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Visibility-informed mapping of potential firefighter lookout 
locations using maximum entropy modelling 
Katherine A. MistickA,* , Michael J. CampbellA and Philip E. DennisonA

ABSTRACT 

Background. Situational awareness is an essential component of wildland firefighter safety. In the 
US, crew lookouts provide situational awareness by proxy from ground-level locations with 
visibility of both fire and crew members. Aims. To use machine learning to predict potential 
lookout locations based on incident data, mapped visibility, topography, vegetation, and roads. 
Methods. Lidar-derived topographic and fuel structural variables were used to generate maps of 
visibility across 30 study areas that possessed lookout location data. Visibility at multiple viewing 
distances, distance to roads, topographic position index, canopy height, and canopy cover served 
as predictors in presence-only maximum entropy modelling to predict lookout suitability based 
on 66 known lookout locations from recent fires. Key results and conclusions. The model 
yielded a receiver-operating characteristic area under the curve of 0.929 with 67% of lookouts 
correctly identified by the model using a 0.5 probability threshold. Spatially explicit model 
prediction resulted in a map of the probability a location would be suitable for a lookout; 
when combined with a map of dominant view direction these tools could provide meaningful 
support to fire crews. Implications. This approach could be applied to produce maps summaris-
ing potential lookout suitability and dominant view direction across wildland environments for 
use in pre-fire planning.  

Keywords: firefighter safety, lidar, lookout, machine learning, maxent, situational awareness, 
spatial modelling, visibility. 

Introduction 

To ensure safety while actively suppressing and managing wildland fires, US firefighters 
rely on extensive training and standardised directives such as the National Wildfire 
Coordinating Group’s (NWCG) Incident Response Pocket Guide (IRPG), 10 Standard 
Firefighting Orders, 18 Watch Out Situations, and Lookouts, Communications, Escape 
Routes, and Safety Zones (LCES) (Gleason 1991; National Wildfire Coordinating Group 
2022). These resources emphasise the importance of situational awareness to avoid 
dangerous situations and maintain safety in the presence of hazardous conditions. One 
of the dangerous situations delineated in the 18 Watch Out Situations is, ‘#12. Cannot see 
main fire; not in contact with someone who can’. This situation is mitigated by ensuring 
Standard Firefighting Order #5 (‘post lookouts when there is possible danger’) is fol-
lowed. Further, LCES emphasises that lookouts must maintain a position that provides a 
view of both the fire and firefighters in their crew so that as fire behaviour and 
suppression tactics change, this information can be quickly relayed, and adjustments 
can be made if necessary to maintain crew safety (Gleason 1991). Additionally, NWCG 
training stipulates that LCES must be, ‘established and known to all firefighters before it 
is needed’ (National Wildfire Coordinating Group), suggesting lookouts should be 
assigned for every crew working an incident. 

Lookouts can be any experienced crew member with knowledge of crew locations, 
escape routes, and safety zones. Additionally, they must understand current fire condi-
tions and maintain a position with a view of both the fire and their associated crew 
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(National Wildfire Coordinating Group 2022). A lookout’s 
location may be dynamic, changing as conditions require. 
While previous studies have focused on siting of fixed look-
out locations, such as towers or buildings (Kucuk et al. 2017;  
Cosgun et al. 2023), little research has been dedicated to 
roving crew lookouts and the importance of quantifying 
visibility across entire wildland landscapes (Mistick et al. 
2022). This research has been limited in part because most 
locations used by lookouts are not preserved in official 
geospatial incident data, although some actual or potential 
lookout locations from past incidents are publicly available 
through the National Interagency Fire Center (NIFC). This 
research is only concerned with crew members who have 
been assigned as lookouts; any mention of lookouts here-
after refers to a mobile, ground-based individual tasked with 
executing the duties of a wildland firefighter lookout. We do 
not examine static tower locations, which may also use the 
term ‘lookout’. The landscape conditions that promote suit-
ability for lookout towers and roving crew lookouts are 
similar, with both benefitting from a high degree of visibil-
ity; however, unlike static tower locations, mobile crew 
lookouts can move throughout the landscape to dynamically 
adjust their view of the fire or their fellow crew members. 

Given the importance of lookouts for ensuring safety in 
the presence of hazardous conditions, and the availability of 
lookout locations from official incident data, there is an 
opportunity to use recent lookout locations to predict and 
map potential lookout locations – and to understand the 
drivers of lookout location suitability – across wildland 
environments for use in future fire management decisions 
and planning. Due to the limited number of lookout loca-
tions available, the vast size of landscapes on which they 
could be placed, and no true representation of areas that 
were decidedly avoided for lookout placement, a modelling 
framework that is suited to presence-only prediction is 
appropriate for this task. Commonly used for species distri-
bution modelling, maximum entropy (maxent) models only 
require known locations of occurrence, along with a set of 
variables that may characterise that occurrence, such as 
climactic or topographic conditions (Phillips et al. 2006;  
Moreno et al. 2011; Nazeri et al. 2012; Yan et al. 2020). 
Maxent models are not limited by a small sample size, and 
do not require absence data; instead, the models use pres-
ence data to find the probability distribution of predictor 
variables that maximises entropy, and therefore identify the 
most diverse but probable habitat in which a species may 
exist (Phillips et al. 2006). Since wildfires do not always 
occur when climate conditions are favourable, maxent 
presence-only modelling has also been useful for predicting 
wildfire danger from a wide range of risk variables (Arnold 
et al. 2014; Chen et al. 2015; De Angelis et al. 2015; Martín 
et al. 2019). 

Considering lookouts are required to maintain active and 
direct of lines of sight to various components of the fire 
environment, maps of landscape-scale visibility could 

potentially drive a maxent model to determine the likeli-
hood that a location might be suitable for a lookout. Maps of 
landscape-scale visibility are technologically challenging to 
achieve due to the computational intensity of line-of-sight 
calculations at broad spatial scales. Most visibility research 
relies on aggregate line-of-sight calculations, or ‘viewsheds’, 
using digital elevation models to determine visible areas of 
landscapes from a limited set of points (Llobera 2003; Inglis 
et al. 2022). While advancements have been made in improv-
ing the speed of this type of calculation through graphic 
processing units (GPUs) (Chao et al. 2011; Stojanovic and 
Stojanovic 2013) and new algorithms (Tabik et al. 2013;  
Sahraoui et al. 2018; Sanchez-Fernandez et al. 2021), spa-
tially exhaustive (i.e. ‘wall-to-wall’) raster viewshed mapping 
is still limited by computational intensity. Previous research 
has found that machine learning can efficiently and accurately 
predict visibility, in terms of visibility index (VI; the propor-
tion of visible area to total area), at landscape scales using a 
suite of lidar-derived topographic and vegetation variables 
(Mistick et al. 2023). This research has found that raster 
visibility maps predicted using machine learning are fast to 
generate, even across large areas at high spatial resolution, 
and are accurate across diverse landscapes in the US. 
Consequently, this approach may be suitable for use in model-
ling lookout locations. 

The objective of this study is to determine whether 
machine learning-based maps of visibility and variables 
capturing distance to roads, topography, and vegetation 
can reliably predict lookout locations, and to understand 
which predictor variables contribute most to lookout likeli-
hood. Lookout locations drawn from official incident data in 
the US served as the presence data for maxent modelling. 
Lidar-derived landscape information was used to predict 
and map visibility at a variety of viewing distances, to 
account for the variety of proximities a lookout may need 
to maintain to their crew and/or any potential hazards. This 
information was used to build a maxent model which was 
then applied spatially to one study area and combined with 
directional visibility maps to demonstrate an operationally 
relevant use case. 

Materials and methods 

Lookout data were compiled from incident databases pub-
lished on the public repositories within the NIFC’s FTP 
server (https://ftp.wildfire.gov/). The NIFC FTP provides 
incident-level data, many of which contain official ArcGIS 
geodatabases with point, line, and polygon information. 
These features include but are not limited to features such 
as fire perimeter polygons, containment lines, and lookout 
point locations. Each folder on the FTP was scraped, and 
lookouts were identified by determining if a geodatabase 
contained a point feature class with ‘event’ in the name, 
following NWCG geospatial naming conventions (National 
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Wildfire Coordinating Group 2006). If a suitable feature 
class existed the ‘FeatureCategory’ column was parsed for 
any occurrences of ‘Lookout’, which also follows NWCG 
geospatial naming conventions. All incidents from 2020 to 
2023 in the seven western US geographic area coordination 
centres (Northwest, Northern Rockies, Northern California, 
Great Basin, Rocky Mountain, Southern California, 
Southwest) were scraped, and 171 unique lookout locations 
were identified. Even though we had a database of lookout 
points, and those lookout points were associated with spe-
cific fire events, we could not link the timing of lookout 
point placement with a precise understanding of con-
temporaneous fire extent. This limited our ability to com-
prehensively understand the spatiotemporal dimensions of 
lookout-to-fire visibility. Accordingly, we chose to model a 
set of short to medium-range viewing distances that would 
be appropriate for maintaining a line of sight with the crew 
and the fire on low-moderate intensity fires. However, on 
high-intensity fires, crews and lookouts may seek greater 
separation from the fire perimeter, which would necessitate 
and understanding of longer-distance visibility than that 
which was modelled in our study. 

While lookout locations served as the presence data 
needed for modelling, lidar-derived landscape information 
was needed surrounding each lookout to provide suitable 
topographic and vegetative data required for generating 
visibility maps (Mistick et al. 2023). Of the 171 lookout 
locations, 66 were within the extent of USGS 3DEP lidar 

data availability (Fig. 1). Overall, 17 3DEP lidar projects 
were found to contain lookouts, with all lidar preceding 
those lookout’s associated fires, with one exception 
(Table 1). A total of 30 study areas were considered across 
these lidar projects (Table 1). Initial study areas were 
defined as areas within 5 km of a lookout, a radius which 
allowed for sufficient landscape diversity surrounding look-
outs (needed for maxent modelling) while balancing file 
sizes of lidar downloads. Overlapping study areas were 
aggregated for lookouts <5 km from each other to reduce 
data redundancies. Lidar data were used to derive 1 m 
digital terrain and surface models (DTM, DSM) using lidR 
in R (R ver. 4.3.1) (R Core Team 2023) (lidR version 4.0.3) 
(Roussel et al. 2020; Roussel and Auty 2024). A DTM pro-
vides a raster of terrain elevation values that ignore vegeta-
tion height, while a DSM captures terrain elevation plus 
vegetation height. 

Next, the VisiMod R package (ver. 2.0) (Mistick and 
Campbell 2024), which was developed to facilitate mapping 
predicted visibility following the methods in Mistick et al. 
(2023) was used to prepare, model, and map visibility across 
all 30 study areas. The package consists of seven main 
functions (prep_dems(), gen_pts(), wedge(), calc_vi(), gen_-
preds(), mod_vi(), map_vi()), which combine to form the 
VisiMod() function that runs the entire visibility modelling 
and mapping process with just an input DTM and DSM 
(Fig. 2). The first function prepares the input data by check-
ing for spatial and coordinate system agreement and filling 
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(c)

(d) (e) (f)
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(i)
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Lookout
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Fig. 1. Map of 66 lookouts included in the dataset, 
with lidar extents and associated fire perimeters. 
Insets, each with their own scale bar, show clusters 
of three or more lookouts with more detailed look-
out locations relative to associated National 
Interagency Fire Center historical final fire perime-
ters for incidents with lookouts. (a) Monument Fire 
and River Complex, (b) Rafael, Pipeline and Tunnel, 
(c) Crooks, (d) Bighorn, (e) Black, (f) Cerro Pelado, 
(g) Calf Canyon, Hermits Peak, Cooks Peak, (h) Black 
Mountain, and (i) Twenty-Five mile.    
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interior and/or trimming exterior NA (NoData) values. 
Sample points are then generated within the study area, at 
which VI is calculated. The VI calculation applies an 
observer height of 1.7 m, to account for human height 
above the landscape. A suite of topographic and vegetative 
predictors is then generated from the DTM and DSM (e.g. 
per-pixel and pixel-neighbourhood average, slope, aspect, 
elevation, topographic position index (TPI), curvature, can-
opy height, and canopy cover). Using the suite of predictors 
and target VI values, a random forest model is then built to 
predict VI. This model is applied spatially, resulting in a 
wall-to-wall prediction of VI at one or more desired radii, 
with a default spatial resolution 10× the input rasters, in 
this case 10 m. Not only can VisiMod() account for a variety 
of horizontal radii (e.g. VI within a 100 or 250 m viewing 

distance), but it also allows users to specify opening fields-of 
view and view-directions (using the wedge() function,  
Fig. 2) to consider visibility in specific directions. 

The dismo R package (ver. 1.3-14) (Hijmans et al. 2023) 
was used to build the maxent model. A maxent framework 
was selected over other presence-only modelling frame-
works (such as generalised additive models or support vec-
tor machines) due to its generally superior ability to handle 
fewer samples of presence-only data (Valavi et al. 2022). 
While maxent models do not require absence data, they do 
require some kind of background environmental informa-
tion, which serves as the basis of model training and predic-
tion. Our maxent model used 17 predictors, all captured in 
10 m resolution raster datasets: canopy cover, relative can-
opy cover, canopy height, relative canopy height, distance 

Table 1. Summary of all USGS 3DEP lidar projects used to extract landscape information surrounding lookout locations.        

Lidar project Lidar collection start 
date (MM-YYYY) 

Number of 
study areas 

Number of 
lookouts 

Incident name Incident year 
(MM-YYYY)   

AZ BlackRock Goodwin 10-2021 1 1 Salt A 04-2021 

AZ Brawley Rilliito 03-2019 3 3 Bighorn 06-2020 

AZ Coconino 08-2019 3 2 Rafael 06-2021 

1 Tunnel 04-2022 

1 Pipeline 06-2022 

1 Viet 05-2021 

AZ Maricopa Pinal 10-2020 1 1 Whitlow 04-2021 

AZ USGS 3DEP Processing 08-2013 1 1 Backbone 06-2021 

AZ Yavapai 09-2021 1 11 Crooks 04-2022 

CA AZ FEMA 01-2018 2 1 Bush 06-2020 

2 Mescal 06-2021 

CA Carr Hirz Delta Fires 07-2019 3 2 Monument 07-2021 

1 River Complex 07-2021 

2 SRF Lightning Complex 08-2022 

CA NoCAL 3DEP Supp. Funding 07-2018 1 1 Claremont-Bear 08-2020 

ID Southern ID 10-2019 1 4 Black Mountain 09-2023 

NM CO Southern San Luis 09-2016 1 4 Hermits Peak 04-2022 

NM North Central FEMA 11-2016 5 7 Hermits Peak 04-2022 

6 Cerro Pelado 04-2022 

2 NM-CIF Sandia 04-2022 

1 Calf Canyon 04-2022 

NM NRCS FEMA Northeast 11-2017 1 1 Cooks Peak 04-2022 

NM South Central 11-2018 1 3 Black 06-2022 

NV West Central Earth MRI 10-2020 1 2 Tamarack 07-2021 

OR Southwest Central Sycan 07-2020 1 1 Bootleg 07-2021 

WA Eastern Cascades 10-2019 3 4 Twenty-Five Mile 08-2021 

AThe Salt fire was a small, predominantly grassland fire whose disturbance was unlikely to meaningfully affect the lidar’s ability to characterise the landscape for 
visibility analyses.  
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to road, VIr (for radius r in 250, 500, 1000 m), relative VI for 
each radius r, TPI with outer radii of x pixels for x in 2, 4, 6, 
8, 16 and 32 where inner radius = x/2 (Fig. 3). Since exact 
viewing targets were unknown, three radii for VI were 
selected to represent a reasonable range of distances over 
which a lookout may be responsible for surveying, with 
250 m representing a shorter distance, perhaps between 
members of the same crew, and 1000 m representing a 
longer distance, for inter-crew visibility or between crew 
and a nearby low to moderately fire behaviour. Canopy 
cover (the ratio of 1 m pixels with heights greater than 
1 m to the total number of 1 m pixels within a 10 m 
pixel) and height were derived from a canopy height 
model equal to DSM – DTM. TPI, which indicates relative 
elevation within a focal neighbourhood (Weiss 2001), was 
derived from the DTMs. TPI is calculated as the elevation 
minus the average elevation within an annulus with an 
outer radius x and inner radius x/2, where positive TPI 
indicates a relative high and negative TPI indicates a rela-
tive low. Distance to road was calculated as the distance in 
metres to the nearest road feature, data that came from an 
aggregation of linear transportation features from Open 
Street Map (Open Street Map Contributors 2023) as well 
as roads and trails from the National Transportation Dataset 
(U.S. Geological Survey and National Geospatial Technical 
Operations Center 2023). For each visibility predictor, 

VisiMod() was used to map VI at each radius, at each 
study area. Relative VI was calculated as: 

Relative VI = VI VI
VI

f

f

where VI is the VI value at a certain pixel location and VIf is 
the average VI value at a focal radius of 5 pixels (or 50 m). 
These relative VI measures were intended to capture loca-
lised hotspots in visibility, even in locations where absolute 
VI may be low. Relative canopy height and cover were 
calculated according to the same equation. 

Due to the size of study areas considered, we extracted 
predictor values at a random sample of points (1000 points 
per study area), to serve as background data for maxent 
instead of using the entire gridded raster data. These back-
ground data, combined with the lookout presence data, served 
as inputs into dismo’s maxent() function. In addition to a 
model built using all possible presence locations, a six-fold 
cross validation was done to evaluate model effectiveness. 
Each fold containing 11 random presence locations were left 
out of modelling once. Model performance was assessed 
according to the receiver operating characteristic (ROC) 
curve and its associated area under the curve (AUC), which 
represents the true positive rate on the y-axis (sensitivity) and 
the false positive rate on the x-axis (1-specificity). As noted by  
Phillips (2017), we cannot calculate specificity as it relies on 
the knowledge of true absences, which we do not have. 
Instead, maxent uses fractional predicted area (the proportion 
of samples being predicted as presence) as the x axis of the 
ROC curve. As fractional predicted area increases, so too 
should the sensitivity, even if a model was no better than 
random. However, if the model can possess a high sensitivity 
even with a relatively small fractional predicted area, it sug-
gests that it can capture the presence niche judiciously. The 
AUC quantifies this relationship, such that values closer to 1 
represent a better ability to precisely distinguish presence 
from background, whereas values closer to 0.5 represent a 
model whose predictive capacity is no better than a random 
guess (Phillips 2017). While usually applied to classifiers with 
true negatives, ROC curves and AUC values are applicable to 
maxent models by distinguishing between presence and ran-
dom in lieu of absence observations (Wiley et al. 2003;  
Phillips et al. 2006). Variable importance was assessed 
according to permutation importance, calculated by randomly 
permuting values for each predictor variable and evaluating 
the associated change in the model’s AUC. 

To demonstrate lookout suitability prediction using max-
ent, an exhaustive map of lookout likelihood was generated 
from raster maps of the 17 predictors across a study area 
encompassing the Hermits Peak Fire. This study area was 
selected based on the large number of lookouts from inci-
dent data, the variety of landscape conditions where lookout 
locations were recorded, and the wide range in predicted 
probability of lookout locations. To demonstrate the 

VisiMod()

1. prep_dems()
Prepares data by checking
for alignment and NoData

2. gen_pts()
Generates random sample
points within study area

4. gen_preds()
Generates a suite of
predictor variables

wedge() View direction

Radius

Creates vector
polygons of
wedges for
directional
visibility
analysis

3. calc_vi()

Invisible area (IA)
Visible area (VA)

Calculates visibility index
(VI) at each point

5. mod_vi()

1

0

VI

Builds random forest
models to predict VI

6. map_vi()
Generates predictive map(s) of VI

Field of view

VA

VA + IA
VI =

Fig. 2. The VisiMod workflow ( Mistick and Campbell 2024) for 
producing wall-to-wall maps of predicted VI.   
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potential utility of this map we combined the map of look-
out likelihood with a map of dominant view direction. 
Dominant view direction could be useful in a wildland fire 
management scenario when the visibility of specific hazards 
and crew are critically important. Dominant view direction 
was determined by predicting directional VI at a radius of 
500 m at the eight cardinal and ordinal directions (view 
direction = 0, 45, 90, 135, 180, 225, 270, 315°) within 
fields of view equal to 45° using VisiMod() (Fig. 2), and then 
executing a per-pixel determination of which view direction 
returned the maximum VI value. 

Results 

Lookout characteristics were consistent with high visibility. 
Lookouts were typically located near roads, with a median 
distance of 32 m from roads, and 73% of lookouts were 
within 100 m of roads. Lookouts were also generally located 
in areas with minimal canopy cover (median 19%) and low 
canopy height (median 1.1 m). TPI values at varying radii 
were typically negatively skewed from 0, suggesting look-
outs are generally placed on relative topographic highs. To 
determine if lookouts were consistently located in areas with 

(a) (b) (c)

VI
0.13

0.00

Canopy
cover (%)

100

0

Distance
to road (m)

1360

0

Lookout
probability

0.9–1.0
0.5–0.9
0.0–0.5

Canopy
height (m)

24

0

TPI 32
118

–89

(d) (e)

(g)

Road Lookout
0 1.25 2.25 5

km

(h) (i)

(f)

Fig. 3. Predictors used in maxent modelling at an example site showing 10 of the 11 lookouts from the Crooks 
Fire in Arizona. Visibility based predictors were generated using VisiMod with radii r where (a) r = 250 m, 
(b) r = 500 m, and (c) r = 1000 m. (d) Canopy cover, (e) canopy height, and (f) TPI 32 were generated from lidar- 
derived DSM and DTMs. Roads from Open Street Map and the National Transportation Dataset are shown in 
(g) distance to road. (h) Predicted Lookout Probability resulting from the maxent model. (i) NAIP imagery 
( National Agriculture Imagery Program (NAIP) 2016).
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the highest potential VI, VI deciles were determined per 
study area (for each radius), and the decile in which look-
outs fell was plotted accordingly (Fig. 4). Lookouts tended to 
be located in the highest-possible VI locations (70th, 80th, 
and 90th decile), regardless of radius (Fig. 4). On average, 
visibility was slightly higher in areas with higher lookout 
probability (see Appendix Fig. A1). 

Using the six visibility-based predictors, four vegetation- 
based predictors, six elevation-based predictors, and dis-
tance to roads, the resulting maxent model resulted in an 
AUC score of 0.929 (Fig. 5), and the 6-fold cross validation 
resulted in an average test AUC of 0.918 (range [0.895, 
0.936]). Given that the maximum possible AUC score is 
1.0, our results suggest that maxent modelling is a powerful 
tool for determining areas on the landscape that may be 
suitable for placing lookouts in a wildland fire context. The 
three most important variables according to permutation 

importance were: (1) distance to roads; (2) short range VI 
(250 m); and (3) long range VI (1000 m). Fig. 6 highlights 
the importance of roads and visibility-based predictors in 
estimating lookout probability. TPI with outer radii 8 and 32 
were the next most important, which combined with the 
importance of long-range VI suggest that lookout locations 
are recorded according to topographic highs and may favour 
areas with the long range visibility. 

Response curves demonstrate how each variable affects 
lookout probability in our model (Fig. 7). For example,  
Fig. 7a shows how increasing distance from a road exponen-
tially decreases the likelihood a location is suitable for a 
lookout. This pattern is visualized at a particular study area 
in Fig. 3g, h, showing how predicted lookout probability 
strongly follows roads. Long range VI has a positive relation-
ship with lookout probability (Fig. 7c), which further sug-
gests lookouts are most likely placed in areas with good long 
range visibility. However, short range VI has an inverse 

0
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Fig. 4. Number of lookouts per binned VI percent-
ile, respective of study area. Decile bins are defined 
per study area and compared with VI values at each 
lookout location. Lookouts are binned by having a 
VI value greater than or equal to the threshold 
decile value for each bin.    
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Fig. 5. Receiver operating characteristic (ROC) curve for the maxent 
data with the training area under the curve (AUC).   
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30

Fig. 6. Relative importance of predictor variables used in maxent 
modelling, according to permutation importance.   
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relationship with lookout probability (Fig. 7b): as short 
range VI increases, lookout probability decreases. We 
infer this is because lookouts are generally placed on local 
topographic high points (owing to the importance of TPI 
variables and their observed positive response curves 
(Fig. 7d, e)), whose high relief may hinder short range 
visibility while promoting long range visibility. This concept 
is demonstrated in Fig. 8, where the lookout from the Black 

fire in New Mexico has been placed on a topographic high. 
(Fig. 8a). This lookout has higher long-range VI (0.44) than 
short range VI (0.21) because the steep decline in elevation 
surrounding the lookout (Fig. 8b) prevents short range VI 
while promoting long-range VI. While standing on a 
steep mountain peak, one can often very clearly see 
distant landscape features (e.g. nearby mountains), but 
one’s ability to see portions of the mountain they just 
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climbed are often compromised by proximate vegetation 
and topography. 

The median predicted probability among the 66 lookouts 
was 0.73, with 67% of lookouts being correctly predicted as 
a lookout using a probability threshold of 0.5 (Fig. 9). Some 
lookouts in the dataset may be located in low probability 
areas due to uncertainty in GPS coordinates associated with 
each lookout (e.g. coordinates assigned on-location versus 
after the fact), relatively high distance to roads, incident- 
specific situations (e.g. a crew constructing line in a heavily 
forested area), or visible ranges outside the scope of this 
analysis (e.g. distances >1000 m). The 22 lookouts with a 
probability less than 0.5 had a median distance to road of 
141 m (versus a median of 15.8 m for lookouts correctly 
predicted). When compared to higher probability lookouts, 
lower probability lookouts had a 76% smaller median long 
range VI value (0.015 and 0.004, respectively) and an 82% 
smaller median TPI 32 value (37.6 and 6.8, respectively), 
suggesting the lower probability lookouts are located in 
areas with more limited long-range visibility and not at 
distinct topographic highs. 

Example case study 

The Hermits Peak Fire began as a prescribed burn on 6 April 
2022 in New Mexico, and was managed in conjunction with 
the nearby Calf Canyon Fire. The combined fires grew to 
over 138,000 ha, prompting evacuations and requiring a 
variety of equipment and personnel (InciWeb 2022). Near 
daily incident data was available for this fire on the NIFC 
FTP, and 11 lookout locations were collected and used in 
this example case study. Fig. 10d shows an example lookout 
probability map for and area including five lookouts, 

underlaid with directional visibility. Detailed maps are 
shown for a lookout with a high probability (Fig. 10, top 
row) and three lookouts with low probability (Fig. 10, bot-
tom row). Across the entire study area there are few loca-
tions suitable for lookouts, but the highest probability 
locations are generally along or near roads in keeping 
with the high importance of the distance to roads variable. 

The lookout in Fig. 10a was correctly predicted as an 
excellent lookout location with a probability >0.99. This 
area is a topographic high (Fig. 10c) with minimal canopy 
cover (Fig. 10b), but it also has a variety of dominant view 
directions (Fig. 10a). The incident data also recorded a 
comment on this lookout feature that this location was ‘a 
place to look out over division alpha, on top of JohnsonMesa 
[sic]’. According to incident data from the date the lookout 
feature was created, division alpha was in the north-eastern 
direction, and Johnson Mesa was in the south-eastern direc-
tion. The comment further suggests that this location was 
selected because it provides a good, multidirectional view of 
areas involved in the management of the incident. 

The three lookouts in Fig. 10e had probabilities less than 
0.5. However, all three were within 100 m of high probabil-
ity locations (probability = 0.99, 0.61, and 0.66, respec-
tively, moving west to east). Low probability for these 
lookouts may be a result of imprecisely recorded incident 
data (e.g. a lookout placed from memory instead of using 
exact GPS coordinates), increased distance to road, or exten-
uating circumstances revealed in the comments. For exam-
ple, the eastern-most lookout retains a comment: ‘Look out 
point, NE down into state road 518’, but state road 518 is 
nearly 7 km to the east, suggesting that this lookout’s target 
is outside the scope of this analysis, being that it is greater 
than 1 km from the lookout. However, the dominant view 
direction at this location is south, which does agree with the 
comment’s suggestion, indicating that it is also possible that 
this lookout point was not placed at the correct coordinates. 
The comment for the middle lookout reads, ‘Look through 
canopy north’, which confirms the presence of high canopy 
cover that reduces visibility, and also agrees with the domi-
nant view direction being north for this area. Both the 
middle and eastern-most lookouts are more than 1 km 
from the nearest road, which likely reduced their probabil-
ity. Lidar data were acquired 6 years before the fire 
(Table 1), and it is also possible that disturbances in vegeta-
tion or fuel reductions that increased visibility occurred 
since lidar was flown at this site. 

Discussion 

When combined with maps of visibility, vegetation and 
topographic information, and distance to roads, our results 
suggest that lookout locations derived from incident data 
can be used to predict locations on a landscape that may be 
most suitable to place a lookout in the context of wildland 
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fire management. These findings highlight the power of 
geospatial data and machine learning to deliver meaningful 
results that may enhance safety in management decisions 

and planning related to wildland fires. Lookout predictions 
may be useful in combination with other geospatial fire 
safety products to identify and evaluate the suitability of 
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Fig. 10. (a, d, e) Predicted lookout probability overlaid on dominant view direction for the Hermits Peak fire in New Mexico. 
(d) Symbols for five lookouts on the NM North Central FEMA lidar project. One inset (a) shows a single lookout in (b) an area of 
very low canopy cover and (c) at a relative topographic high. A second inset (e) shows three lookouts, in (f) an area of relatively 
high canopy cover and (g) at relative topographic highs.    
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safety zones (Dennison et al. 2014; Campbell et al. 2017b,  
2022), map escape routes and understand wildland firefighter 
travel rates (Campbell et al. 2017a, 2019; Sullivan et al. 2020), 
assess suppression difficulty (Rodríguez y Silva et al. 2020), 
and to improve management strategies (Thompson et al. 2021,  
2022; Buettner et al. 2023; Fillmore and Paveglio 2023). 

This research is aligned with previous work that has used 
geospatial data and machine learning to deliver products to 
improve planning and management of wildfires. For exam-
ple, (O’Connor et al. 2017) used boosted logistic regression 
to predict final fire perimeters based topography, vegeta-
tion, hydrographic features, roads, and suppression diffi-
culty, among other variables pertinent to fire behaviour 
and management. These models have been applied to map 
potential control locations (PCLs), which can indicate stra-
tegic borders used in potential operational delineations 
(PODs), which have been introduced as a geospatial deci-
sion support tool that combines landscape information such 
as topography and ecological conditions, potential hazards, 
and strategic response plans to provide a comprehensive, 
pre-planned framework for managing wildfires and wildfire- 
prone landscapes (O’Connor et al. 2016; Thompson et al. 
2021, 2022). 

While the previous examples have resulted in operatio-
nalised applications, some changes to lookout prediction 
may need to be considered to for operational context. 
Distance to road had the highest permutation importance 
(Fig. 6) of any variable. Roads can provide rapid access and 
evacuation for lookouts, but variables based on distance to 
road may not be appropriate in roadless areas; while some of 
these roadless areas are captured in our dataset (Fig. 10e), 
these comparably rare situations may not be fully reflected 
in model and therefore must be uniquely considered. 
A polygon-based product may provide more succinct and 
easily digestible information making it more likely to be 
used in management and planning, rather than a complex 
2-layer raster product. Further, to provide a more straight-
forward identification of lookout locations, the probability 
map could be further constrained by increasing the current 
probability threshold of 0.5 to a higher value such as 0.9 to 
indicate only the highest probability locations. This would 
reduce the expanse of identified potential lookout locations 
but would provide greater confidence that selected areas are 
more suitable. 

The lookout probability models relied heavily on our 
predicted maps of VI. Given that these maps are themselves 
a modelled product, their inherent uncertainty likely propa-
gated through the entire modelling workflow, which may 
have negatively affected the lookout probability model 
accuracy. In a previous study, the VI random forest models 
were tested in a variety of landscapes throughout the US, 
demonstrating an impressive capacity to accurately predict 
visibility in a wide range of ecological settings (Mistick et al. 
2023). We did not conduct an independent accuracy assess-
ment of the VI maps, and thus cannot precisely state the 

degree to which their uncertainty may have affected the 
lookout probability modelling results. Indeed, uncertainty 
in the roads dataset could have further introduced error in 
the final model. However, our results demonstrate that 
despite propagated error from any of the predictor variables, 
we found that lookout probability could be accurately pre-
dicted. Lidar data availability remains a limitation for 
nationwide application, as only 66 of a potential 171 look-
outs were included in this study due to limited lidar cover-
age. Lidar coverage will continue to expand through the 
USGS 3DEP program, but currency of data may become an 
issue if lidar acquisitions are not repeated over time. 

The resulting product could also be improved by incorpo-
rating longer (>1000 m) distances that were not considered 
in this study due to increased computational complexity 
associated with modelling visibility at such distances. Crew 
members acting as lookouts may be required to survey 
greater distances, especially if extreme fire behaviour pre-
vents crew from operating in close proximity to the fire front. 
The use of binoculars also increases one’s ability to see to 
greater distances, something this study does not consider. 
Not only could longer distances improve the product for the 
presented use-case, but they may also expand the possible 
uses. For example, unmanned aircraft system (UAS) technol-
ogy is becoming more widespread for wildfire detection and 
mitigation operations (Baek and Lim 2018; Bailon-Ruiz et al. 
2022; Seraj et al. 2022). Small, crew-carried UASs are lim-
ited by battery life and require skyward visibility for launch, 
but these maps could be applied to find potential launch sites 
as well as to target desirable areas in which flying a UAS 
would maximise the vehicle’s view of potential crew or 
hazard, especially if greater distances could be accounted 
for. This could be accomplished by modifying our current 
methods to account for an observer height equal to that of 
the UAS (current observer height is 1.7 m, an average human 
height). 

In this study, we focused on omnidirectional visibility as 
the basis of VI predictions, acting under the assumption that 
lookouts will generally benefit from areas with high visibility 
in all directions. However, at the incident level, if one sought 
to identify an optimal location to place a lookout that pro-
moted high visibility in a particular direction, one could 
employ a similar workflow as we have done here relying 
instead on VisiMod’s capacity to model directionally specific 
visibility (Mistick et al. 2023). Further, if not only the view 
direction is known but also both the crew and fire location 
are known, and the goal is merely to optimally place a fire-
fighter lookout in a real-time situation, then viewshed analy-
ses can be used to map areas that maintain high degrees of 
shared crew and fire visibility (Mistick et al. 2022). 

Moving forward, efforts should be made to catalogue 
additional lookout locations and metadata from fire inci-
dents in the US and in other countries. Archiving of lookout 
locations has only recently begun (Table 1), and larger, 
more comprehensive datasets of lookout locations may 
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lead to improved models. While our model captures areas 
that are most likely to be suitable for a lookout, a variety of 
unique conditions may present themselves on incidents that 
would require lookouts to be placed outside these areas. 
This may be why several lookouts were modelled to have 
probabilities <0.5: perhaps the crew was working away 
from roads, or the positioning of crew and/or fire required 
a lookout to be located within dense canopy with a narrow 
view, which may be modelled as a less likely lookout loca-
tion. The model may be biased towards lookouts near roads 
and with good visibility, therefore missing these unique 
locations; however, this is the goal of maxent modelling: 
to identify the prevailing trends in landscape suitability 
based on provided presence data. It is also possible that 
some incident-derived lookout locations were sub- 
optimally chosen, and since our model is delineating the 
best possible locations for lookouts it may help improve 
future selection of lookout locations. With more lookout 
location data, the model may be able to recognise the simi-
larities between these more unique locations, therefore pro-
viding a more comprehensive overview of lookout 
suitability. Specifically, it would be useful to have time-
stamped locations of lookouts, crews, and fire, such that 
current ambiguities in what lookouts are looking at (includ-
ing direction and distance) can be resolved. 

Conclusion 

In this study, we applied maxent modelling to a combination 
of incident and geospatial data to produce maps of areas 
most suitable to place lookouts in a wildland fire context. 
Historical lookout locations extracted from incident data 
and a suite of six visibility-based predictors, generated 
using the VisiMod R package that was built to facilitate 
visibility mapping in contexts such as vegetation-based pre-
dictors, topographic-based predictors, and distance to roads 
provided the necessary landscape information needed to 
build the maxent model. The model successfully predicted 
lookout locations for nearly two-thirds of the historic look-
out locations and had an AUC of 0.929 meaning it was 
exceptionally good at discerning likely lookout locations 
from random locations. The resulting model was used to 
map the likelihood a location is suitable for a lookout within 
the Hermits Peak Fire study area. Applying a threshold of 
0.5 to the probability maps and combining them with maps 
of dominant view direction, we were able to provide an 
example of how this modelling could be used in a wildland 
fire management scenario. 
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Fig. A1. Distribution of VI values across entire 
study areas, classified by predicted lookout prob-
ability (low, 0.0–0.5 in blue; high, 0.5–1.0 in red). 
(a) VIr=250, (b) VIr=500, and (c) VIr=1000.   
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