fire season definitions vary within wildland fire
management (Cullen et al. 2023). By applying statistical defi-
nitions, we can examine shifts in seasonality of fire potential
including periods where fire is not historically observed. Our
analysis of fire seasonality uses the 80th percentile threshold
from the annual analysis but counts biweekly exceedance of
the threshold and is spatially averaged across Geographic
Area Coordination Centers (GACCs) (NIFC 2022, p. 386).
For each RCM, days above the threshold are counted on a
gridcell basis, generating a continuous biweekly time series
for each point, all of which are then spatially averaged over
the GACC, summarized in Fig. 2. GACCs are used to coordi-
nate incident management and resource deployment, and an-
alyzing fire season by GACC can inform practitioners of
changes that would affect management practices. This analy-
sis provides additional information that is not captured in an-
nual counts, such as when in the year changes are occurring,
differing seasonal behavior between indices, and changes that
cancel out when summed.

4) MODEL EVALUATION METHOD

To assess the historical accuracy of the fire index data
derived from bias-corrected simulations, we compared the
model reference period percentile thresholds against grid-
MET. We compared the model ensemble and gridMET on a
regional basis using GACCs. Overall, the spatial standard de-
viation and average spatial thresholds of the percentiles agree
between gridMET and the simulation ensemble. Most indices
show a less than 5% discrepancy in the average threshold val-
ues, with KBDI as a notable exception with discrepancies be-
tween 10% and 30%. Scatterplots of this analysis are provided
in the supplemental material (Figs. S1-S3 in the online supple-
mental material) as well as a summary table (Table S1).

5) ENSEMBLE AVERAGING METHODOLOGY

To facilitate the creation of ensemble averages, the simula-
tions with a 1/° grid spacing were bilinearly interpolated to
the 1/4° grid spacing of the finer-resolution simulations. Addi-
tionally, these ensemble-mean results are presented with a
measure of simulation ensemble agreement. The percent of
simulations in agreement is scaled/adjusted to account for the
possibility of agreement by chance using the Kappa statistic
(Bukovsky et al. 2017). We also include the statistical signifi-
cance of the projected changes in most analyses. Statistical
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significance was calculated using a two-sided bootstrapping
test at the 0.05 significance level with a bootstrapping sample
size of 5000. Similar results were also achieved using a two-
sided ¢ test at the 0.1 significance level.

3. Results

We present projections of simulation ensemble agreement for
the fire index ensemble to examine high, very high, and severe
fire danger days for the midcentury, as well as end-of-the-century
results for high fire danger days. A similar analysis is done for
days above the midpoint threshold, to examine season length.
All thresholds values are plotted in Fig. S5. Across all four
thresholds used, the color bar range in Figs. 2-5 remains consis-
tent to facilitate comparison of projected changes. We then ex-
amine fire seasonality changes by GACC.

a. High fire danger: Annual count exceeding the
historical 80th percentile

We define high fire danger to be fire index values exceeding
the historical 80th (for FM100 and FM1000, falling below the
20th) percentile. The simulations project increases in the an-
nual count of high fire danger days across many areas of CO-
NUS by midcentury (Fig. 3), though the magnitude of change
and degree of model ensemble agreement varies by location
and fire index. Across CONUS, KBDI increases are both sig-
nificant and have high levels of agreement across the ensem-
ble which indicates increases in soil moisture deficit. KBDI
shows greater than 80% agreement that the count of high fire
danger days will increase by 1-2 months, which is a statisti-
cally significant change. Aside from KBDI, CFWI displays
the most widespread and statistically significant change across
CONUS with high ensemble agreement indicating increased
fire intensity. Areas of statistical significance indicate that the
change in annual count is outside of the range anticipated by
natural interannual variability. In comparison, mFFWI proj-
ects fewer areas of statistically significant change than KBDI
or CFWI, which suggests the synthesized potential weather ef-
fects on fire to be less certain.

The indices within and derived from the NFDRS (FM100,
FM1000, ERC, BI, and SFDI) show similar changes in spatial
patterns in the count of high fire danger days. As these indices
are dependent (Fig. 1), similar patterns emerge in all of them.
Both FM100 and FM1000, indicators of fuel moisture, show
statistically significant increases in the annual count of high
fire danger days in western Montana, southern Oregon, the
Southwest, and south-central United States. The increase in
count of low fuel moisture days carries over into the spatial
distribution of increased days of high fire intensity in ERC as
FM100 and FM1000 are inputs into ERC. However, in most
areas, ERC shows a smaller magnitude of change in the count
of high fire danger days than FM100 and FM1000, and areas
of statistically significant change are much smaller. BI uses
ERC and also shares similar spatial patterns of change and
statistical significance which indicates areas of more extreme
fire behavior and spread. SFDI is a combination of BI and
ERC, synthesizing spread and intensity into fire danger and
shows a balance of the spatial patterns in both. For BI, ERC,
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and SFDI, the VM fuel modeling approach projects more pro-
nounced and widespread areas of lower counts of high fire
danger days, suggesting that fuel availability does affect the
sign of future change. There is strong agreement across the
fire index ensemble for significant increases in the count of
high fire danger days in southern Texas. In addition, the ma-
jority of the fire index ensemble in more than half of the
model ensemble projects significant increases in the number
of high fire danger days in the Northwest.

All fire indices except for mFFWI use precipitation as a di-
rect input, and changes in precipitation patterns are reflected
in the changes in fire indices. Similar plots of significance and
change for the fire indices across the model ensemble were
made for precipitation projections (Fig. S4). Overall, areas of
increased precipitation align with areas of lower model agree-
ment or decreases in the count of high fire danger days. In
particular, seasonally relevant increases in precipitation in the
Great Basin, Florida, and northern plains align with areas of
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FIG. 3. Change in the annual average number of days above the 80th percentile threshold (below the 20th percentile for FM100 and
FM1000) from the baseline period (1980-2010) to midcentury (2030-60). Hatching indicates where the number of simulations projecting a
statistically significant change is greater than or equal to 50% of the ensemble, and the number of models agreeing on the sign of change is
greater than or equal to 70%. Color indicates that at least half the models agree on the sign of change; areas of disagreement are shaded
in gray. The intensity of the color, the color bar y axis, indicates the level of agreement in the ensemble. In the reference period, 73 days
are spent above the 80th percentile. The final number of simulations needed for a given range of ensemble agreement is as follows: 90%—

100%, 12-13; 80%-89%, 11; 70%~-79%, 10; 60%—-69%, 9; 50%-59%, 8; and less than 50%, 0-7.

lower model agreement, while in Colorado and Utah, in-
creased precipitation in spring and summer aligns with areas
of decrease in the length in fire season. The simulations and
fire indices disagree on the sign of change in count of high fire
danger days in the Rocky Mountains in midcentury, which
could also be influenced by increases in projected precipita-
tion interacting with changes in other key variables, such as
temperature. In the Northwest, an increase in annual precipi-
tation exists simultaneously with increased high fire danger
day counts, as precipitation increases are concentrated in win-
ter and spring, while high fire danger days increase during the
summer and fall.

By the end of the century, defined as 2069-99, increases in
the count of high fire danger days are larger in magnitude and
more widespread than in the midcentury period, as are levels
of agreement and statistical significance. For example, KBDI,
FM100, and CFWI display increases in the count of high fire
danger days of up to 2 months across all of CONUS (Fig. 4).

The ensemble average annual count of high fire danger days
at the mid- and end of the century can be found in Figs. S9 and
S10 which display all values across the domain, including areas
which disagree on the sign of change.

b. Very high and extreme fire danger: Annual count of
days exceeding the historical 90th and 97th percentiles

The 90th and 97th percentiles are thresholds of very high and
severe fire danger, respectively, and as such, change in the aver-
age annual count of days above these thresholds reflects change
in the most extreme conditions during fire season. The spatial
patterns of change seen in these extremes (Figs. 5 and 6) are sim-
ilar to the 80th percentile but differ spatially with regard to
where statistically significant change is found and the magnitude
of that change. For instance, the area of statistically significant
change in the Northwest expands in size as the thresholds in-
crease for all NFDRS-associated indices, suggesting fire intensity,
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FIG. 4. Change in the annual average number of days above the 80th percentile threshold (below the 20th percentile for FM100 and
FM1000) from the baseline period (1980-2010) to end of the century (2069-99). Refer to Fig. 3 for full description.

fire spread, and fuel moisture all contribute to very high fire dan-
ger. In Montana and the Idaho Panhandle, FM1000 projects that
the area of agreement and statistical significance will expand for
the 90th and 97th percentile counts as compared to the 80th per-
centile, indicating extreme decreases in fuel moisture. Areas of
statistical significance do not change spatially for KBDI, but
mFFWI and CFWI exhibit a larger area of statistically significant
change in the counts above the 90th and 97th percentile thresh-
olds than in the 80th percentile, which suggests larger changes in
extreme atmospheric conditions and fire intensity, respectively,
compared to the high fire danger percentile. The magnitude of ab-
solute change in the annual count of days above the 90th and 97th
percentile tends to be smaller than the count above the 80th per-
centile, but the percent increase is either similar or larger for all the
indices derived from the NFDRS. KBDI shows a similar amount
of change across the 80th, 90th, and 97th percentile, and a similar
pattern occurs in CFWI in the 80th and 90th percentile counts.

Compared to the count above the 80th percentile, areas projec-
ting a decrease in the count above the 90th and 97th percentiles
grow larger and exhibit more model ensemble agreement for
NFDRS-associated indices along the East Coast. The same ap-
plies to eastern Colorado for BI G, while the opposite is true for
eastern Colorado for mFFWI.

For the 90th and 97th percentile counts, change by the end
of the century aligns with the patterns seen in the change of
annual count above the 80th percentile (Fig. 4 and Figs. S7
and S8). Notably, by the end of the century, most of CONUS
experiences significant change in the count of very high and
extreme fire danger days according to FM100, FM1000, ERC,
and SFDI. However, there still exist areas where the simula-
tions disagree on the sign of change for annual count. Addi-
tional areas of low simulation agreement exist in BI, some of
which is also seen in SFDI. The rest of the domain experien-
ces significant change in annual count above the extreme
thresholds according to BI, which is a far greater area than in
the midcentury. By midcentury, KBDI, CFWI, and mFFWI
already show statistically significant change across most of
CONUS, but most changes double in size from midcentury to
the end of the century for these three indices.

Changes in KBDI, shown in red in the 97th percentile, repre-
sent at least a 36-day increase over the count of days in the refer-
ence period, which is 11 days. Change by the end of the century
shown in purple for KBDI shows an increase of 72 days. While
these are the most extreme changes in the fire index ensemble,
large changes exhibited across the domain should be recognized
for their magnitude relative to the reference period. Areas
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FIG. 5. For the ensemble of fire indices, the change in the annual average number of days above the 90th percentile threshold (below
the 10th percentile threshold for FM100 and FM1000) from the baseline period to midcentury. In the reference period, 37 days annually

are spent above the 90th percentile. Refer to Fig. 3 for full description.

experiencing 9-18 extra days would experience approximately
double the duration of severe fire danger (above 97th percentile)
levels relative to the reference period.

The ensemble average annual count of very high and extreme
fire danger days at the mid- and end of the century can be found
in Figs. S11-S14 which display all values across the domain, in-
cluding areas which disagree on the sign of change.

c¢. Season length: Annual count of days above
the midpoint

The annual count above the midpoint threshold is used as the
definition of fire season length. Similar to changes seen in per-
centile threshold exceedance counts, KBDI exhibits the most
widespread, statistically significant changes, the south-central
U.S. region experiences statistically significant change across
most fire indices, and NFDRS-derived indices share similar spa-
tial patterns. The Rocky Mountains show either areas of dis-
agreement on the sign of change or areas of decreases in the
days above the midpoint across most fire indices, with the excep-
tion of FM100, which displays statistically significant increases

(Fig. 7).

The magnitude of increases in the annual count exceeding
the midpoint ranges from 0 to 18 days as seen in ERC, BI,
and VM and 36-72 days as seen in KBDI. By the end of the
century, the areas experiencing increases in count above the
midpoint have expanded in size and have larger areas of sta-
tistically significant change (Fig. S6). Additionally, the size of
the increases in count is larger in magnitude.

d. Seasonality by GACC

The annual count plots (e.g., Fig. 3) do not capture fire sea-
sonality (i.e., the timing of fire potential throughout the year),
obscuring future changes that could still be relevant, such as
shifting season windows or peak timing. The distribution of
days above a given fire danger index threshold across the year
for the reference period shows the timing of expected fire dan-
ger peak and intensity, which vary by index and region and rep-
resents a basis for comparison for future time periods (Fig. 8).

Distinct seasonal patterns can be seen in the different
GACCGs in gridMET and the simulation reference period. The
NFDRS indices all share very similar patterns. The Northern
Rockies, East, Rocky Mountains, and South GACCs all exhibit
bimodality. The Southwest GACC has a monomodal season
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FIG. 6. For the ensemble of fire indices, the change in the annual average number of days above the 97th percentile threshold (below
the 3rd percentile threshold for FM100 and FM100) from the baseline period to midcentury. In the reference period, 11 days annually are

spent above the 97th percentile. Refer to Fig. 3 for full description.

concentrated in April-June, whereas Northern California,
Southern California, Great Basin, and Northwest GACCs have
unimodal seasons that peak in July or August. CFWI aligns with
the NFDRS indices in the western GACCs but displays a
unique seasonality in the South and East GACCs. In contrast,
mFFWI mostly agrees with the NFDRS indices in the East,
South, and Southwest GACCs, while displaying a unique sea-
sonality in the western GACCs. KBDI has a distinct seasonal
pattern that does not align with any other index, peaking later
and always having a unimodal season. The seasonal patterns
seen in the simulation ensemble and observations gridMET are
comparable in most GACCs, but they do not always align. In
the Northern Rockies and Rocky Mountain GACCs, grid-
MET displays a bimodal seasonal pattern, while the simulation
ensemble either captures a monomodal season or a less promi-
nent bimodal pattern. The bimodal season in gridMET is better
captured in the South and East GACCs by the simulation en-
semble. This should be recognized as a potential limitation of
the simulation ensemble.

Season shifts can be seen in several GACCs. For example,
by midcentury, FM100 and FM1000 project a later start and a
later end of season by 2—4 in the east, Northern Rockies, and

Rocky Mountain GACCs, indicating a shift in when low fuel
moisture occurs. This shift is not evident in the annual counts
(e.g., Fig. 3). Other indices in the Northwest, as well as in North-
ern California, South, Southern California, and Southwest, pro-
ject an expanding season that starts earlier and ends later. This
is a change more easily captured by annual counts. KBDI
uniquely projects year-round increases in the Rocky Mountains,
South, Southern California, and Southwest GACCs indicating
constant, heightened deficits in soil moisture. Frequently, ERC,
BI, and SFDI project little to no change or are indeterminate.
Changes at the end of the century tend to be larger in magnitude
and exhibit similar patterns as the midcentury period, but model
ensemble disagreement remains high.

The timing of the peak fire season is another characteristic
that is not captured by the annual count plots. While most indi-
ces and GACCs do not show a shift in the timing of peak fire
danger, there are a couple GACCs where a shift is projected. In
the Rocky Mountain GACC, the peak occurrence of days
above the 80th percentile is projected to shift 24 weeks later
according to FM100, FM1000, ERC, and CFWI. In the East
GACC, the peak occurrence of this count is projected to shift
4-6 weeks later in the year in FM1000, ERC G, and CFWL.
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FIG. 7. For the ensemble of fire indices, the change in the annual average number of days above the midpoint threshold from the baseline
period to midcentury. Refer to Fig. 3 for full figure interpretation description.

4. Discussion and conclusions
a. Comparing fire indices

Presenting data in familiar frameworks, such as existing fire
metrics, can increase usability by practitioners (Cullen et al.
2023). In this work, we focused on metrics that are familiar to
practitioners across the United States. Some indices were cho-
sen for their actionability; KBDI, FM100, FM1000, ERC, and
BI are all commonly used by fire management in the United
States (Melton 1989; Schlobohm and Brain 2002). While less fre-
quently discussed, mFFWI builds off KBDI to incorporate wind
and humidity, which are fire-relevant variables beyond drought.
CFWI has been adopted by some practitioners in the United
States and elsewhere outside Canada (Taylor and Alexander
2006).

The projected changes in the number of days above the ex-
amined thresholds in this analysis vary in magnitude and spatial
distribution across the fire index ensemble, and projected in-
creases in counts above the examined thresholds are far more
widespread and frequently larger than decreases. These results
have implications for planning and decision-making, and they
demonstrate a limitation of previous research that uses one fire
index to examine future fire weather. Some previous analyses

rely solely on KBDI (Brown et al. 2021; Liu et al. 2010). Others
rely on CFWI or other components of the Canadian Forest Fire
Danger Rating System (CFFDRS) (Goss et al. 2020; Flannigan
et al. 2013; Jain et al. 2017). Others still examine the Haines in-
dex (Tang et al. 2015) or the MacArthur forest fire danger index
(Fox-Hughes et al. 2014), neither of which were examined
here. Single indices, applied across a range of ecological condi-
tions or a large domain, often with nonlocalized thresholds of
fire danger, have limited applicability. Areas that disagree on
the sign of change or exhibit vastly different amounts of change
in this analysis indicate areas where the choice of index is
critical.

KBDI is an outlier from all other indices examined in this
analysis, with changes across the domain that double or quadru-
ple the counts of fire danger days seen in other indices. Large in-
creases in KBDI have been previously attributed to increases in
temperature under climate change (Brown et al. 2021). This is
likely because KBDI oversimplifies evapotranspiration to be a
temperature-driven function, which may not be appropriate
across diverse environments and may overestimate the impacts
of climate change (Sheffield et al. 2012). Since KBDI is an input
into mFFWI, this large temperature-driven increase is carried
through to mFFWI. However, mFFWI also uses average daily
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FIG. 8. The 30-yr average of biweekly counts exceeding the 80th percentile threshold for the reference period (colored dotted lines) and
gridMET (colored solid lines), change by the midcentury period (colored dashed lines), and change by the end of century period (colored
dashed lines). The colors represent fire indices, while the line style represents the source dataset, which are represented in black in the leg-
end. Ensemble medians are shown in bold, while individual simulations are faint.
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humidity, which may better reflect future interactions in the fire
weather system.

Some NFDRS indices are inputs into other NFDRS indices
and share similar spatial patterns of change. NFDRS indices
also exhibit far more areas of disagreement on the sign of
change than the other indices. ERC and BI are less sensitive
to temperature increases, as they place less weight on temper-
ature and place more weight on precipitation (Yu et al. 2023),
and there are significant variations across the ensemble in the
projected amounts of change in precipitation (Fig. S4).

The simulation ensemble projects large areas of statistically
significant change in CFWI, which is independently calculated
from all other indices examined here. Previous studies have ex-
amined the sensitivity of the CFFDRS system and found that
temperature effects dominate precipitation effects (Flannigan
et al. 2016).

The subset of indices considering wind (mFFWI, CFWI, BI)
exhibits different patterns of change. This suggests that pro-
jected wind does not act as a dominant contributor to the aver-
age projected changes in fire weather, or the effects of wind as
it pertains to dry conditions do not change for the percentile
thresholds considered here. This is consistent with Yu et al.
(2023), who demonstrated that overall, wind has the least im-
pact of all the inputs for BI and CFWI. However, wind plays a
larger role for conditions above the 95th percentile.

Areas of spatial consensus or disagreement that are consis-
tent across the fire index ensemble could point to areas of in-
creased or decreased confidence, respectively, in the change in
fire danger. The Rocky Mountains and Great Basin are areas of
least consensus in every fire index, so few conclusions can be
drawn about increases in fire danger for this examination. In
contrast, the Southwest and south-central United States exhibit
the most agreement in projected increases in fire danger, in-
creases which are statistically significant in all fire indices except
for those using the VM fuel modeling scenario. With slightly
less prevalent statistically significant increases but still showing
agreement in the sign of change, the Northwest is projected to
experience increases in fire danger days across the fire index en-
semble. Areas showing more mixed signals across the fire index
ensemble include the northern Rockies, which has statistically
significant change and high model ensemble agreement in all
but ERC, BI, and SFDI (all of which are closely related); Cali-
fornia, which has disagreement in NFDRS indices but increases
in the non-NFDRS indices; and the east and south, which are
projected to experience increases in non-NFDRS indices but
decreases according to NFDRS indices.

ERC and Bl include fuel loading with live and dead fuels, un-
like the other indices examined here, so we examined two fuel
modeling scenarios to understand the impacts of fuel model on
future projections. In most regions, the choice of fuel model
does not change the magnitude of the projected changes. How-
ever, the projections of fire weather in the southwest and south-
central United States experience larger magnitude and more
widespread statistically significant change under fuel model G
than under the mixed fuel model approach, VM. That there are
differences in the two indicates that in some regions, like the
Southwest, the fuel model chosen as input into the indices does
matter and should be considered carefully.
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Finally, the different percentile thresholds for fire danger
approximate the various NFDRS defined levels of fire danger,
and different patterns of change can be seen in the thresholds,
varying by region and index. Overall the 97th percentile, ap-
proximating severe fire danger experiences smaller absolute
change but larger relative change, compared to the other
thresholds. The 90th and 97th percentiles exhibit smaller ab-
solute changes than the 80th percentile, but the spatial pat-
terns of statistical significance are consistent across all three.

b. Limitations

The grid spacing of the regional simulations must be consid-
ered when using these data. At 25 km or 50 km, each grid cell is
625 or 2500 km? in area. While this is suitable for general cli-
mate analysis, this may be difficult to translate to local applica-
tions, particularly where terrain or fuel are major influences on
fire behavior. Similarly, comparison of the gridded data pre-
sented here may not be easily used in tandem with point-based
observations of fire indices in complex orography.

The GACC seasonality summaries comparing gridMET to
simulations suggest that some atmospheric processes relevant
to fire, particularly in the spring, are not being captured in the
simulations in a uniform manner.

c. Using fire indices to address future
meteorological trends

The input variables for the fire indices project potentially
counteracting and/or compounding interactions with each other.
Whether the fire indices are able to capture these interactions
affects their usability in future fire projections. Increased precip-
itation dampens fire potential in the fire indices, but higher
temperatures drive fuel curing and increases fire potential.
Decreases in precipitation and rising temperatures can com-
pound for some regions as well. The NA-CORDEX RCM en-
semble exhibits increases in temperature, and precipitation
increases or decreases by region and season (Fig. S4). Since fire
indices rely heavily on both, the covariability of these changes
impacts the projected fire indices. For instance, regions with in-
creased winter and spring precipitation would not experience
dampened fire potential in the summer and fall, when projected
temperature increases are higher. Increased precipitation would
also contribute to fuel growth, but the fire indices do not ad-
dress fuel growth dynamics, and thus, effects of fuel availability
(such as in a fuel-limited regime) are not captured by these pro-
jections. Previous studies of the effects of climate change on
wildland fire suggest that increased fuel aridity attributed to cli-
mate change has already affected the magnitude of area burned
by forest fires in recent years (Williams et al. 2019).

How the inputs interact in the fire indices should be consid-
ered as well. A study of observations shows that decreased pre-
cipitation or precipitation feedbacks through vapor pressure
deficit were major drivers behind the increased burn area from
1979 to 2016 (Holden et al. 2018), which would suggest that fu-
ture increases in fire-season precipitation could prevent that
trend from continuing. Indices with many input variables, such
as ERC and BI, have the ability to capture complex interac-
tions, but increased fidelity in the input variables is required for
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those interactions to be accurate (Yu et al. 2023). Overall, by
midcentury, there are many areas of disagreement in this en-
semble’s projections, but by the end of the century, nonprecipi-
tation variables (i.e., high levels of warming) appear to be
driving an increase in dangerous fire weather in direct conflict
with increased precipitation.

Future work could include the modeling of ignitions, in-
cluding human-caused ignitions, in addition to extending this
analysis to impacts on human health, safety, and wellbeing.
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